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ABSTRACT

The malignant Hodgkin and Reed Sternberg (HRS) cells of classical
Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating
a challenge to detect driver somatic mutations. As an alternative to cell
purification techniques, we hypothesized that ultra-deep exome sequenc-
ing would allow genomic study of HRS cells, thereby streamlining analysis
and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs
were exome sequenced to approximately 1,000×median depth of coverage.
An orthogonal error-corrected sequencing approach verified >95% of the
discovered mutations. We identified mutations in genes novel to cHL in-
cluding:CDH and PCDH, novel stop gainmutations in ILR, and a novel
pattern of recurrent mutations in pathways regulating Hippo signaling. As
a further application of our exome sequencing, we attempted to identify
expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA
sequencing (snRNA-seq) data generated from a patient in our cohort. Our
snRNA analysis identified a clear cluster of cells containing a somatic SNV

identified in our deep exome data. This cluster has differentially expressed
genes that are consistent with genes known to be dysregulated in HRS cells
(e.g., PIM and PIM). The cluster also contains cells with an expanded
B-cell clonotype further supporting amalignant phenotype. This study pro-
vides proof-of-principle that ultra-deep exome sequencing can be utilized
to identify recurrentmutations inHRS cells anddemonstrates the feasibility
of snRNA-seq in the context of cHL. These studies provide the foundation
for the further analysis of genomic variants in large cohorts of patients with
cHL.

Significance: Our data demonstrate the utility of ultra-deep exome se-
quencing in uncovering somatic variants in Hodgkin lymphoma, creating
new opportunities to define the genes that are recurrently mutated in this
disease.We also show for the first time the successful application of snRNA-
seq in Hodgkin lymphoma and describe the expression profile of a putative
cluster of HRS cells in a single patient.

Introduction
Classical Hodgkin lymphoma (cHL) accounts for approximately 10% of newly
diagnosed lymphoma cases. While most patients with cHL respond to front-
line therapy and are cured, a subset relapses or are refractory, and remain
a clinical challenge. Although brentuximab vedotin and immune checkpoint
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blockade have improved outcomes in relapsed/refractory cHL (1–3), improved
prognostication and targeted treatment options continue to be an unmet need
for this malignancy.

In the last decade, high-throughput genomic sequencing has provided in-
sight into cancer pathogenesis and has facilitated the development of novel

Corresponding Authors: Obi L. Griffith, McDonnell Genome Institute, Washington
University in St. Louis School of Medicine, 4444 Forest Park Ave, Campus Box
8501, St Louis, MO 63108. E-mail: obigriffith@wustl.edu; Todd A. Fehniger,
tfehnige@wustl.edu; and Malachi Griffith, mgriffit@wustl.edu

doi: 10.1158/2767-9764.CRC-23-0140

This open access article is distributed under the Creative Commons Attribution 4.0
International (CC BY 4.0) license.

© 2023 The Authors; Published by the American Association for Cancer Research

AACRJournals.org Cancer Res Commun; 3(11) November 2023 2312

mailto:obigriffith@wustl.edu
mailto:tfehnige@wustl.edu
mailto:mgriffit@wustl.edu


Ultra-Deep cHL Sequencing

therapies. Unfortunately, the genomic characterization of cHL has been limited
because of the paucity of the malignant Hodgkin and Reed Sternberg (HRS)
cells, which generally comprise<5%of the tumor and are surrounded by an im-
munosuppressive non-neoplastic immune cell infiltrate (4). Only a few studies
have investigated the genomic alterations representative of cHL. These studies
have addressed the challenges of rare HRS cells in several ways, including the
use of HRS-derived immortalized cell lines (5), HRS cell isolation from pri-
mary samples using laser capture microdissection or flow cytometric sorting
(6–8), or through the study of circulating tumor DNA (9, 10). Patterns of recur-
rent somatic mutations have been identified within the NFκβ (e.g., TNFAIP),
JAK/STAT (e.g., STAT and SOCS), and the PI3K/AKT (e.g., ITPKB) signal-
ing pathways (7, 9, 11–15). Despite this growing body of work, experimental
limitations include the use of cell lines, small sample sets, and potential biases
introduced by complex isolation techniques that require high HRS cell content.
Because these techniques will not be feasible in a routine pathology labora-
tory, alternative approaches that utilize bulk lymph node tissue are required to
perform large studies to correlate the impact of somatic mutations on clinical
outcomes.

We performed ultra-deep exome sequencing to discover recurrent genomic
events in 31 cHL bulk lymph node biopsies. An approach using multiple in-
dependent sequencing libraries per sample and custom variant filtering was
developed to overcome the challenge of uncovering recurrentmutations among
high-coverage, low variant allele frequency (VAF) sequencing data (16). Muta-
tionswere validated using an orthogonal error-corrected sequencing technique.
This application of ultra-deep exome sequencing created a reliable and repro-
ducible landscape of cHL somatic mutations, expanding our understanding of
the genomic drivers and pathways important in cHL pathogenesis.

The size of Reed-Sternberg (RS) cells (up to 100 μm) makes this cell type
a challenge for the microfluidic systems that accompany most single-cell se-
quencing technologies (17). In addition, HRS cell adherence to platelets and
the T-cell rosetting that often surrounds HRS cells further challenge single-cell
isolation techniques (18). To overcome the limitations of traditional single-cell
isolation, we applied single-nuclei RNA sequencing (snRNA-seq) technology
to a single patient in our cohort. Currently, an understanding of the patterns
of gene expression in cHL remains underexplored. Gene expression profiling
in microdissected primary cHL samples revealed changes in the regulation of
pathways (e.g., JAK-STAT and NFκB) known to drive the pathogenesis of cHL
(19). In addition, gene expression–based outcome predictor models have been
proposed to predict overall survival (20, 21). Most recently, single-cell sequenc-
ing has been used to describe the tumor microenvironment of cHL and the
importance of specific T-cell populations in cHL immune evasion (22, 23).
However, a whole transcriptomic profile of HRS cells is lacking in the litera-
ture. Here, we have used a combination of newly discovered somatic variation
and snRNA-seq to identify a putative cluster of HRS cells and have described
patterns of differential gene expression. In addition, we have also assessed the
remaining 29 samples with validated variants and have estimated that 12/29
samples (41%) have at least one variant with a high likelihood of detection in an
snRNA experiment like the experiment we present here. We have also identi-
fied three additional samples (10%) from our cohort with a marginal likelihood
of identifying an expressed variant. Our approach opens the door to the in-
vestigation of the full transcriptome of HRS cells. The snRNA-seq data lend
support to the authenticity of the somatic variants described and provide a
roadmap for studying the functional impact of the genomic changes we have
observed.

Materials and Methods
Patient Sample Acquisition, Characteristics, and
Ethical Considerations
All patients provided written informed consent for the use of their samples in
sequencing as part of the Washington University School of Medicine (WUSM)
Lymphoma Banking Program. The WUSM Institutional Review Board (IRB)
approved protocols include: IRB 201108251, 201104048, 201110187. All human
research activities are guided by the ethical principles in “The Belmont Re-
port: Ethical Principles and Guidelines for the Protection of Human Subjects
Research of the National Commission for the Protection of Human Subjects of
Biomedical and Behavioral Research”.

We included all fresh-frozen excisional biopsies available in the bank from 2008
to 2015. Pathology reviewwas performed on frozen lymphnode samples to con-
firm the diagnosis of cHL (E.J. Duncavage andY.S. Li). Both histochemistry and
immunohistology were integrated to assess for CD15 and CD30 positivity and
to quantify the number of RS cells in each sample. The approximate total of
RS cells was determined using the number of RS cells per high-powered field
(HPF) and total amount of tissue available per sample. Nodular lymphocyte-
predominant Hodgkin lymphoma was not included. Nonmalignant samples
were collected (skin punch biopsies) and were included for germline analysis.
Frozen sections (tumor and skin) were cut and used for genomic DNA isola-
tion. Most samples included in this study were untreated at the time of biopsy.
In these cases, the sample utilized was the diagnostic excisional biopsy or core
needle biopsy (27 untreated cases). There were also four relapses included. In
two cases, the second relapse biopsy was sequenced and for the remaining two
cases, the first and fourth relapse biopsy was sequenced. Basic demographics
and clinical features are described in Table 1.

DNA Isolation, Library Preparation, and Sequencing
DNA was isolated using a Gentra Puragene kit at the Washington University
Tissue Procurement Core facility. Automated dual indexed libraries were con-
structed with 30–250 ng of genomic DNA utilizing the KAPA HTP Library Kit
(KAPA Biosystems) on the SciClone NGS instrument (Perkin Elmer) targeting
250 bp inserts. Three libraries were constructed per sample, each with a unique
sample index. Libraries from the same patient (three from the normal and three
from the tumor) were pooled prior to hybridization, yielding a 3 μg library pool.
Each library pool was hybridized with the xGen Exome Research Panel v1.0
reagent (IDTTechnologies) which spans a 39Mb target region (19,396 genes) of
the human genome. The concentration of each captured library pool was accu-
rately determined through qPCR (Kapa Biosystems) to produce cluster counts
appropriate for the HiSeq X platform (Illumina). A total of 2 × 151 bp paired
end sequence data were generated with a target of approximately 100 Gb per
sample and target mean coverage of approximately 1,000x.

