
Citation: He, S.; Cistulli, P.A.;

de Chazal, P. A Review of Novel

Oximetry Parameters for the

Prediction of Cardiovascular Disease

in Obstructive Sleep Apnoea.

Diagnostics 2023, 13, 3323.

https://doi.org/10.3390/

diagnostics13213323

Academic Editor: Michel Noutsias

Received: 30 August 2023

Revised: 18 October 2023

Accepted: 25 October 2023

Published: 26 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

A Review of Novel Oximetry Parameters for the Prediction of
Cardiovascular Disease in Obstructive Sleep Apnoea
Siying He 1, Peter A. Cistulli 2,3 and Philip de Chazal 1,*

1 Charles Perkins Centre, Faculty of Engineering, Sydney University, Camperdown, NSW 2050, Australia;
sihe9643@uni.sydney.edu.au

2 Charles Perkins Centre, Faculty of Medicine and Health, Sydney University,
Camperdown, NSW 2050, Australia; peter.cistulli@sydney.edu.au

3 Department of Respiratory and Sleep Medicine, Royal North Shore Hospital,
St Leonards, NSW 2065, Australia

* Correspondence: philip.dechazal@sydney.edu.au

Abstract: Obstructive sleep apnoea (OSA) is a sleep disorder with repetitive collapse of the upper
airway during sleep, which leads to intermittent hypoxic events overnight, adverse neurocognitive,
metabolic complications, and ultimately an increased risk of cardiovascular disease (CVD). The
standard diagnostic parameter for OSA, apnoea–hypopnoea index (AHI), is inadequate to predict
CVD morbidity and mortality, because it focuses only on the frequency of apnoea and hypopnoea
events, and fails to reveal other physiological information for the prediction of CVD events. Novel
parameters have been introduced to compensate for the deficiencies of AHI. However, the calculation
methods and criteria for these parameters are unclear, hindering their use in cross-study analysis
and studies. This review aims to discuss novel parameters for predicting CVD events from oximetry
signals and to summarise the corresponding computational methods.
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1. Introduction

Obstructive sleep apnoea (OSA) is a sleep disorder caused by repeated collapse of
the upper airway during sleep. It is more commonly observed in patients over 40 years
old, with a larger body mass index (BMI), or who have a narrow airway and a unique
facial structure [1]. Patients with OSA have a higher chance of developing depression,
cardiovascular disease (CVD), and diabetes, and of having car accidents [2]. The OSA-
induced repetitive upper airway obstruction leads to intermittent hypoxic events overnight
and sleep fragmentation, resulting in adverse neurocognitive, daytime sleepiness, and
metabolic complications [3]. The nocturnal hypoxemic burden caused by cumulative
hypoxic events can increase vascular inflammation, blood pressure, and sympathetic
nervous system action, and ultimately may increase the risk of CVD, which is the leading
cause of death worldwide [4,5]. Studies have shown that OSA is associated with CVD
morbidity and mortality, with 43–73% and 47–76% of CVD cases having OSA [6–8].

Overnight polysomnography (PSG) is commonly used for OSA diagnosis with the
apnoea–hypopnoea index (AHI) being the standard measure for determining the presence
and severity of OSA. PSG signals record blood oxygen level (measured with finger-based
pulse oximetry), respiratory pressure/flow and effort, brain activity, skeletal muscle activity,
heart rate, and eye movements. The AHI measures the number of apnoea and hypopnoea
events per hour of sleep [9–13]. However, studies show that AHI is not a good predictor of
CVD mortality as AHI fails to capture factors that have crucial impacts on the cardiovascular
system, namely, blood oxygen levels, high sympathetic activity, respiratory event duration,
sleep fragmentation, and arousal events [14–16].
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As the understanding of the links between CVD and sleep apnoea has grown, new
PSG-based parameters have been proposed that may reveal more information about the
impact of sleep apnoea on hypoxemia that may be predictive of future CVD events [17].

