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Abstract: Background: Pulse wave velocity (PWV) assessment represents a simple method to estimate
arterial distensibility. At present, carotid-femoral PWV (cf-PWV) is considered the gold standard
method in the non-invasive evaluation of the elastic properties of the aorta. On the other hand,
the mechanical properties of muscular arteries can be evaluated on the axillo-brachial-radia axis by
estimating the carotid-radial PWV (cr-PWV). While a number of studies have addressed these issues
in adults, limited information is available on the respective features of cf-PWV and cr-PWV and on
their modulating factors in children and adolescents at increased cardiovascular risk. Methods: The
mechanical properties of the predominantly elastic (aorta) and muscular (axillo−brachial−radial axis)
arteries were evaluated in a pediatric population characterized by either elevated blood pressure (BP)
or excess body weight, and the main factors affecting cf-PWV and cr-PWV values in these individuals
were investigated. Results: 443 children and adolescents (median age 11.5 years, 43.3% females) were
enrolled; 25% had BP values >90th percentile and 81% were excess weight. The cf-PWV values were
significantly lower than the cr-PWV values: median (Q1–Q3) = 4.8 m/s (4.3–5.5) and 5.8 m/s (5.0–6.5),
respectively (p < 0.001). The pubertal development (p < 0.03), systolic BP and diastolic BP z-scores
(p = 0.002), heart rate (p < 0.001), and waist-to-height ratio (p < 0.005) were significantly associated with
cf-PWV values. No significant association was found between BMI z-score and cf-PWV. Predictors
of high cf-PWV (>95th percentile) were the heart rate (OR 1.07, 95%CI 1.04–1.10, p < 0.001) and
waist-to-height ratio (OR 1.06, 95%CI 1.0–1.13, p = 0.04). The variables significantly related with
cr-PWV values were diastolic BP z-score (p = 0.001), heart rate (p < 0.01), and HOMA index (p < 0.02).
No significant association was found between the cr-PWV and BMI z-score or waist-to-height ratio.
Conclusions: Systolic and diastolic BP values and central obesity are associated with aortic stiffness
in a population of children and adolescents at increased cardiovascular risk. In contrast, diastolic
BP, heart rate, and levels of insulin resistance appear to be related to distensibility of the upper limb
vascular district.

Keywords: adolescent; arterial stiffness; blood pressure; body mass index; carotid-femoral pulse
wave velocity; carotid-radial pulse wave velocity; children; HOMA index; waist-to-height ratio

1. Introduction

Measurement of pulse wave velocity (PWV) represents a simple way to measure the
stiffness of a specific arterial segment [1]. The pulse wave is transmitted through the arterial
vessels, and its speed is inversely related to the viscoelastic properties of the wall itself; the
higher the velocity, the less elastic the wall [2]. Carotid-femoral PWV (cf-PWV) investigates
the viscoelastic properties of the aorta and is considered the non-invasive gold standard
for estimating the degree of aortosclerosis in daily clinical practice [3,4]. In adults, high
cf-PWV values represent an independent risk factor for cardiovascular events, as well as an
important prognostic factor for cardiovascular mortality [3,5]. PWV can be modified both
by structural and functional elements of the arterial wall [2].
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Regarding the structural elements, the viscoelastic properties of the arterial wall in
large arteries are guaranteed by the ratio between the elastin fibers and the collagen fibers
in the tunica media [6–8]. This relationship can be altered by an increase in collagen fibers
(as observed in arterial hypertension), as well as by a reduction in elastic fibers (as observed
with aging) [4,9,10]. The aging process causes histological alterations in the arterial wall.
Reduced elastin synthesis and increased elastase activity cause thinning and breakage of
elastin fibers, and the result is a decrease in the elastin and collagen ratio. Starting from
the first decades of life, there is a slow but progressive increase in aortic PWV values,
with a rapid and exponential increase in adults and in the elderly population [11]. If the
maintenance of the structural characteristics of the arterial wall represents an important
element to guarantee the viscoelastic properties of the aorta and of the large elastic arteries,
on the other hand the elastin−collagen ratio in the wall has a negligible impact on the
mechanical properties of the muscular arteries.