Single-nuclei Isolation and Library Prep (snRNA-seq)
One sample was piloted for snRNA-seq. Cryopreserved lymph node cells in
single-cell suspension were thawed and prepared according to the 10x Ge-
nomics snRNA-seq protocol with the following modifications: Cells were
lysed for 2–3 minutes in 1x lysis buffer with 10 mmol/L Tris-HCl (All Sigma:
Trizma Hydrochloride, catalog no.: T2194), 10 mmol/L Sodium Chloride (cat-
alog no.: 59222C), 3 mmol/L Magnesium Chloride (catalog no.: M1028), and
0.01% Non-Ident p40 (catalog no.: 74385) in Nuclease-free water, followed
by centrifugation, and resuspension in nuclei wash and resuspension buffer
[1% BSA (catalog no.: SRE0036)] in PBS with 0.2 U/μL of RNAase inhibitor
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TABLE 1 Patient characteristics and demographics

Characteristic Value (N = 31)

Female sex 16 (52)
Age, years, median (range) 36.5 (18–69)
Histologic subtype
Nodular sclerosis 21 (68)
Mixed cellularity 1 (3)
Other 2 (6)
Not specified 7 (23)
Stage
I 0 (0)
II 14 (45)
III 7 (23)
IV 8 (26)
Unknown 2 (6)
Early-stage prognostic group
Favorable 2 (7)
Unfavorable 11 (35)
Unknown 3 (10)
Not applicable (stage III/IV) 15 (48)
Bulky disease
No 21 (68)
Yes 9 (29)
Unknown 1 (3)
EBV status by EBER stain
No 21 (68)
Yes 5 (16)
Unknown 5 (16)
Approximate total number of RS cells* median

(range)
1,250 (22–6,000)

Number of RS cells per HPF * median (range) 21 (5–92)

NOTE: Data are presented as No. (%) unless otherwise indicated. Histologic
subtype other includes 1 patient where Hodgkin lymphoma and CLL were
present (the CLL sample was excluded from all analyses) and a second patient
that was designated as interfollicular. Histologic subtype not specified indicates
that a cHL subtype was not provided. *Indicates five samples with no
information regarding the number of RS cells.

(catalog no.: 3335399001). Cell lysis was validated using Acridine Orange
(AO)/propidium iodide, with 72% of cells lysed. Nuclei were resuspended at
1,000 nuclei/μL in NucleiWash and Resuspension buffer and libraries were pre-
pared using the 10x Genomics 5′ snRNA-seq protocol (GTAC@MGI). Library
preparation also included preparation for B-cell receptor (BCR) and T-cell re-
ceptor sequencing. The resulting 10x library was sequenced on an Illumina S4
flow cell (300 cycles targeting 100,000 reads/cell).

HaloPlex Validation
Following variant calling, variant automated filtering, and manual review (see
Supplementary Materials andMethods), we designed a custom capture reagent
using the HaloPlex HS Target Enrichment System (Agilent Technologies) to
validate the somatic variants.We included 1,842 out of 4,692 SNVs and INDELs
that passed manual review. The variants that were included on the HaloPlex
panel were all passing sites from all samples except where amplicons could

not be designed (i.e., mitochondrial genes and repetitive regions), and a sub-
set of sites from one sample (HL-513) with a very large number of variants.
From this hypermutator, 834 out of 3,684 sites were included on the HaloPlex
panel. We additionally tiled across 30 genes selected from the most recurrent
genes in the cohort and genes known to be recurrently mutated in Hodgkin
lymphoma (Supplementary Table S1; refs. 24, 25). The HaloPlex reagent was
designed using the Agilent SureDesign platform (Supplementary Data S1). All
probes were designed with two indices, a unique molecular barcode (UMI) to
allow for error-corrected sequencing, and a sample index to allow for sample
multiplexing (sample index).

HaloPlex libraries were created, sequenced, and processed usingmethods simi-
lar to previous reports, (26, 27) and theHaloPlexHS Target Enrichment System
manufacturer protocol (Agilent Technologies). Up to 500 ng of genomic DNA
was first digested using a mixture of restriction endonucleases in the HaloPlex
kit. Library quality was assessed with the Agilent 2100 Bioanalyzer. Fragmented
genomic DNA was then hybridized to the HaloPlex HS probe library. Hy-
bridized genomicDNA fragmentswere ligated to close nicks in the probe-target
DNA hybrids, captured with streptavidin, and amplified with PCR (22 cycles),
creating read families, each with its own unique molecular barcode index. Li-
brary concentration was assessed with qPCR according to the manufacturer’s
protocol (Kapa Biosystems). Both tumor and normal samples were interrogated
in the HaloPlex validation experiment.

Libraries were normalized, pooled, and sequenced on the HiSeq 4000. Eight
sampleswere sequencedwith two samples/lane and the remaining sampleswere
sequenced with three samples/lane. HaloPlex sequence data were processed
similar to the methods described previously (26). Barcoded FASTQ data were
demultiplexed and then reads were trimmed using Flexbar (28). Trimming was
performed to remove systematic errors introduced to the end of reads by Halo-
Plex chemistry. Readswere then alignedwith Burrows-Wheeler Aligner (BWA)
MEM v0.7.10-r789 (29).

All SNVs were evaluated using BarCrawler, a custom GATK-based tool. (https:
//github.com/abelhj/gatk/tree/master/public/external-example/src/main/java/
org/abelhj). As described in Wong and colleagues (26), background noise
calculation was performed on a position-by-position basis for each identified
SNV. At each site, read counts were gathered from all other samples. A Fisher
exact test, implemented in the R statistical environment, was used to compare
the reference and variant read counts at a site with the number of reference
and variant reads at that site in all other samples. The P value for this test
was retained. Multiple testing correction was then applied with the p.adjust
function [base R; default parameters—“holm” (30)]. Those variants with an
adjusted P value of less than 0.1 were retained. The same process was then
repeated with subsequent background calculations excluding all variants
retained in previous rounds until no new variants were identified.

Following the final iteration of the background noise correction, SNVs with
an adjusted P value of 0.05 were carried forward. Several other parameters
were considered to validate a SNV. SNVs were required to have an error cor-
rected depth ≥ 100 reads in the tumor and the normal, and an adjusted P value
>0.05 in the normal. In some instances, the normal sample did not have suf-
ficient HaloPlex data to evaluate whether a site was present in the normal. In
these cases, we designated the site as a “tumor-only” validated site if sufficient
tumor depth (100x) was reached and a tumor P value ≤ 0.05 was observed. Fi-
nally, as stated above only 834 of the 3,684 sites from the hypermutated patient
were included on the HaloPlex reagent. We determined that only 12 of the 834
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interrogated sites failed validation. Because this sample had a validation rate
approximately 99% and few failing sites upon which a custom validationmodel
could be trained, we simply considered the additional 2,850 SNVs from this
patient as high-confidence sites and were included in all subsequent analyses.

Indels were assessed using “consensus bams”—alignments created on the
basis of error corrected HaloPlex data. Consensus reads were generated
from demuxed sequencing data via a wdl workflow that uses WalkerTR-
Consensus_wk5 (https://github.com/abelhj/gatk/blob/master/public/external-
example/target/external-example-1.0-SNAPSHOT.jar).

Briefly, reads were trimmed of adapter sequences via cutadapt (-m 30 -u 3) and
aligned with BWA-MEM. WalterTRConsensus_wk5 was then applied (-dcov
1000000 -maxNM5 -mmq 10) to generate consensus reads. Read families with
less than 3 individual reads with the same UMI were removed and not used to
create consensus reads. All INDELs were manually inspected using Integrative
Genomics Viewer (IGV; ref. 31) and bam-readcount (32) was used to assess the
number of variant supporting reads and the VAF for the variant. For INDELs,
we required: a consensus bam tumor and normal depth > 5 consensus reads;
> 1 consensus tumor read of support;< 20 consensus normal bam reads of sup-
port; consensus tumor VAF > 0.01%; a consensus normal VAF < 5%. Similar
to the SNVs, if the normal consensus bam could not be evaluated, we required
sufficient tumor bam depth (5 consensus reads), 1 variant read of support in the
tumor and a tumor VAF > 0.01%.

De Novo Variant Calling
Using the consensus bams described above, we attempted to call variants within
the entire HaloPlex analysis space. To accomplish de novo variant calling, we
created a custom low VAF variant calling pipeline by modifying an existing
genome modeling system (16) variant calling workflow. Briefly, all postpro-
cessing filters were removed, leaving only the filtering that occurs at the variant
caller level using the default settings (https://github.com/fgomez02/analysis-
workflows/blob/9c9e6a6a48eb321804ce772a2c2c12b4f2f32529/definitions/
pipelines/detect_variants.cwl).