Studies have shown that some oximetry parameters may provide good performance
in the prediction of future CVD events. These parameters include T90, oxygen desaturation
index (ODI), and area-based desaturation metrics [4,14,18–20]. The T90 parameter measures
the time below 90% oxygen saturation; ODI indicates the number of oxygen desaturation
events per hour of sleep; and area-based desaturation metrics calculate the area of the
desaturation [14,19–21]. However, the calculation of each parameter varies between studies,
which limits the cross-study comparison of results [4,19–22]. This review aims to present
novel oxygen saturation parameters for predicting CVD morbidity and mortality, and to
summarise the calculation methods used.

2. Literature Search Methodology and Outcomes

A literature search using the databases of Medline via OvidSP and Scopus was per-
formed up to 1 July 2023, and all prior years of publication were considered. The search
strategy involved the following sleep apnoea and cardiovascular disease related keywords:
oximetry, sleep apnoea, and cardiovascular. We then filtered the papers according to the
following criteria: studies were in adult humans only; the study focused on the association
between OSA and CVD events; the article either described the computational methods
in detail or cited articles with such content; and the study population was greater than
200 participants.

Our literature search yielded 115 publications which we grouped into 4 categories
based on oximetry parameters. These parameters were time below 90% saturation (T90),
oxygen desaturation index (ODI), desaturation area-based parameters, and other param-
eters. We provide an in-depth discussion of the methods of the first 3 categories and a
summary discussion of the 4th category. A total of 30 articles used T90, 31 articles ex-
plored ODI, 43 articles used desaturation area-based parameters, and 11 articles considered
other parameters.

A further selection was then performed on the articles for a detailed analysis of CVD
predictive performance. We selected articles that used multiple parameters for comparison
on the same study population, and/or considered novel CVD outcomes. This selection
yielded 28 publications with 11 papers focused on T90, 6 papers using ODI, and 11 papers
delving into desaturation area-based parameters.

3. Time below 90% Saturation

Time below 90% saturation (T90) is recognised as an independent predictor of all-
cause CVD mortality and widely used in many studies [4,23–27]. The calculation method
of T90 varies among studies and can be divided into time-based and percentage-based
parameters, as shown in Table 1 [4,14,18,22,27,28]. The time-based TST90 measures the
time per night with oxygen saturation below 90%, and thus measures the cumulative
hypoxemia insult. The percentage-based T90% measures the percentage of the time per
night below 90%, and thus measures the hypoxemia insult rate. Both methods perform well
in predicting CVD events. Xu et al. concluded that time-based TST90 is a robust predictor
of major adverse cardiovascular events (MACEs) and performs much better than AHI [27].
Baumert et al. categorised time-based T90 according to the proximity of the dips below 90%
to desaturation events. T90desaturation is the time spent below 90% oxygen saturation
associated with acute desaturation patterns of at least 4%. T90non-specific is the time spent
below 90% oxygen saturation associated with non-specific drifts. Both were shown to
be good indicators of the association between OSA and CVD mortality. The researchers
suggested that the performance of CVD mortality prediction can be improved by using
T90desaturation and T90non-specific as multivariate inputs [4]. Percentage-based T90% is
a reliable predictor of CVD events too. Wang et al. found that T90% outperformed TST90
in the prediction of incident CVD in patients with non-sleepy sleep-disordered breathing
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(SDB) [18]. However, other studies have not supported this conclusion. Sutherland et al.
found no significant association between T90% and incident CVD [29] in OSA patients. It
is currently unclear whether TST90 or T90% is a better CVD predictor. Further research
and comparison of T90 and T90%’s performance in different databases may be required.

Table 1. Different calculation methods of T90. Examples of each method with the corresponding
database, the aim of analysis, and results are provided.

Type of T90 Name of T90 Calculation Method Population/Aims

Time-based
parameter

TST90 [27] The total sleep time below 90% oxygen
saturation. The unit of this parameter is time.

Study population:
1860 Chinese participants from a clinic-based
retrospective cohort study in Hong Kong, China.
Participants were excluded from study if they had
a sleep disorder other than OSA; received
treatments other than CPAP; or had conditions
with a known effect on OSA.
Aims: Association between T90 and MACEs.