Muscular arteries are mainly affected by functional factors, mostly related to the
activity of the sympathetic nervous system [2,9]. Enhanced sympathetic activity results
in an increase in heart rate, ventricular contractility, and peripheral vascular resistance,
leading to a rise in mean arterial pressure. Concerning arterial vessels, the sympathetic
system modulates the activity and the tone of the smooth muscle cells of the arterial wall.
On the other hand, the impact of the sympathetic nervous system on the distensibility
properties of the aorta is weak and it has been shown that the mechanical properties of the
human aorta remain largely unaffected during sympathetic stimulation. The mechanical
properties of predominantly muscular peripheral arteries can be assessed in the peripheral
arterial districts of the lower limbs and upper limbs, by measuring the femoral-tibial
PWV and carotid-radial PWV (cr-PWV), respectively. The latter provides an estimate of
the viscoelastic properties of the axillo−brachial−radial arterial district. Several studies
performed on the adult population have shown that elevated femoro-tibial and cr-PWV
values have no prognostic or clinical significance [12,13]. Furthermore, while cf-PWV
increases significantly with aging, cr-PWV does not change significantly with age [2].
Overall, PWV assessed at the upper limb likely reflects a functional condition of the arterial
tree, which is closely related to the activation of the sympathetic system.

The relationship between PWV in the aorta and in upper limb muscular arteries has
not yet been investigated in childhood and adolescence, and it is unclear what factors affect
cf-PWV and cr-PWV at this age in the presence of cardiovascular risk factors. Thus, the aim
of our study was to evaluate the main factors associated with cf-PWV and cr-PWV values
in a pediatric population at increased cardiovascular risk.

2. Materials and Methods
2.1. Participants

We studied a cohort of children and adolescents, consecutively referred from May
2008 to September 2022 to the Unit for Cardiovascular Risk Assessment in Children of
Istituto Auxologico Italiano, IRCCS (Milan, Italy) by their primary care pediatricians, for
the clinical finding of excess weight or elevated blood pressure (BP) values.

Children and adolescents with diabetes mellitus, secondary hypertension, hyperten-
sion under drug treatment, congenital cardiovascular disease, and kidney disease were
excluded from the study. The presence of chronic disease involving habitual therapy was
considered an exclusion criterion from the study.

The study protocol was approved by the local institutional ethics committee and
conformed to the ethical guidelines of the 1975 Declaration of Helsinki. Informed consent
was obtained from parents or legal representatives before the enrolment in the study.

2.2. Clinical Parameters

Height, weight, and waist circumference were measured. Waist circumference was mea-
sured by means of a flexible tape in a standing position. Body mass index (BMI) was calculated
as weight/height2 (Kg/m2). The waist-to-height ratio (WtHr) was obtained dividing waist
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circumference by height, and expressed as percentage [14,15]. BMI z-scores were derived
from the Centre for Disease and Control prevention charts [16]. All study participants were
classified as normal weight, overweight, or obese according to the International Obesity Task
Force classification [17]. The pubertal stage was assessed and children were divided into two
categories, pre-pubertal and pubertal, according to Tanner [18,19], considering pre-pubertal
boys with gonadal stage 1 and girls with breast stage 1.

2.3. Blood Pressure Measurement

BP measurements were performed after at least 5 min of rest, in a sitting position,
using an oscillometric device validated in children (Omron 705IT; Omron Co., Kyoto, Japan)
with an appropriate cuff for the upper-arm size. The BP measurement was performed
3 times (at intervals of 3 min) and the average of the last two measurements was considered.
Systolic BP and diastolic BP percentiles and z-scores were calculated according to the
nomograms of the National High Blood Pressure Education Program Working Group on
High Blood Pressure in Children and Adolescents [20,21]. The children were classified
as normotensive if both systolic and diastolic BP percentiles were <90th; high-normal if
systolic BP and/or diastolic BP percentiles were ≥90th but <95th; and hypertensive if
systolic BP and/or diastolic BP percentiles were ≥95th.

2.4. Biochemical Dosages

Fasting blood samples were taken in all study participants to measure serum glucose,
insulin, uric acid, and creatinine. Commercial kits were employed for all analyses: enzy-
matic method with hexokinase Glucose HK Gen.3 Cobas Roche (F. Hoffmann-La Roche
AG, Basel, Switzerland), for glucose assay; ElectroChemiLuminescence Elecsys Insulin
Cobas Roche immunoassay was used for the insulin assay; colorimetric enzymatic test Uric
Acid 2 Cobas Roche for the serum uric acid assay; and colorimetric kinetic test based on
the Jaffé method Creatinine Jaffé Gen.2 Cobas Roche for creatinine assay. The homeostatic
model assessment (HOMA) index was obtained by dividing the product of the serum
insulin (mU/L) and serum glucose (mmol/L) by 22.5 [22]. The glomerular filtration rate
was estimated (eGFR) using the Schwartz formula [23].