After variants were called, all de novo variants were filtered for basic variant
quality. Variants with less than 5 consensus reads in the tumor and normal were
removed. Sites were required to have a normal VAF < 5%, and a tumor VAF
> 0.5%. We also required < 5 variant supporting reads (consensus reads) in
the normal and ≥ 2 variant supporting reads in the tumor. All de novo vari-
ants were annotated using the Ensembl Variant Effect Predictor (VEP) tool
(Ensembl v93). Then, we filtered these variants by consequence using similar
consequence filters described for the exome filtering pipeline. All variants that
were previously discovered in the exome data were removed. We also inter-
sected all remaining variants with the HaloPlex analysis space using bedtools
(33), keeping only variants in regions where probes were designed. Following
automated filters, all remaining variants were manually reviewed in IGV (31,
34). During manual review, the consensus tumor and normal bam files were
loaded, as well as the exome tumor and bam file. Variants were passed if sup-
port was seen in the tumor consensus bam as well as the tumor exome bam
file (and a lack of support was observed in the consensus and exome bam).
Because we called and annotated new variants in the de novo variant calling
exercise, we updated the consequence annotations of all exome variants using
Ensembl VEP tool (Ensembl v93) for all sites that passed validation so that all
sites would be annotated consistently. In addition, it should be noted that seven
variants in TCIRGI, CEP, SMAD, CEP, COMP, LMTK, and DOCK,

that originally failed the orthogonal validation were called again in the de novo
variant calling exercise. After manual review of all available data, these sites
were rescued and included in the final analyses.

Detection of Epstein-Barr Virus and Association of
Epstein-Barr Virus Status with Mutation Burden
ISH for Epstein-Barr virus (EBV) mRNA (EBER) was used to detect the pres-
ence of EBVwithin each lymphnode biopsy. Kallisto (35)was used to determine
the presence of EBVDNA by performing competitive pseudoalignments to the
human reference genome (GRCh38) and multiple viral genomes (EBV, human
papillomavirus, and hepatitis B). To verify that our pseudoaligned reads were
correctly aligned to EBV, we used BLASTn to search for all matching reads and
verified that the EBV reference was among the highest concordances. Finally, to
confirm the presence of EBV viral DNA, all samples were competitively aligned
to the human and EBV reference genomes using BWAmem (29). These align-
ments were then visualized in IGV (31) where the presence of EBV reads was
confirmed.A threshold of at least 2 readswith aMQ60were required to confirm
positivity.

We used a two-tailed t test to test whether the mutation burden (i.e., average
number of mutations) across all samples that are EBV positive is significantly
different from the mutation burden in EBV-negative cases. This test was per-
formed using EBV status determined via EBER in situ hybridization and EBV
status determined using the competitive alignment methods described above.

Survival Analysis
For survival analysis, patients were stratified by mutation status (mutated vs.
wild-type) for all genes mutated in 3 or more patients. Time-to-event analyses
were performed using a log-rank test to identify significant progression-free
survival (PFS) differences between patients with mutations in a particular gene
and patients without mutations.

Data Availability
The exome and snRNA seq data described in this article have been deposited
in the NCBI sequence read archive (SRA) via dbGaP under the accession
phs001229. The amplicons used for the orthogonal validation experiment are
included as Supplementary Data.

Results
Patient Characteristics
Ultra-deep exome sequencing accompanied by orthogonal sequencing using
HaloPlex technology was used to identify recurrent mutations in 31 fresh-
frozen cHL biopsies with matched nonmalignant tissue. This cohort included
samples from 27 (87%) patients with newly diagnosed and 4 (13%) patients with
relapsed cHLwith clinical characteristics shown inTable 1. Both histochemistry
and immunohistology were integrated to assess for CD15 and CD30 positivity
and to quantify the number of RS cells in each sample included here. The me-
dian number of RS cells per HPF was 21 (range: 5–92; Table 1; Supplementary
Table S2).

Genomic Data Generated and Coverage Statistics
We generated approximately 1,000x coverage exomes for both the fresh-frozen
tumor and normal skin biopsy for all patients. The median depth of cov-
erage per base, excluding duplicate reads, across all three libraries was 939x
(range: 526–1,294x) for normal samples and 1,025x (range: 575–1,321x) for
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FIGURE 1 Deep exome coverage, validation rate, final variant count, and VAF per sample. A, Average per base coverage for targeted regions across
each tumor and normal sample. B, A targeted orthogonal sequencing strategy (HaloPlex; Agilent) was used to validate all variants that passed filtering
strategies for all samples (except for the hypermutated sample, for which a subset of variants were selected for validation—see Materials and
Methods). The count of assayed variants that passed, failed, or were validated only in the HaloPlex tumor sample, is shown by sample as well as the
number for which validation was not possible due to low tumor coverage or amplicon design failure. The overall count of variants that passed, failed, or
received a “tumor only” validation status, excluding variants from HL-513 is shown at the right. Note: One patient (HL-584) did not have any variants
pass filtering and review, therefore 30/31 patients were included in validation. C, Comparison of exome VAF and HaloPlex VAF is shown for samples
with two or more variants. D, VAF and variant count for all variants across all samples used in all further analyses. Following each sample number is the
number of HaloPlex discovered variants and exome discovered variants. In addition, a colored rectangle indicating the EBV stats (assessed using
competitive alignment) is shown. Note: Variants from one patient failed validation (HL-157) and no further variants were called in de novo exercises.
This patient was removed from all further analyses. In addition, the patient who did not have variants to validate, gained two variants in the de novo
exercise and was included in the final cohort (HL-584).

tumor samples (Fig. 1A; Supplementary Fig. S1). On average 111.11 Gb were gen-
erated per sample with an average on-target duplication rate of 16.5%, with 92%
and 94%of bases covered at 200x, and 62% and 67%of the bases covered at 400x
in the normal and tumor, respectively.

Initial Variant Analysis and Variant Validation
We identified 4,692 SNVs and INDELs from the ultra-deep exomes that were
considered for validation. One second relapse sample (HL-513) had 3,684
mutations, suggestive of a hypermutator phenotype (36, 37). Excluding this
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hypermutated patient, the median number of somatic mutations across the co-
hort was 11 and themeanwas 32 (range: 0–148). TheVAFs for all sites identified,
were consistent with detection from rare HRS cells (mean VAF: 5.7%; median
VAF: 5.2%; range: 0.5%–24.1%).

A HaloPlex panel, with molecular barcodes included for error correction,
was designed to validate all variants from all patients, except a subset of
sites from the hypermutated patients (see Materials and Methods). The final
panel included 1,842 SNVs and INDELs. High depth sequencing data were
generatedwith amedian of 224,355,855 total reads/sample (range: 125,968,046–
387,141,061 total reads) and a median error-corrected depth of coverage at
2,168x and 3,971x in the normals and tumors, respectively. The overall exome
call validation rate by HaloPlex was 96.7% (1,754/1,814; Fig. 1B; Supplementary
Fig. S2). This includes 1,405 fully validated sites and 349 “tumor only” validated
(where the tumor variant was detected but matched normal data were unavail-
able). This rate excludes sites that could not be evaluated due to low tumor
read depth (1.5%; 27/1,842 sites) or HaloPlex amplicon failure (0.05%; 1/1,842).
If the “tumor only” validated sites are excluded from the count of validated
sites, the validation rate for this experiment drops to 95.9% (1,405/1,465). We
do observe a correlation between the number of cells/HPF and the sample val-
idation rate (exclusive of HL-513, Pearson correlation = 0.50; Supplementary
Fig. S3). These correlations are challenging, as counting the number of HRS
cells is technically variable and non-uniform. An additional 2,850 sites from
the hypermutated patient were not assayed because of HaloPlex size limita-
tions. These sites were included in subsequent analyses because 98.5% (811/823)
of tested HL-513 mutations, with sufficient depth, were validated (excluding 11
sites with low tumor depth; see Materials and Methods). The correlation of the
HaloPlex and exome VAFs was R2 = 0.85 (P< 0.01), demonstrating significant
concordance of VAF between the two platforms (Fig. 1C). A total of 60 sites
(3.3%; 60/1,814) failed validation. The median VAF of sites that failed valida-
tion was 2.37% (range: 0.5%–13.53%) and the median tumor depth for sites that
failed validation was 693 reads, (range: 54–6,287) suggesting that false positive
variants occurred across theVAF spectrumof variants that were discovered and
did not exclusively suffer from low coverage (Supplementary Figs. S4, S5, and
S6). We conducted a t test comparing the distribution of coverage across sites
that passed and failed validation and did not observe a significant difference
between the level of exome coverage at sites that passed and failed validation
(Supplementary Fig. S6). As a further exploration of the characteristics of fail-
ing variants, we observed a Spearman correlation (Rs = 0.64) between the total
number of validated variants and themedian exomeVAF. However, despite this
relationship we were able to validate >90 variants with a VAF ≤ 1% (Supple-
mentary Fig. S7). To further interrogate the etiology of the failing variants we
examined the genomic position of each variant in the UCSC genome browser
using the repeat masker, mappability, and the GC percent tracks. There were
two variants that occurred within a microsatellite, one variant occurred in a re-
gion of low complexity, and one variant occurred within a SINE element. We
also noted that the average %GC content for all failing variants is 62% (range:
0%–100%), which is higher than the genomic %GC content for the build38
reference (40.89%) and the corresponding mRNA %GC (∼48%; ref. 38). The
mappability for failing genomic variants was highwith an average score of 0.988
(range: 0.583–1).