T90desaturation [4]

The time spent below 90% oxygen saturation
associated with acute desaturation patterns of
at least 4% as shown in Figure 1A. The unit of
this parameter is time.

Study population:
3135 community-dwelling male participants aged
65 years old and above from the MrOS sleep study.
Aims: Association between T90desaturation and
CVD mortality.

T90non-specific
[4]

The time spent below 90% oxygen saturation
associated with non-specific drifts as shown in
Figure 1B. The unit of this parameter is time.

Study population:
3135 community-dwelling male participants aged
65 years old and above from the MrOS sleep study.
Aims: Association between T90desaturation and
CVD mortality.

Percentage-based
parameter T90% [18]

The percentage of sleep time with oxygen
saturation level below 90%. The unit of this
parameter is %.

Study population:
3626 randomly selected Chinese
community-dwelling participants. A total of 30.7%
of the participants suffer from SDB, of which 96.5%
is non-sleepy SDB.
Aims: Association between T90% and CVD
incident in non-sleepy SDB patients.
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time when SpO2 experiences at least 4% oxygen desaturation while maintaining the oxygen level 

Figure 1. Pulse oximetry trace (SpO2) from the MrOS database. (A) T90desaturation is the time
spent below 90% oxygen saturation associated with acute desaturation patterns of at least 4%. The
long arrow indicates a desaturation event and the short arrows indicate the time below 90% for the
event. (B) T90non-specific is the time spent below 90% oxygen saturation associated with non-specific
drifts [4].

4. Oxygen Desaturation Index

Oxygen desaturation index (ODI) is commonly used to indicate intermittent hypox-
emia, and is defined as the number of oxygen desaturation events per hour of sleep [14].
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Although ODI and AHI both measure event rates, ODI performs better in predicting ad-
verse CVD outcomes [30,31]. ODI measures the number of transient desaturation events
from a baseline value and divided by the hours of sleep. The American Academy of Sleep
Medicine (AASM) does not specify the criteria for scoring desaturation events [31–35],
and hence a range of methods have been used to calculate ODI. Some studies define ODI
as the rate of oxygen desaturation events occurring when SpO2 drops lower than the
desaturation threshold from the average saturation in the previous 120 s and persists for at
least 10 s [36,37]. When events are separated by less than 120 s (as it happens on average
for a severe sleep apnoea case), the baseline will be influenced by previous events. Other
studies chose the baseline as either the average SpO2 value of the whole recording or the
mean SpO2 value in the first 3 min [38–41]. The desaturation thresholds of 3% (ODI3) or 4%
(ODI4) are commonly chosen in the analysis of OSA and CVD [33,42,43]. Sutherland et al.
provided a comparison of ODI2, ODI3, ODI4, and ODI5 for predicting prevalent CVD
in OSA patients free of CVD at baseline, and found that 4% and 5% provide the best
performance in predicting CVD events in women [29,44]. Karhu et al. concluded that ODI4
is more reliable than ODI3 in determining the impact of OSA, since respiratory events
with desaturation ≥4% are usually considered as hypopnoea [21,33]. However, results
from several studies showed that ODI3 as a CVD risk factor has a higher significant odds
ratio (OR) than ODI4 [45,46]. Further research undertaken by Punjabi et al. explored
whether ODIs within a specific range (2–2.9%, 3–3.9%, and 4–4.9%) are associated with
CVD events. The results showed that only ODI (4–4.9%) is statistically significant in the
analysis, and supported Tuomas et al.’s findings on ODI4 [44]. The hardware and software
used to measure ODI metrics also impacts the ODI parameter. There was a clinically signif-
icant difference between the ODI measurements from the same database measured using
the ResMed ApneaLink Plus device (ResMed, Sydney, Australia) and the Compumedics
Grael Profusion PSG3 system (Compumedics Limited, Abbotsford, Victoria, Australia) [34].
Ng et al. suggested that this discrepancy may be caused by the noise cancellation process
rather than the ODI scoring algorithm [34].