2.5. Arterial Stiffness Assessment

Measurements of arterial distensibility were obtained at a stable room temperature
after 10 min of rest, by a validated ETT PulsePen tonometer [24] (DiaTecne srl, San Donato
Milanese, Italy), as described in detail previously [25–27]. Briefly, PulsePen consists of a
pocket size, high-fidelity applanation tonometer, and an integrated ECG unit. Aortic PWV
was measured by recording carotid and femoral waveforms in rapid succession. cf-PWV
was defined as 80% of the distance between the measuring sites divided by the time delay
between the distal (femoral) pulse wave from the proximal (carotid) pulse wave, using
the R wave of the ECG trace as the reference [11]. The R−R interval on the ECG recording
was used to define the heart rate. The use of the PulsePen device in children had been
validated in a previous study, which provided reference values according to gender and
age for cf-PWV in children and adolescents [28].

2.6. Statistical Analysis

The characteristics of the cohort, overall and stratified according to sex, were described by
median and interquartile range (Q1–Q3) if the variables were continuous and by frequencies
and percentages if they were categorical. Univariate analyses to compare the characteristics of
the two groups of children were conducted using the Mann−Whitney test in case of continuous
variables, and through the Chi-Square test in case of categorical variables.

The univariate associations between cf-PWV (or cr-PWV) and systolic BP, diastolic BP
and BMI z-score values, WtHr, uric acid, and HOMA index are represented in scatterplots,
where 95% confidence interval on the Pearson correlation test and the p-value are displayed.
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Multiple linear regression models were used to assess the impact of sex, pubertal
status, systolic BP (or diastolic BP) z-score, BMI z-score (or WtHr), heart rate (detected
at the time of measurement of cf-PWV), uric acid, HOMA index, and eGFR on cf-PWV.
Multiple linear regression models were used to assess the impact of sex, pubertal status,
systolic BP (or diastolic BP) z-score, BMI z-score (or WtHr), heart rate (detected at the
time of measurement of cf-PWV), uric acid, HOMA index, and eGFR on cr-PWV. Multiple
logistic regression models were used to assess the impact of sex, pubertal status, systolic
BP (or diastolic BP) z-score, BMI z-score (or WtHr), heart rate, uric acid, HOMA index,
and eGFR on having cf-PWV values equal to or greater than the 95th percentile according
to gender and age [28]. As there were no reference nomograms for cr-PWV, only the
multiple linear regression model was performed for this variable. Statistical analyses were
performed with R (R Fundation for Statistical Computing, Vienna, Austria) 4.1.2 version
(http://www.R-project.org) accessed on 1 November 2023. All p-values were 2-sided, with
p-values < 0.05 considered to be statistically significant.

3. Results
3.1. Population

The study involved 443 children and adolescents referred to our clinic. Table 1 shows
the characteristics of the population enrolled in the study. The median age was 11.5 years;
43.3% of children were female and 54% were prepubescent. Here, 25.5% (n = 113) had
BP values greater than or equal to the 90th percentile. Furthermore, 80.8% (n = 358) were
of excess weight, and 67.5% (n = 295) had WtHr >50%. The median cf-PWV value was
4.8 m/s, and 11.4% (n = 50) of the children had cf-PWV values equal to or greater than the
95th percentile [28]. The cr-PWV values were significantly higher (median value 5.8 m/s)
than the cf-PWV values (p < 0.001), without differences between males and females.

Table 1. Anthropometric and clinical characteristics according to sex.

Parameter Overall Females Males p-Value

Participants, n (%) 443 192 (43.3) 251 (56.7)
Age, years 11.5 (9.3–13.2) 10.9 (8.7–13.0) 11.7 (9.9–13.5) 0.005

Birth weight, g 3280 (2900–3640) 3200 (2800–3530) 3300 (3000–3800) 0.004
Puberty, n (%) 201 (46.0) 91 (47.6) 110 (44.7) 0.608

Heart rate, beats/min 76 (69–85) 80 (72–87) 73 (66–82) <0.001
Systolic BP, mmHg 111 (103–121) 109 (101–119) 112 (104–123) 0.010
Systolic BP z-score 0.58 (−0.12–1.21) 0.66 (−0.16–1.18) 0.53 (−0.09–1.27) 0.999

Diastolic BP, mmHg 65 (59–71) 65 (58–71) 64 (60–71) 0.685
Diastolic BP z-score 0.21 (−0.25–0.81) 0.31 (−0.23–0.85) 0.17 (−0.25–0.76) 0.372

BP category: 0.752
- Normotension, n (%) 330 (74.5) 144 (75.0) 186 (74.1)
- High-normal, n (%) 42 (9.5) 16 (8.3) 26 (10.4)
- Hypertension, n (%) 71 (16.0) 32 (16.7) 39 (15.5)