After validating exome-discovered mutations, new variant discovery was also
attempted across our entire HaloPlex target space (Supplementary Table S1) in-
cluding at known cHL hotspots (see Materials and Methods; Supplementary
Table S3). From this de novo variant calling, 135 new variants were identified

across the HaloPlex target region including seven variants at known Hodgkin
lymphoma hotspots. These sites were called in 26 samples (Fig. 1D). These sites
were likely missed in the exome data due to a small number of variant support-
ing reads in the original exome data (mean exome de novo variant allele count=
14; median exome de novo variant allele count= 5) compared with the variants
that were originally called in the exome data (mean variant allele count = 70
andmedian variant allele count= 50). The small numbers of variant supporting
reads for de novo variants were observed despite sufficient exome coverage (me-
dian coverage across de novo sites = 1,333) at these sites. In many cases, these
variants were clearly present in the exome data and failed to meet our stringent
criteria for variant calling. Future workflows could possibly increase sensitiv-
ity by lowering these thresholds. Our focus was on identifying high confidence
variant calls for discovery of Hodgkin lymphoma driver genes and pathways.
After updating the annotations of all potential variants (exome-validated and
de novo—see Materials and Methods) the final annotated dataset consists of
4,116 non-synonymous coding somatic mutations that were carried forward for
all subsequent analyses (Fig. 1D; Supplementary Table S4). The final cohort in-
cludes 30 individuals, as one patient had three exome-discovered variants that
failed validation (patient HL-157). The median number of variants in this fi-
nal validated dataset was 11, and the mean was 32.9 (range: 1–148), excluding
the hypermutated patient, who contributed 3,160 variants to the final dataset.
The mean and median VAFs were 5.6 and 5.1, respectively (range: 0.03–24.10;
Fig. 1D).

Recurrent and Significantly Mutated Genes
A total of 3,168 somatically mutated genes were identified across all 30 samples,
versus 732 mutated genes when the hypermutated patient was excluded. There
were 263 genes with somatic mutations in at least 2/30 samples. The most re-
currentlymutated genes in our cohort are SOCS (43.3%),TNFAIP (40%), and
IGLL (26.7%) [Fig. 2; (percent recurrence)]. To identify significantly mutated
genes (SMG), we took several approaches. As described in the Supplementary
Materials and Methods section, we applied MuSiC (39) to the data with and
without HL-513 and we also applied dN/dScv (40), again with and without HL-
513 as a confirmatory strategy. When HL-513 is included in the MuSiC analysis,
we identified 28 SMGs (Fig. 2; Supplementary Table S5). When HL-513 was
excluded, a total of 32 genes were identified as potential SMGs (Fig. 2; Sup-
plementary Table S5). Six genes (AXDND, ORC, RDH, SCNA SMAD,
STRAP) were no longer significant and 10 additional genes (MFHAS, ZNF,
FBLN, SBK, HISTHB, SELL, QRICH, CELSR, WDFY, TRHR) achieved
an FDR<0.05.When we used dN/dScv to identify SMGs without HL-513 there
were five genes with FDR < 0.05 (TNFAIP, SOCS, GNA, STAT, CD;
Fig. 2, Supplementary Table S5). When HL-513 was included in the dN/dScv
analysis, six additional genes rose to significance (BTG, BM, XPO, ILR,
ITPKB, and BCLA; Fig. 2; Supplementary Table S5). All 11 SMGs identified
by dN/dScv were identified in both iterations of MuSiC analysis. Because one
goal of this study is discovery of novel genes involved in cHL pathogenesis,
and the high mutation burden of HL-513 does not exclude those variants from
contributing to informative genes characteristically mutated in Hodgkin lym-
phoma, we proceeded with the SMGs identified by MuSiC when all samples
were included. In this analysis, the SMGs included several genes that have pre-
viously been shown to bemutated in cHL, includingmembers of the JAK/STAT
signaling pathway [e.g., SOCS and STAT (20%)] and theNFκB signaling path-
way [e.g.,TNFAIP (40%) andXPO (20%)]. Other SMGs known to bemutated
in cHL include: BM (16.7%), ITPKB (16.6%), and GNA (20%). Components
of the SWItch/Sucrose Non-Fermenting (SWI/SNF) complex including BCLA
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FIGURE 2 Recurrently mutated genes in Hodgkin lymphoma. The frequency and type of mutations affecting genes mutated in 3 or more patients in
our cohort are shown in each row. Genes determined to be significantly mutated using MuSiC and/or dN/dScv (FDR < 0.05) are highlighted (SMG =
significantly mutated gene). The open SMG shape indicates that a gene was determined to be an SMG only when HL-513 was excluded from the
statistical analysis. The filled SMG shape indicates a gene that was determined to be an SMG only when HL-513 was included in the statistical analysis.
The darkest SMG shape indicates that a gene was determined to be an SMG in all analyses (including and excluding HL-513). The bar graph on the right
summarizes the frequency of mutations for that gene across the entire cohort. For genes with multiple mutations in a single patient, only one mutation
type is shown, prioritized by the order listed in the legend.
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(13%), SMAD (6.6%), and ARIDA (6.6%), were also identified. BCLA and
SMADwere identified as SMGs and are known to be involved in lymphomage-
nesis but have not been previously implicated in cHL. ARIDA was not among
our SMGs but was mutated in three cases and has been identified by others
to be recurrently mutated in cHL (7). A summary of genes found to be re-
currently mutated in cHL across several recent studies of adult cHL (7–9, 24)
is provided (Supplementary Fig. S8). To our knowledge, the following SMGs
have not previously been reported in cHL: AXDND (6.7%), CDH (13.3%),
LIMD (10%), ORC (6.7%), PCDH (20%), RDH (6.7%), SCNA (6.7%),
and STRAP (6.7%).

Using the HL-513 inclusive SMG list determined by MuSiC, we examined
patterns of co-occurrence and mutual exclusivity among the SMGs using
the maftools R package (41). The results of this analysis identified 46 gene
pairs with a co-occurrence Fisher P value <0.05 (Supplementary Table S6).
Among these, eight pairs have an FDR <0.2 including: AXDND/STRAP,
BM/STAT, BM/TNFAIP, ACTB/ORC, ACTB/RDH, IGLC/SCNA,
PCDH/STAT, andBM/SOCS. In addition, B2M/STAT6 andB2M/TNFAIP3
have an FDR <0.1 (Supplementary Table S6; Supplementary Fig. S9). We did
not identify significant evidence of mutual exclusivity, but this study is likely
to be underpowered to see this sort of association. Association testing between
mutation status and PFS, for our most recurrently mutated genes, did not yield
significant results (Supplementary Table S7).

We did not observe a significant difference between mutation burden and EBV
status determined by EBER (P= 0.11) or competitive alignment (P= 0.82; Sup-
plementary Fig. S10). This contrasts with observations made by others (7, 8)
who suggest a lower mutation burden is associated with EBV positivity. We be-
lieve this difference is likely due to low sample numbers, (i.e., if larger cohorts
of patients with Hodgkin lymphoma were studied, we would have the poten-
tial to detect the association between EBV positivity and mutation burden).
It should be noted that our methods for determining EBV status were mostly
concordant; 5/5 EBER-positive samples appeared positive in the competitive
alignments. Among the EBER-negative patients, 17/21 were also observed as
negative using the alignment method. Four patients were determined nega-
tive by EBER but appeared positive using DNA alignments. There were no
patients that appeared negative in the DNA alignments but were determined
to be positive using EBER ISH. In addition, it should be noted that despite our
threshold of EBV positivity (2 reads with MQ60; see Materials and Methods)
most positive samples (7/10) had several hundred reads that aligned with the
EBV reference sequence.

Previously unreported mutations in multiple cadherin genes were identified.
There were 74mutations in 42 different cadherin genes identified. The two cad-
herin SMGs were PCDH, a protocadherin, and CDH, a type II classical cad-
herin.Many of the cadherinmutationswere only identified in the hypermutator
patient; however, if these are excluded, 21mutationswere discovered across nine
different cadherin-related genes. The percentage of the cohort that showed a
mutation at these genes, exclusive of HL-513 is as follows: CDH (3%), CDH
(3%),CDH (16%),CELSR (13%),DSC (3%),DSG (7%), FAT (3%),PCDH
(3%), and PCDH (16%). These mutations were found in 11 patients.

Four samples included here were biopsies taken when a relapse occurred.
The samples included from patient HL-513 and patient HL-736 were taken
at the second relapse. The sample taken from patient HL-281 was from the
first relapse, and sample taken from patient HL-121 was at the fourth relapse.
Among the relapse samples, excluding the hypermutated sample, we observed a
median of 10 variants and a mean of 19 variants (range exclusive of hyper-

mutated sample: 10–39). This is a slightly lower mutation burden than the
non-relapse samples. However, the small number of relapse samples does not
allow for an effective comparison ofmutation burden between relapse and non-
relapse patients. There were 27 genes with variants in at least one relapse sample
(not including genes onlymutated in the hypermutated sample; Supplementary
Fig. S11). The genes included in Supplementary Fig. S11 are unique to the re-
lapse samples. Although there are some genes that were mutated in 2 of the 4
relapse patients that have been shown to be associated with cell proliferation,
especially PARP1 (42), the small number of relapse samples makes drawing any
clear conclusions preliminary at best.