Weight class: 0.771
- Normal weight, n (%) 85 (19.2) 39 (20.3) 46 (18.3)
- Overweight, n (%) 141 (31.8) 58 (30.2) 83 (33.1)
- Obese, n (%) 217 (49.0) 95 (49.5) 122 (48.6)

BMI, Kg/m2 24.6 (21.8–27.7) 24.2 (20.9–26.9) 25.1 (22.5–28.1) 0.010
BMI z-score 1.78 (1.20–2.11) 1.76 (1.10–2.04) 1.81 (1.32–2.17) 0.087

Waist-to-height ratio, % 53.3 (48.3–57.8) 52.4 (47.3–57.3) 54.0 (49.4–57.9) 0.021
Waist-to-height ratio >50%, % 295 (67.5) 119 (63.3) 176 (70.7) 0.126

Serum uric acid, mg/dl 4.5 (3.7–5.3) 4.4 (3.7–4.9) 4.7 (3.7–5.6) 0.003
Glucose, mg/dl 86 (81–89) 85 (80–89) 86 (82–89) 0.072
Insulin, mM/L 13.0 (9.0–18.6) 12.9 (9.2–18.4) 13.0 (9.0–18.7) 0.866

HOMA index, mmol/L × mU/L 2.6 (1.9–4.0) 2.6 (1.9–3.9) 2.7 (1.9–4.1) 0.944
Creatinine, mg/dl 0.54 (0.48–0.63) 0.52 (0.45–0.60) 0.57 (0.50–0.66) 0.003

eGFR, ml/min 149 (132–164) 151 (134–171) 147 (129–161) 0.046

cf-PWV, m/s 4.8 (4.3–5.5) 4.8 (4.3–5.5) 4.8 (4.3–5.5) 0.752
cf-PWV ≥ 95th percentile, n (%) 50 (11.4) 22 (11.6) 28 (11.3) 0.999

cr-PWV, m/s 5.8 (5.0–6.5) 5.8 (5.3–6.5) 5.6 (4.9–6.4) 0.069

Data are shown as median (interquartile range) or number (%). BMI, body mass index; BP, blood pressure; cf-PWV,
carotid-femoral pulse wave velocity; cr-PWV, carotid-radial pulse wave velocity; eGFR, estimated glomerular
filtration rate; HOMA, homeostatic model assessment.

http://www.R-project.org
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3.2. Factors Affecting Arterial Stiffness

Figure 1 shows the linear regression between cf-PWV/cr-PWV values and systolic
BP, diastolic BP and BMI z-scores, and WtHr. The systolic BP z-score was significantly
correlated with both cf-PWV (p < 0.01) and cr-PWV values (p < 0.01). The same was
true for the correlation of diastolic BP z-scores with both cf-PWV (p < 0.001) and cr-PWV
(p < 0.001) values. BMI z-score and WtHr were associated with cf-PWV values (p = 0.041
and p = 0.007, respectively), but not with cr-PWV values. Both serum uric acid and HOMA
index values were correlated with cf-PWV (p < 0.001), while only HOMA index but not
serum uric acid was associated with cr-PWV (p = 0.005) (Figure 2).
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Figure 1. Linear regression between carotid-femoral pulse wave velocity (cf-PWV) (a) and carotid-
radial pulse wave velocity (cr-PWV) (b) and systolic (SBP), diastolic blood pressure (DBP) z-score,
body mass index (BMI) z-score, and waist-to-height ratio (WtHr).
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HOMA index 0.044 (−0.001; 0.090) 0.057 0.048 (0.002; 0.093) 0.039 

Figure 2. Linear regression between carotid-femoral pulse wave velocity (cf-PWV) (a) and carotid-
radial pulse wave velocity (cr-PWV) (b) and serum uric acid and homeostatic model assessment
(HOMA) index.

Multiple linear regression analysis (Table 2) showed that the variables significantly
associated with cf-PWV values were the presence of pubertal development (p < 0.03),
systolic BP and diastolic BP z-scores (p = 0.002), and heart rate (p < 0.001). A correlation
between HOMA index and cf-PWV was evident when the model was adjusted for diastolic
BP z-score (p = 0.039). The estimated glomerular filtration rate (eGFR) was inversely related
with cf-PWV (p = 0.020). No significant association was evident between BMI z-score
and cf-PWV. In contrast, when WtHr was entered into the model instead of BMI z-score,
a significant correlation was shown between WtHr and cf-PWV (p < 0.05). All of the
results of the previous model were confirmed, except for the HOMA index, which was no
longer associated with cf-PWV. If the HOMA index was removed from the regressors, the
association between WtHr and cf-PWV became stronger (p < 0.01), while the other results
remained unchanged.
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Table 2. Results of multiple linear regression analysis with carotid-femoral pulse wave velocity (m/s)
as dependent variables in the entire sample.

Dependent Variable: Carotid-Femoral Pulse Wave Velocity

I Analysis

Variable
Model A Model B

β (95% CI) p β (95% CI) p

Intercept 3.772 (2.767; 4.778) <0.001 3.795 (2.788; 4.801) <0.001
Sex (males) 0.066 (−0.135; 0.268) 0.517 0.076 (−0.125; 0.278) 0.456

Puberty 0.263 (0.038; 0.487) 0.022 0.312 (0.091; 0.533) 0.006
Systolic BP z-score 0.161 (0.059; 0.262) 0.002 - - -
Diastolic BP z-score - - - 0.219 (0.084; 0.355) 0.002

BMI z-score 0.081 (−0.033; 0.195) 0.163 0.081 (−0.033; 0.195) 0.162
Heart rate, beats/min 0.018 (0.010; 0.026) <0.001 0.017 (0.009; 0.026) <0.001

Serum uric acid,
mg/dL −0.005 (−0.106; 0.096) 0.925 −0.003 (−0.105; 0.098) 0.947

HOMA index 0.044 (−0.001; 0.090) 0.057 0.048 (0.002; 0.093) 0.039
eGFR, mL/min −0.005 (−0.009; −0.001) 0.020 −0.005 (−0.009; −0.001) 0.021

II Analysis

Variable
Model A Model B

β (95% CI) p β (95% CI) p

Intercept 3.018 (1.839; 4.198) <0.001 3.085 (1.898; 4.273) <0.001
Sex (males) 0.052 (−0.152; 0.256) 0.616 0.061 (−0.143; 0.265) 0.557

Puberty 0.307 (0.074; 0.541) 0.010 0.350 (0.120; 0.581) 0.003
Systolic BP z-score 0.161 (0.059; 0.262) 0.002 - - -
Diastolic BP z-score - - - 0.213 (0.075; 0.351) 0.003

WtHr 0.019 (0.003; 0.036) 0.022 0.018 (0.002; 0.035) 0.032
Heart rate, beats/min 0.018 (0.009; 0.026) <0.001 0.017 (0.008; 0.025) <0.001

Serum uric acid,
mg/dL −0.015 (−0.117; 0.086) 0.771 −0.011 (−0.112; 0.091) 0.836

HOMA index 0.035 (−0.013; 0.082) 0.150 0.039 (−0.008; 0.086) 0.102
eGFR, mL/min −0.005 (−0.010; −0.001) 0.015 −0.005 (−0.010; −0.001) 0.016

In Model A and Model B, systolic blood pressure or diastolic blood pressure were considered, respectively. In
Analysis I and Analysis II, body mass index (z-score) or waist-to-height ratio were considered, respectively. Coef-
ficient β provides a measure of the relative strength of the association independent of the units of measurement.
BMI, body mass index; BP, blood pressure; CI, confidence interval; eGFR, estimated glomerular filtration rate;
HOMA, homeostatic model assessment; WtHr, waist-to-height ratio.

The multiple logistic regression model exploring factors significantly associated with
the presence of cf-PWV values equal to or greater than the 95th percentile for sex and
age, adjusted for systolic BP z-score (Table 3), showed a direct association with heart rate
(OR 1.07 95%CI 1.04–1.10, p < 001) and an inverse association with eGFR (OR 0.98 95% CI
0.97–0.99, p = 0.025) (Table 4). The results were similar when the diastolic BP z-score was
included in the model. When the BMI z-score was substituted for WtHr in the model
adjusted for systolic BP z-score, the OR was 1.07 (95%CI 1.04–1.10, p < 0.001) for heart rate
and 0.98 (95%CI 0.97–0.99, p = 0.018) for eGFR. Interestingly, in the latter model, WtHr was
also significantly associated with the presence of cf-PWV values equal to or greater than
the 95th percentile (OR 1.06 95%CI 1.0–1.13, p = 0.040). Similar results were obtained for
the model adjusted for diastolic BP z-score. The results did not change when the HOMA
index was removed from the model.



J. Clin. Med. 2023, 12, 6919 8 of 14

Table 3. Results of multiple regression model with carotid-femoral pulse wave velocity values equal
to or greater than the 95th percentile as dependent variables.