Single-nuclei Transcriptome Profiling of a Hodgkin
Lymphoma Biopsy
As a proof-of-principle we attempted snRNA-seq on one Hodgkin lymphoma
lymph node biopsy (HL-248), and we were able to identify 5,445 nuclei with
a mean of 233,885 reads per nucleus. Using these data, principal component
analysis was performed on the variable genes. These datawere then used in Seu-
rat’s implementation of the Uniform Manifold Approximation and Projection
(UMAP) algorithm for visualization. Unsupervised clustering was performed
to identify nuclei with similar expression phenotypes (Fig. 3A). This cluster-
ing analysis identified 15 distinct clusters (Fig. 3A; Supplementary Table S8).
Nuclei were labeled using SingleR (43, 44) and the Monaco (44) cell type ref-
erence provided in celldex and are indicated on the unsupervised UMAP. We
identified the following cell types: B cells, T cells (CD4+ and CD8+), natural
killer cells, dendritic cells, and monocytes (Fig. 3B; Supplementary Table S8).
Using Vartrix (10x Genomics software) we searched for read support for the
somatic SNVs identified in HL-248 deep exome data. We found support for
one somatic SNV in EIFA (ENST00000323963.9:c.24T>A; Y8*). Most of the
read support for this variant occurred in cluster 3, which was identified as a
cluster among the B cells (Fig. 3C). Within cluster 3, 143 nuclei had a VAF >0
for the identified variant and the average VAF per cell was 77% (mean num-
ber of variant supporting reads = 2.5; range, 1–11; Fig. 3C). The identification
of only a single expressed variant in this sample was not unexpected. Petti and
colleagues (45) discuss the challenge of identifying expressed variants in RNA-
seq from single cells extensively, with the most notable challenges being low
transcript abundance (variable gene expression), relatively few reads per cell
(sparse data), allelic dropout (failure to represent both alleles of a heterozygous
site), and incomplete transcript coverage (extreme end bias), that is all inher-
ent to the 10x single-cell approach. Using bam readcount (32), we assessed the
10x RNA sequence coverage of all 37 variant positions attributed to this sam-
ple. Only four variants had read coverage > 0; and the expressed variant we
report here is the only site with a distance < 1 kb from the transcription start
site, which is relevant here because the library we created is a 5′ GEX library.
For these reasons, wemight only expect to find a small number of variants with
relatively few reads of support in a subset of HRS cells.

To provide further evidence to support the identification of a malignant clus-
ter of cells, we sequenced the BCR from all nuclei. BCR sequencing identified
a dominant clonotype (IGHV3-74/IGHJ4: IGLV3-25/IGLJ2) that occurred in
6.2% of the nuclei identified as B cells with full-length productive CDR3 se-
quences (Fig. 3D; Supplementary Table S8). This clonotype was also found
predominantly in cluster 3; we observed that 80.4% of the nuclei in cluster 3
have the dominant clonotype. We also see support for the expanded clonotype
in cluster 14; this clonotype is supported in 24 (47%) nuclei in cluster 14. We
used an expression correlation analysis (seeMaterials andMethods) to compare
cluster 14 with the other B-cell clusters and found that cluster 14 has the highest
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FIGURE 3 snRNA-seq of Patient HL-248. A, UMAP representation of unsupervised clustering of nuclei sequenced in HL-248. B, UMAP of HL-248
clusters with cell-type labels determined by celldex and SingleR. C, UMAP of HL-248 where highlighted nuclei are nuclei with a VAF > 0 for the EIF4A2
variant uncovered in this sample’s deep exome (chr3:186783634 T/A). D, UMAP of HL-248 where highlighted nuclei are nuclei that express an
expanded BCR clonotype. E, Genes differentially expressed between cluster 3 and all other B cells are displayed as either downregulated with a
significant P value (blue) or upregulated with a significant P value (orange).

expression correlation with cluster 3 (Pearson correlation= 0.76). However, we
do not see evidence for the EIFA variant in cluster 14. The overall expression
of EIFA in cluster 14 is lower than cluster 3 (Supplementary Fig. S12; average
number of reads for EIFA across all cells with any expression of EIFA in
cluster 3= 211.9; cluster 14= 48.7). Furthermore, among the limited number of
EIFA reads within cluster 14, none cover the exon where the somatic variant
was identified (Supplementary Fig. S13). This suggests that we do not have suf-
ficient data to evaluate whether the identified somatic variant is also expressed
in cluster 14. Further work is needed to understand the relationship between
cluster 3 and cluster 14.

Next, we performed a differential expression analysis between cluster 3 and
all other nuclei identified as B cells to identify genes that are differentially
expressed in our presumed cluster of HRS cells (Fig. 3E). The differential
expression analysis identified 613 genes that showed significant patterns of dif-
ferential expression (q < 0.05). Among these, we identified genes known to be
expressed or upregulated in cHL cell lines and primary samples including PIM
(q= 1.15× 10−131), PIM (q= 2.52× 10−47), and CD (q= 4.90× 10−21). We
also showed that BCL is upregulated (q = 7.10 × 10−16; Supplementary Ta-
ble S9; Fig. 3D), which is known to be upregulated in other B-cell lymphomas.
These data serve as preliminary evidence to suggest that snRNA-seq can be
used in the context of cHL biopsies and as an additional validating experiment
to support that the variants we have identified using our ultra-deep methods
can be attributed to HRS cells. If we assume that read support observed for this

pilot case is representative of a typical snRNA cHL experiment, and interrogate
the variable positions detected in the other 29 samples, we estimate that 12 of
29 patients with validated variants (41.4%) would have a high likelihood of at
least one detectable variant, allowing for the identification of HRS cell clusters
in additional patients (see Materials and Methods).

Mutation Signature Analysis and Activation-induced
Cytidine Deaminase (AID) Targets
To further understand the etiology of somatic mutations in cHL, a mutation
signature analysis was conducted in the patients with 50 or more SNVs (7
patients; see SupplementaryMaterials andMethods). Themost prevalent COS-
MIC mutation signatures were: 39, 1, 6, 9, 30, 29, 51, 7a, 85, and signature 5
was observed in HL-371 (Supplementary Fig. S14). We observed the presence
of COSMIC signature 9 and 85 in several patients (Supplementary Fig. S14).
These signatures are associated with the activity of AID. In a recent analysis of
the chronic lymphocytic leukemia (CLL) mutational landscape, two AID sig-
natures were observed (46); one characterized by a canonical AID signature
that includes C to T/G mutations at the WRC/GYW AID hotspot, as well as
a noncanonical AID signature that includes A to C mutations at WA motifs,
which is consistent with COSMIC signature 9. Although our analysis suggests
that signature 9 and 85 (noncanonical AID) are common in our cohort, other
studies (7, 47) have shown that canonical AID is characteristic of cHL. Indeed,
Maura and colleagues (2019; ref. 48) suggest that canonical and noncanoni-
cal AID signatures are often observed together in other lymphoproliferative
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FIGURE 4 Mutations in AID motifs at SOCS1. A, Schematic of SOCS1 gene structure. Middle track shows where SOCS1 SNVs are located. Zoomed-in
tracks (top and bottom) show the location of WRC/GYW motifs and the mutations that lie within or outside motifs (W = A/T; R = A/G; Y = C/T).
B, Distribution of counts of simulated mutations observed at SOCS1 that were in WRC motifs. The actual observed number of WRC SNVs (12/19) is
shown using a green dashed line.

disorders. We acknowledge that within the undetermined mutation signatures
(accounting for an average of 27% of the trinucleotides identified per sample;
Supplementary Fig. S14), there could be evidence of canonical AID activity that
ourmethod failed to identify. Therefore, we hypothesized an additionalmethod
not limited by known mutation signatures or sample number could identify
evidence of canonical AID activity. To address whether our data also include
a canonical AID signature, a list of genes known to be significant targets of
off-target canonical AID activity in diffuse large B-cell lymphoma (DLBCL)
and follicular lymphoma (FL) was generated (49, 50). Our analysis (see Sup-
plementary Materials and Methods) revealed 24 canonical AID-target genes
were mutated in at least one non-hypermutated patient sample. Of these, eight
genes had SNVs (23 SNVs total) located in the known WRC/GYW canoni-
cal AID target motif, including: SOCS, IGLL, ARIDB, CD, HISTHAL,
ZFPL, HISTHB, and HISTHC. Of the 19 SNVs identified in SOCS, 12
were within WRC/GYW motifs (Fig. 4A). Four of nine SNVs in IGLL and
two of two SNVs in HISTHB were within a WRC/GYW motif. At ARIDB,
ZFPL, HISTHAL, and HISTHC, one SNV was identified at each locus
in a WRC/GYW motif (1/1, 1/3, 1/1, and 1/1 SNVs in each gene, respectively).
When we tested whether the number of SNVs identified within WRC/GYW
motifs was significantly different from random expectations by random simu-
lations, we found on average, each SOCS simulation had 3.66 mutations that
met the criteria for a potential mutation generated by aberrant AID activity.
Only 9/100,000 simulations had at least 12 variants, as we observed in our ac-
tual cohort (P = 0.0009; Fig. 4B). The simulated IGLL dataset identified only
47/100,000 tests with at least four SNVs that could result from aberrant AID
activity (P = 0.0005). We assessed the enrichment of off-target AID mutations
at the other loci we identified, and three additional genes exhibited significant
enrichment for AID mutations: ARIDB (P = 0.0083), HISTHB (P = 0.017),
and ZFPL (P = 0.014). A table with the expected number of AID SNVs for
SOCS, IGLL, HISTHB, ARIDB, and ZFPL is included (Supplementary
Table S11). We also asked whether the overall number of mutations we saw
across the 24 potential AID targets was different from random expectations.
The results of this analysis showed that, we would expect to observe 6.36 total

mutations meeting our AID target criteria. We did not observe any permuta-
tions with a total of 23 mutations (P < 0.00001), suggesting that the overall
pattern of off-target AID activity is significantly different from random expec-
tations. This suggests that canonical AID activity is indeed present at previously
identified loci of AID.

JAK/STAT Signaling Mutations
Mutations were identified in 22 genes from the JAK/STAT signaling path-
way, with 50% of our cohort (15/30) having at least one somatic mutation
in a JAK/STAT signaling gene (Fig. 5A and B). Several novel stop gain and
frameshift mutations were discovered, clustered in the genomic region that
encodes the cytoplasmic region of IL4R that contains an immunoreceptor
tyrosine-based inhibitory motif (ITIM). These mutations were downstream of
the box1 motif (JAK1 interaction region) and the amino acids that are thought
to be required for STAT6 interaction (Fig. 5C; ref. 51). The potential loss of
function mutations may represent an additional mechanism to promote cHL
proliferation in response to IL4 stimulation viamutation of normally inhibitory
ITIMs. Recently, thesemutations were confirmed in a separate cohort of 119 pa-
tients with cHL profiled through cell-free DNA (52). Further work is necessary
to understand the function of these mutations, but the additional data do sup-
port the possibility that these mutations have a functional role in this disease.

Two nonsense mutations were identified in the cytoplasmic regions of CSF2RB
(IL3RB). This gene encodes the common β chain (CD131) that associates with
the IL3, IL5, and the GMCSF alpha receptors (Fig. 5). CSF2RB has been shown
to be recurrently mutated in Hodgkin lymphoma cell lines (5) and Hodgkin
lymphoma primary samples (7, 53). The nonsense mutations we identified at
this locus are beyond the JAK2 box 1 motif (amino acids 474–482). Because a
truncated isoform of the common β chain may be related to the pathogenesis
of acute myeloid leukemia (AML; ref. 54), and mutations in the cytoplasmic
region have been associatedwith growth in T-cell acute lymphoblastic leukemia
(55), it is possible that these mutations are related to cHL pathogenesis. Further
work is necessary to address these hypotheses.
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FIGURE 5 JAK/STAT signaling. A, Diagram of components of the JAK/STAT signaling cascade. Identified SMGs are shown in red; genes mutated in
at least one non-hypermutated sample are shown in yellow; genes mutated only in the hypermutated sample (HL-513) are shown in orange. The gene
mutation frequency across the cohort is shown as a percent. B, The total number and type of mutation observed are shown. C, Zoomed-in view of the
C-terminal region of IL4R, where the observed truncating mutations are located. Also shown is the proximity of identified mutations to an ITIM motif
that may impact STAT6 activation.

Mutations in Genes Regulating Hippo Signaling
Somatic mutations in 31 genes involved in pathways regulating Hippo/TAZ/
YAP or directly interacting with the Hippo cascade were identified (Fig. 6A
and B). These genes are mutated in 40% (12/30) of our cohort. Because the
regulation of the Hippo/TAZ/YAP pathway is a novel cHL-associated pathway,
we compared the distribution of VAFs in this pathway with the distribution of
VAFs associated with JAK/STAT variants. The variants in these pathways have
similar VAF distributions (Supplementary Fig. S15). The JAK/STAT variants
have a mean VAF of 4.4% and the Hippo/TAZ/YAP regulation variants have a
mean VAF of 4.8%. These data suggest that the variants in the Hippo/TAZ/YAP
regulator pathway have a similar level of support as the variants in well-
established pathways like JAK/STAT. Two SMGs,CDH andGNA, are among
this group. CDH5/VE-cadherin has not been previously described as a driver
of cHL. VE-cadherin is linked through its cytoplasmic tail to adherens junc-
tion (AJ) proteins, p120, beta-catenin, and plakoglobin (56). The mutations
identified here span amino acids 650–680, which could impact the p120 and
beta-arrestin association regions of VE-cadherin that are vital for the stabil-
ity of catenin-cadherin complexes (Fig. 6C). It has been shown that disruption
of VE-cadherin clustering or suppression of VE-cadherin expression results in
the nuclear localization of YAP and the promotion of cell proliferation (57, 58).
Additional data are necessary to address whether the mutations identified here
impact catenin–cadherin complexes.

Gα13 (encoded byGNA) is aG-protein coupled receptor known to bemutated
in cHL (7–9, 24). Gα13 is also involved in G-coupled signaling that activates
Rho GTPases, which subsequently activates Rho-associated protein kinase I
and II (ROCK1/2). This leads to actin cytoskeletal tension and has been shown
to negatively regulate YAP/TAZ phosphorylation (59–62).We observed several
missense, frameshift, and nonsense mutations, consistent with previous obser-

vations in cHL, (7–9) Burkitt’s lymphoma, andDLBCL (63, 64). Frameshift and
nonsense mutations may cause loss of function of Gα13, which is unlikely to
promote TAZ/YAP signaling (63, 65). However, two missense mutations were
observed, including one located at G225S, which is similar to a dominant-
negative mutation at G225A (64, 66) and close to Q226L, which is known to
cause constitutive activation of Gα13 (Fig. 6D; refs. 60, 67, 68). In addition to
the likely loss-of-function consequences of the GNAmutations observed, we
identified other variants that may impact Hippo signaling either through GT-
Pases or other pathways, including mutations at PRKCH, ROCK, and CSFR
(69–71).

Additional Pathways Targeted by Somatic Mutations
We identified mutations in 59 genes that are involved inMAPK signaling path-
ways; 43% (13/30) of the cohort had at least onemutation in a gene annotated to
aMAPK signaling cascade (Supplementary Fig. S16). In addition, 30% (9/30) of
our cohort had a mutation in a gene mapped to phosphatidylinositol signaling,
including the SMG ITPKB. LikeTiacci and colleagues (8) ITPKBwasmutated in
16.6% of our cohort (Supplementary Fig. S17). Several missense mutations and
only one nonsense mutation (p.Y4*) were discovered, which contrasts with the
high frequency of truncating mutations reported previously (8).

Germline Mutation and Microsatellite Instability in
Hypermutated Patient
To address the etiology of the hypermutated patient, the patient’s germline
was analyzed. Because we observed COSMIC mutation signature 6 in this
patient, which is generally associated with defects in DNA mismatch repair
(MMR) and microsatellite instability (MSI), an analysis for unique germline
mutations in mismatch or base excision repair genes was performed (Fig. 7A;
Supplementary Materials and Methods; Supplementary Table S12). Germline
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FIGURE 6 Regulating Hippo. A, Diagram of pathways that regulate Hippo signaling. Identified SMGs are shown in red; genes mutated in at least one
non-hypermutated sample are shown in yellow; genes only mutated in the hypermutated sample (HL-513) are shown in orange. The gene mutation
frequency across the cohort is shown as a percent. The pathways labeled in green indicate larger pathways not shown in this diagram. B, The total
number and type of mutation observed are shown in the inset bar chart. C, Lolliplot of CDH5; mutations identified in the current study are shown on
the top and COSMIC mutations found in lymphoid tissue on the bottom. D, Lolliplot of mutations identified at GNA13; mutations identified in the
current study are shown on the top and COSMIC mutations found in lymphoid tissue on the bottom.

mutations in NTHL andMSH were discovered (Fig. 7B). The NTHL muta-
tion is an SNV in exon 1 causing a stop gain at Q287*. The MSH mutation
was a 58 bp duplication in exon 9, resulting in a frameshift (NM_000179;
NP_000170.1:p.Lys1325SerfsTer2). This mutation appears the most likely can-
didate responsible for the hypermutated phenotype. This duplication is similar
in kind and location to several frameshift and nonsense mutations reported
in ClinVar that are known to cause Lynch syndrome, an autosomal dominant
cancer predisposition syndrome characterized by MMR deficiency and MSI
(Fig. 7C). This variant was also recently added to ClinVar (VCV001368701.1)
and is interpreted to be pathogenic. We tested for the presence of MSI in our
cohort and particularly in the hypermutated patient. The hypermutated patient

had the highest percentage ofmutatedmicrosatellites of any sample andwas the
only sample above a threshold (3.5%) previously determined to be highly con-
cordant with MSI-high status measured by IHC in colorectal cancer patients
(Supplementary Table S13; ref. 72).

To confirm the unique nature of the germline mutations we identified in HL-
513, we conducted a systematic analysis to identify germline MMR and base
excision repair defects in the 29 non-hypermutated samples. These data were
filtered as described in the supplementary methods. Excluding the results al-
ready described for HL-513, we identified 15 mutations in MMR/BER genes
for 9 patients (Supplementary Table S13). These mutations were manually
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FIGURE 7 Hypermutated patient germline analysis. A, Comparison of trinucleotide sequence contexts of COSMIC signature 6 and HL-513
suggesting a high degree of similarity between the two. B, Summary of the MMR germline mutations identified in HL-513. C, Lolliplot of MSH6 with
Lynch syndrome mutations from ClinVar and the HL-513 mutation identified here. ClinVar mutations annotated as pathogenic and associated with
Lynch syndrome are shown. The shaded oval highlights the duplication identified in HL-513. Note: mutations are plotted by ProteinPaint (103)
according to (left-shifted) genomic coordinates but labeled with their HGVS expressions (right-shifted) from ClinVar explaining the discrepancies in
some amino acid positions displayed.

reviewed and are unlikely to be sequencing artifacts. Among these muta-
tions, 14 were missense and one mutation was identified as a stop gain
(LIG;ENST.:c.C>T). The stop gain is not described in Clin-
Var. The scaled CADD (73) score for this variant is 31, suggesting that it is
likely deleterious, but the ALoFT score (74) provided in the OpenCRAVAT re-
port (75) suggests that this variant is only likely to cause a deleterious effect
in the homozygous state. The VAF for this variant in the patient in which it
occurred (HL-517) is 0.48, suggesting that it is heterozygous and therefore it

is less likely to have a deleterious effect. This mutation is unlike the HL-513
duplication, which was recently added to ClinVar (VCV001368701.1) and was
interpreted to be pathogenic. The missense variants identified are unlikely to
cause a deleterious impact. Ten of the 14 variants were identified in ClinVar
with interpretations of uncertain significance, benign, and likely benign. The
three missense mutations not in ClinVar will require further interpretation,
but the lack of hypermutated phenotype, would suggest that they are unlikely
to cause a MMR or base excision repair phenotype. In summary, none of the
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mutations in the non-hypermutated samples were interpreted to have a
pathogenic impact.