Dependent Variable: Carotid-Femoral Pulse Wave Velocity Equal to or Greater than the 95th Percentile

I Analysis

Variable
Model A Model B

β (95% CI) p β (95% CI) p

Sex (males) 1.448 (0.746; 2.866) 0.279 1.489 (0.765; 2.962) 0.247
Puberty 0.732 (0.342; 1.532) 0.413 0.690 (0.326; 1.425) 0.322

Systolic BP z-score 0.898 (0.632; 1.268) 0.545 - - -
Diastolic BP z-score - - - 1.283 (0.825; 1.981) 0.262

BMI z-score 1.289 (0.884; 1.959) 0.206 1.244 (0.853; 1.891) 0.277
Heart rate, beats/min 1.068 (1.039; 1.099) <0.001 1.065 (1.036; 1.096) <0.001

Serum uric acid,
mg/dL 0.774 (0.541; 1.095) 0.153 0.756 (0.530; 1.067) 0.116

HOMA index 0.964 (0.793; 1.137) 0.689 0.937 (0.771; 1.107) 0.482
eGFR, mL/min 0.982 (0.967; 0.997) 0.018 0.983 (0.967; 0.997) 0.025

II Analysis

Variable
Model A Model B

β (95% CI) p β (95% CI) p

Sex (males) 1.489 (0.758; 2.996) 0.254 1.500 (0.762; 3.025) 0.247
Puberty 0.936 (0.420; 2.059) 0.870 0.872 (0.395; 1.893) 0.730

Systolic BP z-score 0.867 (0.604; 1.235) 0.431 - - -
Diastolic BP z-score - - - 1.225 (0.773; 1.916) 0.379

WtHr 1.064 (1.004; 1.130) 0.040 1.060 (1.001; 1.126) 0.050
Heart rate, beats/min 1.069 (1.039; 1.100) <0.001 1.066 (1.036; 1.097) <0.001

Serum uric acid,
mg/dL 0.711 (0.488; 1.020) 0.070 0.697 (0.480; 0.995) 0.051

HOMA index 0.941 (0.764; 1.123) 0.538 0.910 (0.739; 1.089) 0.340
eGFR, mL/min 0.982 (0.966; 0.996) 0.018 0.982 (0.967; 0.997) 0.022

In Model A and Model B, systolic blood pressure or diastolic blood pressure were considered, respectively. In
Analysis I and Analysis II, body mass index (z-score) or waist-to-height ratio were considered, respectively. BMI,
body mass index; BP, blood pressure; CI, confidence interval; eGFR, estimated glomerular filtration rate; HOMA,
homeostatic model assessment; OR, odds ratio; WtHr, waist-to-height ratio.

Table 4. Results of multiple linear regression analysis with carotid-radial pulse wave velocity (m/s)
as dependent variables in the entire sample.

Dependent Variable: Carotid-Radial Pulse Wave Velocity

I Analysis

Variable
Model A Model B

β (95% CI) p β (95% CI) p

Intercept 5.035 (3.463; 6.607) <0.001 5.240 (3.688; 6.791) <0.001
Sex (males) −0.164 (−0.467; 0.139) 0.288 −0.138 (−0.438; 0.161) 0.365

Puberty 0.017 (−0.318; 0.351) 0.922 0.033 (−0.292; 0.358) 0.842
Systolic BP z-score 0.076 (−0.077; 0.230) 0.327 - - -
Diastolic BP z-score - - - 0.332 (0.131; 0.533) 0.001

BMI z-score −0.066 (−0.234; 0.103) 0.444 −0.094 (−0.260; 0.073) 0.269
Heart rate, beats/min 0.022 (0.009; 0.035) 0.001 0.019 (0.006; 0.032) 0.004

Serum uric acid,
mg/dL 0.015 (−0.137; 0.167) 0.845 −0.001 (−0.152; 0.149) 0.985

HOMA index 0.087 (0.019; 0.155) 0.012 0.080 (0.013; 0.146) 0.019
eGFR, mL/min −0.007 (−0.014; −0.001) 0.022 −0.007 (−0.013; 0.000) 0.035
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Table 4. Cont.

Dependent Variable: Carotid-Radial Pulse Wave Velocity

II Analysis

Variable
Model A Model B

β (95% CI) p β (95% CI) p

Intercept 4.980 (3.157; 6.802) <0.001 5.385 (3.579; 7.190) <0.001
Sex (males) −0.186 (−0.494; 0.121) 0.235 −0.166 (−0.470; 0.138) 0.283

Puberty 0.042 (−0.308; 0.393) 0.813 0.045 (−0.296; 0.386) 0.796
Systolic BP z-score 0.071 (−0.083; 0.225) 0.364 - - -
Diastolic BP z-score - - - 0.329 (0.125; 0.534) 0.002

WtHr 0.004 (−0.020; 0.029) 0.728 0.000 (−0.024; 0.025) 0.992
Heart rate, beats/min 0.021 (0.008; 0.034) 0.002 0.018 (0.005; 0.031) 0.008