Discussion
This study demonstrated the utility of ultra-deep sequencing to uncover re-
currently mutated genes in low-frequency malignant cells and to further define
the landscape of somatic mutations in cHL.We generated approximately 1,000x
exomes in a cohort of 31 primarily newly diagnosed cHLs andmatched nonma-
lignant germline tissues. Our somatic variants were validated with orthogonal
error-corrected sequencing with a recovery rate >95%. Ultra-deep sequenc-
ing strategies have been employed to detect low VAF and/or subclonal variants
in ovarian cancer (76), CLL (77), and AML (78, 79). However, here we pio-
neered this approach to overcome the progress-limiting rarity of HRS cells in
cHL. Ultra-deep sequencing of cHL bulk biopsies confirmed the importance of
previously reported pathways in cHL including JAK/STAT (Fig. 5), NFκB, and
those relevant for immune evasion.Moreover, significantly recurrentmutations
in previously unreported genes (AXDND, CDH, LIMD, ORC, PCDH,
RDH, SCNA, and STRAP) and pathways (i.e., Hippo/YAP and MAPK) not
often associated with cHL were discovered. Further confirmatory experiments
are necessary to validate the relevance of these findings to cHL. Mutations as-
sociated with off-target AID activity that may be driving the pathogenesis of
cHL were also revealed (Fig. 4). Furthermore, we used snRNA-seq to further
validate that the variants identified here are likely to be from malignant cells.
snRNA-seq data from one sample identified a cluster of cells with an exome-
called somatic variant. This cluster of cells also showed evidence of an expanded
B-cell clonotype, and these cells have differentially expressed genes that are con-
sistent with known cHL biology. Finally, we identified a hypermutated patient
with cHL and discovered a mutation inMSH that is similar in kind and loca-
tion to other variants associated with Lynch syndrome, which could be driving
the patient’s hypermutated phenotype (Fig. 7).

This study identified both known and novelmutations in cHL, with several pre-
viously reported JAK/STAT pathway mutations confirmed, including STAT.
Truncating mutations in, and proximal to, the ITIM located at the C-terminus
of IL4R were discovered, revealing a novel potential mechanism for constitu-
tive activation of STAT6 in cHL, by eliminating this suppressive function of
IL4R signaling. It should be noted that IL4R mutations have been observed
in Hodgkin lymphoma previously (80), but were not discussed in the context
of STAT6 activation. Kashiwada and colleagues (81) found hyperproliferation
in response to IL4 stimulation when the ITIM in IL4R is disrupted through
site-directed mutagenesis in a murine bone marrow cell line, and this response
was correlated with increased activation of STAT6. Mutations in IL4R in pa-
tients with cHL have been recently presented byAlig and colleagues and limited
functional results provide preliminary confirmation of the relevance of our
mutations to cHL.

The most recurrently mutated gene we uncovered is SOCS, a finding observed
by others (4, 7), suggesting concordance of our ultra-deep bulk exome ap-
proach with HRS purification approaches. This included several frameshift
and nonsense mutations, as well as missense mutations, consistent with loss-
of-function. SOCS proteins negatively regulate the JAK/STAT pathway, with
loss-of-function leading to augmented JAK/STAT growth signaling. Several
mutations were identified in the AID sequence recognition motif. Indeed, at
SOCS and IGLL, 63% and 40%, respectively, of the SNVs we identified are
potentially the result of off-target AID activity. It has been suggested that

off-target canonical AID activity may be responsible for the pathogenesis of
some lymphomas and leukemias (82–84). Mottok and colleagues have impli-
cated aberrant AID activity resulting in off-target somatic hypermutation as
the mechanism of SOCS mutations in multiple germinal center lymphomas
(85, 86). In addition to AID mutations in SOCS and IGLL, we also show
that potentially aberrant AID mutations are present in ARIDB, ZFPL, and
HISTHB. The results of our study suggest aberrant off-target AID activity is
a characteristic of cHL and impacts several loci including SOCS, which is the
gene most impacted by recurrent somatic mutations in our cohort. Some of the
mutation signatures we identified are similar to previous reports. For exam-
ple, our mutation signature analysis showed the presence of noncanonical AID,
which is consistent with other lymphoproliferative diseases (i.e., CLL; ref. 46).
However, it is important to note that our mutation signature analysis did not
identify any APOBEC mutation signatures, which was observed previously (7,
47) and ourmutation signature analysis also did not recover evidence of canon-
ical AID activity. This difference could be attributed to our small sample size or
technical difference in the methods used to identify mutation signatures here
compared with other studies. Previous studies (7, 47) used custom algorithms
that can identify de novomutation signatures. The methods we employed can-
not identify new signatures. This difference likely limited our ability to identify
the full spectrum of mutation signatures present among patients with cHL.

Mutations in 31 genes involved in Hippo regulation were identified, with 40%
of our cohort (12/30) having at least one mutation in a Hippo regulating gene.
A number of studies have suggested that human tumors use YAP/TAZ, which
are integral transcriptional coactivators within the Hippo pathway, to facilitate
proliferation, progression, migration, and metastasis (87). High expression of
YAPwas shown to be significantly correlated with disease progression and poor
prognosis in DLBCL and knockdown of YAP expression suppressed cell prolif-
eration in DLBCL cell lines (88). Furthermore, the overexpression of MST1 or
the knockdown of YAP inhibited cell proliferation, promoted cell-cycle arrest,
and apoptosis in natural killer/T-cell lymphoma (89). Themost prominent mu-
tated genes we identified that impact Hippo signaling are CDH and GNA,
both of which were shown to be SMGs. CDH5, like many other cadherins, is
involved in the adherens junction (AJ) that plays a role in cell architecture and
Hippo pathway regulation. We identified a cluster of CDHmutations that are
in amino acids involved in CDH5/VE-cadherin’s interaction with p120, beta-
catenin, and plakoglobin. These associations are crucial for the stability of the
AJ, which if disrupted could facilitate nuclear localization of YAP and TAZ,
and in effect contribute to cell proliferation. All the mutations we identified
in CDH are missense, further work is needed to understand the functional
impact of these mutations, but the clustered nature of the mutations suggests
that this region is being targeted in cHL. In addition, the comparison of VAF
distributions of the variants in this pathway to the JAK/STAT pathway sug-
gests that variants in Hippo/TAZ/YAP regulating pathway are consistent with
well-established pathways associated with cHL. The potential Hippo regulatory
mutations we have presented here are hypothesis generating, further studies are
necessary to address functional implications.

Among the other novel SMGs that were identified there is some literature to
suggest that these genes are involved in the development of cancer ormalignant
phenotypes. For example, RDH has been shown to be differentially expressed
in cervical cancer and RDH expression was negatively associated with tu-
mor size and depth of cervical invasion (90). In addition, SCNA was shown
to possibly promote gastric cancer progression (91). The novel SMGs we have
identified are hypothesis generating andwarrant further study in larger cohorts.
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In addition to describing the landscape of somatic mutations in cHL we have
demonstrated for the first time the potential of snRNA-seq technology in cHL.
Identifying somatic mutations from single-cell data is very challenging. The in-
herent end bias, variable transcript abundance, and lownumber of reads per cell
are among other challenges that make this a “needle-in-the-haystack” problem.
Given the modest mutation burden and low tumor cellularity of cHL, it was
not certain that any expressed variants would be discovered in the snRNA-seq
data. However, in a single pilot sample, we successfully identified one somatic
variant that we used to tag a cluster of presumed malignant cells. Our pre-
sumed cluster of malignant cells is further supported by the presence of an
expanded BCR clonotype. Indeed, the coincident occurrence of a somatic mu-
tation, with an expanded BCR clonotype is highly suggestive that we have
identified a cluster of HRS cells. When we asked whether the presumed HRS
cluster shows a pattern of gene expression that is distinct from other B cells
we identified several differentially expressed genes that are consistent with cHL
biology. Among the most upregulated genes in the presumed HRS cluster are
PIM and PIM. It has been shown (92) that PIM1/2/3 are ubiquitously ex-
pressed in primary and cultured RS cells and are induced by JAK-STAT and
NFκB pathways, two pathways known to be activated in cHL.We also observed
upregulation of CD, which was also identified as an SMG. Li and colleagues
(2018; ref. 93) demonstrated that CD is highly expressed in Hodgkin lym-
phoma cells lines and cells extracted from primary samples. Further work is
needed to understand the expression patterns of RASSF and PTPRG, which
are generally considered to be tumor suppressors (94, 95) and genes like BIRC
and CDKNA that are known to be involved in a number of different cancers
(96, 97). Our analysis also identified some differentially expressed genes that
are consistent with previous microarray-based studies including upregulation
of CDKNA, CCR, and NFKBIA; and downregulation ofMSA, STAG, and
SSBP. Our snRNApreliminary data point to the veracity of the somatic variants
we identified and to the feasibility of snRNA-seq data to explore the func-
tional consequences of somatic variants inHRS cells, interactions betweenHRS
cells and the immune microenvironment, and the transcriptional signatures
of cHL.

A single patient contributed over 70% of the overall somatic mutation burden
in this cohort. Because hypermutated phenotypes are often a result of germline
predisposition (36), we searched for a germline variant that may be responsible
for this phenotype. Twomutationswere identified, one SNV inNTHL and a 58-
base duplication inMSH. Inactivatingmutations inMSH, a DNAMMRgene,
are associated with Lynch syndrome. The frameshift variant we identified in
MSH is strikingly similar to other pathogenic variants known to cause Lynch
syndrome. This patient also has a personal history of precancerous colon polyps
and multiple benign breast masses. In addition, there is a family history that
includes a sibling diagnosed with endometrial cancer. Unlike cHL, endome-
trial cancer has been strongly associated with Lynch syndrome and variants
in MSH. Endometrial cancer has a prevalence of 3% in patients with Lynch
syndrome and is the most frequently observed cancer in women harboring
pathogenic MSH variants, with a 41% risk of developing endometrial cancer
by age 70 (98, 99). Although cHL is not a cancer that is generally associatedwith
Lynch syndrome,Wienand and colleagues (7) also identified two hypermutated
cases in a cohort of patients with cHL.Wienand and colleagues (7) indicate that
the hypermutator phenotypes they observedwere associatedwithmutation sig-
natures that are consistent with MSI (COSMIC signatures 6 and 15), which is
similar to our result. They also report somatic alterations inMSH,MSH, and
ARIDA, but do not report an analysis of germline variants. Our results confirm

that hypermutation does occur in patients with cHL and suggest that this phe-
notype may be the result of germline cancer predisposition variants and could
be important to guide therapy with immune checkpoint blockade. It is impor-
tant to note that our hypermutated patient is a relapse patient. It is possible
the observed mutation burden could be the result of prior chemotherapeutic
treatments. However, the results of our analysis are consistent with a germline
etiology of the hypermutation status.

There are several important limitations to our investigation of bulk cHL lymph
node biopsies. A small percentage of variants (3.3%) discovered in the exomes
were found to be false positives. These variants had a VAF that ranged from
0.50% to 13.53% and had a median of VAF 2.37%. This indicates that although
there were some false positives (type I error) within our exomes, these false
positives were not exclusively low VAF variants. We also show that these vari-
ants did not exclusively suffer from low exome coverage. Indeed, we show a
nonsignificant difference in the level of coverage between sites that passed and
failed validation (Supplementary Fig. S6). However, we did observe a relation-
ship between median VAF and the number of variants that were found to be
true positives. Several samples were characterized by a relatively small number
of variant calls, with lower median VAF, and higher false positive rate. How-
ever, this did not prevent us from validating as many as approximately 25 sites
in samples with median VAFs as low as 1.5%. This suggests that although deep
exome sequencing can reliably uncover a spectrum of somatic variation inHRS
cells, we were not able to fully overcome the limits of low tumor cellularity in
some cases. This challenge may in part explain why our median mutation bur-
den is lower than others have reported (8). We identified a mean of 32 variants
per patient, excluding the hypermutated patient, which is similar to themedian
number of variants identified by Tiacci and colleagues (2018). But our median
number of mutations (11 mutations) is smaller than their median number of
mutations observed previously. However, 13/30 (43%) of the patients in our co-
hort have>20 variants, suggesting thatmany of the samples we sequenced have
a mutation burden that is comparable to what was observed by Tiacci and col-
leagues (2018). As a further point of comparison, our mean number of variants
is smaller than what is reported by Wienand and colleagues (7); however, it
is not indicated whether the hypermutated patients they uncovered were ex-
cluded in their calculation of the mean number of variants. If we calculated our
mean including the hypermutated sample then our mean would be 137 vari-
ants, which is similar to what was observed by Wienand and colleagues (7).
Larger cohorts will help to eliminate sampling bias and will assist in clarifying
the typical mutation burden of cHL.

Another limitation of this study is that we do not have a clear false negative rate
(type II error) and it is likely that in some samples with lower tumor cellularity
we failed to identify some somatic mutations in the original exome pipeline.
However, our HaloPlex experiment helped to illuminate some missed variants
and helped increase our sensitivity. As we continue to explore the use of deep
sequencing to uncover somatic variants, we will adjust our pipeline to correct
the procedures that caused these variants to be missed. Low tumor cellularity
is a challenge for all approaches and typically leads to some samples being ex-
cluded entirely (e.g., with insufficient output from flow sorting might preclude
sequencing altogether). We did not exclude any samples based on cellularity
estimates.

Finally, while we achieved an average of 1,000x depth of exome coverage,
our coverage, like most exome sequencing, is not uniformly distributed.
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Approximately one-third of the bases in the tumor and normal samples
achieved less than 400x coverage. These regions of lesser coverage may also
be prone to false negatives. However, we confirmed recurrently mutated genes
previously reported in studies that included enrichment for HRS cells, includ-
ing known hotspot mutations and mutations with predicted consequences that
are consistent with known Hodgkin lymphoma biology (e.g., inactivating mu-
tations in SOCS- and TNFAIP). Furthermore, 22 individuals (73% of our
cohort) have at least onemutation in a gene that has been suggested to drive cHL
pathogenesis or the pathogenesis of another lymphoma (7–10). The variants in
these genes have an averageVAF of 4.4%, which is consistent with variants from
an HRS cell. In addition, the average depth of coverage at known cHL genes is
1,353 reads, suggesting we have sufficient coverage to call variants at this low
VAF. Together these data suggest that while our coverage was not uniform, we
positively identified variants in genes known to be mutated in cHL and this
trend was consistent across most of the cohort. In addition, because our anal-
ysis identified many previously described mutation patterns attributed to HRS
cells, the novel genes, and variants we identified are also likely to characterize
HRS cells.

A recent study of clonal hematopoiesis of indeterminate potential (CHIP) in
microdissected HRS cells reported that 5/40 patients diagnosed with Hodgkin
lymphoma had mutations consistent with CHIP in the microenvironment, or,
as in one case, in HRS cells (100). These data suggest that CHIP has the po-
tential to obscure our ability to detect somatic variants from bulk cHL lymph
node biopsies. To address this concern, we interrogated our data for a pattern of
recurrent mutation in genes associated with CHIP described in Husby and col-
leagues (2020; ref. 101) and Niroula and colleagues (2021; ref. 102). Our analysis
did not detect a pattern of recurrent mutations in genes associated with CHIP
(101, 102). Furthermore, given that the median age of our cohort is approxi-
mately 36 years old, we suggest that the somatic mutations we identified are
unlikely to be the result of a contaminating signal from CHIP. In the work by
Niroula and colleagues (2021), the authors propose the concept of “L-CHIP,”
in which clonal hematopoiesis is defined by mutations in common lymphoid
malignancy driver genes. They suggest that patients with L-CHIP are at an
increased risk of subsequently developing lymphoid malignancies, in contrast
with the classical myeloid malignancy risk attributed to traditional CHIP (or
“M-CHIP” in the work by Niroula and colleagues). Potential overlap between
our set of genes somatically mutated in cHL and the set of genes mutated in
L-CHIP has little impact on our conclusions about the somatic mutations iden-
tified in our study. If we had looked in the peripheral blood for CHIP in our
Hodgkin lymphoma cohort and found L-CHIP associated with the somatic
variants identified here we would conclude that some patients in our cohort
have circulating precursor lesions.

In summary, we have shown that ultra-deep sequencing can be used to identify
somatic variants in rare malignant HRS cells. We have further demonstrated
using snRNA-seq data that the somatic variants we identified can be used to
identify a cluster of cells that are likely to be HRS cells. This proof-of-concept
opens the possibility of careful dissection of the transcriptome and cell–cell
interactions that characterize cHL.Wehave further described the role that aber-
rant somatic hypermutation plays in cHL, and we have suggested a novel role of
mutations in IL4R in the constitutive activation of STAT6 that deserves further
examination.We also revealed that genes regulatingHippo signalingmay play a
role in cHL. This work demonstrates the utility of ultra-deep sequencing in bulk
cHL lymphnode biopsies as an alternative to laborious cell isolation techniques.
Previouswork has demonstrated the utility of ct-DNA in the setting ofHodgkin

lymphoma, and we acknowledge this source of DNA remains a viable option
for clinical approaches. However, as sequencing costs continue to decrease, the
methods we employed here provide a platform to attempt larger cohort se-
quencing of genomic DNA from primary cHL samples. This is especially true
when capture costs are minimized. With the continued development of UMI-
based sequencingmethodologies, deep sequencingmethods open new avenues
of research facilitating a practical approach to identifying and correlating cHL
mutations with clinical outcomes.
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