Serum uric acid,
mg/dL 0.001 (−0.152; 0.154) 0.993 −0.015 (−0.166; 0.136) 0.844

HOMA index 0.076 (0.005; 0.147) 0.037 0.068 (−0.001; 0.138) 0.055
eGFR, mL/min −0.008 (−0.014; −0.001) 0.016 −0.007 (−0.014; −0.001) 0.025

In Model A and Model B, systolic blood pressure or diastolic blood pressure were considered, respectively. In
Analysis I and Analysis II, body mass index (z-score) or waist-to-height ratio were considered, respectively. The
coefficient β provides a measure of the relative strength of the association independent of the units of measurement.
BMI, body mass index; BP, blood pressure; CI, confidence interval; eGFR, estimated glomerular filtration rate;
HOMA, homeostatic model assessment; WtHr, waist-to-height ratio.

Variables significantly related to cr-PWV were heart rate (p < 0.01) and HOMA index
(p < 0.02), diastolic BP z-score (p = 0.001), but not systolic BP z-score. There was an inverse
correlation between cr-PWV and eGFR (p = 0.035). No significant association was evident
between BMI z-score and cr-PWV. When WtHr was included in the model instead of BMI
z-score, the results were essentially unchanged and WtHr was not associated with cr-PWV
(Table 4). The results did not change when the HOMA index was removed from the model.

4. Discussion

To our knowledge, this is the first study comparing parameters estimating the vis-
coelastic properties of the aorta and upper limb muscular arteries in a pediatric cohort
with cardiovascular risk factors. As a main and innovative contribution, the present study
highlights how, in this population, the factors significantly associated with upper limb
arterial distensibility (estimated by cr-PWV) are somewhat different from those associated
with aortic distensibility (estimated by cf-PWV). If the viscoelastic properties of muscular
arteries in the upper limbs appear to be mediated by tonic levels of sympathetic activity,
aortic distensibility appears, instead, to be more affected by blood pressure, heart rate, and
WtHr. Interesting, a significant and inverse correlation with eGFR was found with both
cf-PWV and cr-PWV values.

4.1. Aortic Pulse Wave Velocity

Aortic PWV depends on structural elements and transient functional changes in the
arterial wall. The structural factors are stable and closely related to the relationship between
elastin and collagen fibers in the tunica media of the arterial wall. The tunica media of the
aorta has a typical lamellar arrangement, characterized by an orderly arrangement and
interrelationship between elastic fibers and collagen fibers. Elastic fibers are characterized
by an accentuated viscoelastic property and collagen fibers are mainly responsible for a
structural containment function.

The characteristically different adult patterns of elastin and collagen composition of
thoracic and abdominal aortic segments are already present to some degree at birth [6].
The number of lamellar units present at birth remains almost constant in the first decade
of life, then increases progressively in adulthood, doubling in the thoracic aorta (from
25–30 units to approximately 56 units in the adult), while it increases less (from 15–20 units
to approximately 28 units in the adult) in the abdominal aorta [29]. BP level may be an
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important mechanical factor influencing the relative degree of lamellar growth during
the first years of life and in childhood [29,30]. Collagen is continuously degraded and
deposited in a process of homeostatic regulation [31]. An increase in BP, directly or indi-
rectly, provides the stimulus for the elaboration of fibrous collagen proteins in the arterial
wall [29], in order to counterbalance the resulting transmural pressure increase [2]. The
higher synthesis of collagen fibers induced by high BP values, therefore, causes an imbal-
ance in the elastin−collagen ratio of the arterial wall, determining a condition of aortic
stiffening. This action of BP on the viscoelastic properties of the aorta explains how, in our
population of children and adolescents with cardiovascular risk factors, the indexed values
(z-scores) of systolic and diastolic BP and heart rate were independently associated with
aortic stiffness, confirming what is already widely known in the youth [32,33] and in adult
population [3,11].

A condition of aortic stiffness has been described even in metabolic diseases such as
diabetes [34], fatty liver disease [35–37], kidney failure [12,38,39], and alterations in calcium
metabolism [40,41]. Some metabolic disorders can be accompanied by an increase in
oxidative stress, arterial medial calcifications, and by inflammation of the arterial wall [42].
Inflammation causes both arterial stiffening and endothelial dysfunction [43]. There is no
agreement in the literature regarding the relationship between BMI and vascular stiffness in
children and adolescents. Some data suggest that there is no influence of excess weight on
cf-PWV [33,44], while others go in the opposite direction [45,46]. Some authors have also
suggested that in obese adolescents, there is an inverse correlation between cf-PWV and
BMI values. On the other hand, several studies show a close relationship between insulin
resistance and arterial stiffness in children and adolescents [44,47–49], and this suggests
that excess weight and visceral fat (related to insulin resistance) may be associated with
different effects on arterial viscoelasticity, although not all authors agree on this point [50].
Our study did not show an association between cf-PWV and BMI. However, we found
a significant relationship between cf-PWV and WtHr. This result is interesting, because
it suggests that, for the same weight class, a greater quantity of visceral fat could lead to
a more severe clinical picture, presumably related to the production of cytokines, which
would induce endothelial dysfunction through an increase in oxidative stress and trigger an
inflammatory process that would lead to early vascular damage [51,52]. As there is a strong
relationship between central obesity and insulin resistance already in childhood [53] and
the cytokines produced by visceral fat can influence BP values in children [54], it is difficult
to distinguish the role of insulin resistance and/or visceral obesity when determining the
viscoelastic properties of the aorta.

4.2. Upper Limb Pulse Wave Velocity

Along the arterial tree there is a functional diversification that corresponds to a pro-
gressive change in the composition of the arterial wall. The aorta and large elastic arteries
have the characteristic lamellar structure with layers of elastin interdigitated by layers of
collagen and vascular smooth muscle. These arteries contribute to the buffering function
and ensure the Windkessel effect. Progressing towards the periphery of the vascular system,
the arteries lose their lamellar elastic structure and evolve into muscular-type arteries with
a decrease in elastin and a predominance of smooth muscle cells.

This distinction between elastic and muscular vessels is particularly important from a
clinical point of view, as, if high cf-PWV values are correlated with a high cardiovascular
risk, no relationship between cr-PWV and the incidence of cardiovascular disease has been
demonstrated [12,13].

In healthy young subjects, the autonomic nervous system does not have a pressure-
independent role in the regulation of the large elastic central arteries [55], which are little or
not at all innervated by the sympathetic system [56]. On the contrary, the distal segments of
the arterial tree (“muscular” arteries) are more muscular [57] and densely innervated [58,59],
thus being particularly sensitive to the activity of the sympathetic system [60]. Thus,
the stiffness of muscular arteries appears to be mediated by tonic levels of sympathetic
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activity [61]. The results of our study are in agreement with these pathophysiological
premises, as upper limb PWV was independently associated with z-score of diastolic BP
and heart rate, resulting from a condition of sympathetic activation.

In agreement with other studies in humans [62,63], the HOMA index (indicative of
insulin resistance) also had a significant association with cr-PWV. Given the condition of
sympathetic activation associated with insulin resistance, this finding also appears likely to
be induced by sympathetic activity. The interpretation of data on the relationship between
insulin resistance and PWV in the two vascular districts is complex. From our results,
it would appear that insulin resistance has a greater role in determining carotid-radial
stiffness than carotid-femoral stiffness, which, conversely, would be more influenced by
central obesity. However, these findings should be interpreted with due caution and would
need to be confirmed by additional studies.

4.3. Arterial Stiffness and Glomerular Filtration Rate

Arterial stiffness is increased in children with chronic kidney disease [64]. All children
and adolescents in our study population had normal renal function. However, there was
a strong inverse association between eGFR values and both cf-PWV and cr-PWV. This
finding may suggest that, despite the absence of renal disease, a higher filtration rate
leads to better vascular compliance. We can only speculate on the possible mechanisms
behind these findings. One possibility could be that children with a higher eGFR have a
smaller intravascular volume and that this may contribute to an increased vascular stiffness.
Further studies are needed to test this hypothesis.

4.4. Study Limitations and Strenghts

While our results are supported by the consistent number of children and adolescents
at increased cardiovascular risk that we were able to include in our paper, we have to
acknowledge a limitation of our study, related to the fact that we were able to collect
only cross-sectional data. Indeed, our hypotheses on the mechanisms behind our findings
would need longitudinal data to be tested and confirmed. However, we believe that our
results are, nevertheless, important, because they pave the way for such future longitudinal
evaluations.

5. Conclusions

PWVs of the aorta and upper limb have different regulatory mechanisms and clinical
significance. If the viscoelastic properties of the aorta are linked to blood pressure, heart
rate and visceral fat, on the other hand the distensibility of the muscular arteries of the
upper limbs seems to be mainly influenced by the sympathetic system in our population of
children at increased cardiovascular risk.

Further longitudinal studies are needed to clarify the prognostic significance of ele-
vated cf-PWV and cr-PWV values in childhood and adolescence, as well as their possible
role in the pathogenesis of arterial hypertension.
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