5. Desaturation Area-Based Parameters

Recent studies introduced novel parameters as promising indicators of future CVD
events. These parameters calculate the area above the SpO2 curve associated with key sleep
disorder breathing events per hour of sleep, and are distinguished by their different calcu-
lation methods. The units of these measures are %, and thus provide a weighted average
value of the SpO2 trace. This group of parameters can be categorised according to their
dependence on the respiratory event scoring. Hypoxic burden and respiratory event desat-
uration transient area are calculated based on manually scored respiratory events, while
hypoxic load and desaturation severity are independent of respiratory events [14,47–49].

5.1. Hypoxic Burden

Azerbarzin et al. proposed hypoxic burden (HB) which is defined as the sum of the
area between the SpO2 trace and the desaturation baseline associated with all apnoea and
hypopnoea events divided by the total time of sleep, as shown in Equation (1) [14]:

HB =

events
∑ area of an individual desaturation event

∑ time of sleep
. (1)

The authors present the unit of HB as %minutes per hour of sleep which is equivalent
to a measure with units of % scaled by a factor of 60. The calculation for HB can be
decomposed into three main steps: (1) All SpO2 segments associated with manually scored
respiratory events for one individual recording are averaged and processed to calculate the
boundaries of a search window. The search window boundaries are determined by the two
peaks of the averaged respiratory event as shown in Figure 2A. (2) The desaturation baseline
for each respiratory event (Figure 2B) is calculated as the maximum SpO2 value within 100 s
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prior to the end of the event (Figure 2C). (3) The desaturation area for a single respiratory
event is the area within the search window, desaturation baseline, and the SpO2 trace,
as shown in Figure 2C. HB is then calculated using Equation (1) [14]. Other researchers
have attempted to replicate HB with varying success. Trzepizur et al. [50] developed their
own algorithms for HB but post hoc analysis by Mehra and Azerbarzin [14] suggested
Trzepizur et al.’s method underestimated HB [51]. Based on the published material in [14],
the algorithm was replicated by de Chazal et al., and the MATLAB code is publicly available
in the online sharing platform GitHub (https://github.com/pdechazal/Hypoxic-Burden
(accessed on 16 October 2023)). Two other commercial software packages calculate HB,
Respironics (Murrysville, PA, USA) and Cidelec (Sainte-Gemmes-sur-Loire, France) [52].
However, the lack of a full disclosure of the algorithmic details of HB by the original authors
has led to some confusion in the reproducibility of the HB calculation.
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Figure 2. The example of HB calculation. (A) The search window is defined as the two peaks of the
averaged SpO2 trace. (B) The nasal flow (blue) and the end points of a respiratory event (event start:
yellow star; event end: purple star) are shown. (C) The SpO2 trace of the corresponding respiratory
event is shown. The desaturation area for a single event is the area above the SpO2 trace (blue),
below the desaturation baseline (magenta), and within the search window (between window start
and window end). The desaturation baseline is the maximum SpO2 value within 100s prior to the
event end (yellow star). HB is calculated as the sum of desaturation events divided by the total time
of sleep [14].

Researchers suggest that HB has a better performance than AHI in predicting CVD
mortality and morbidity as it measures more information about the depth and duration of
desaturations associated with apnoea and hypopnoea events [50,53–55]. Azarbarzin et al.
conducted analysis on two population groups and demonstrated that HB has uniformly
good performance for predicting CVD mortality in the two groups [14]. Blanchard et al.
explored the correlation between OSA and stroke incidences using the database of the
Pays de la Loire Sleep Cohort, and concluded that HB was a significant predictor of CVD
events [53]. Trzepizur et al. compared the performance of ODI, T90, and HB in predicting
MACEs, and concluded that T90 performs the best, while HB also proved to be a promising
predictor [50]. However, HB outperformed T90 in predicting CVD mortality in patients
from the Sleep Heart Health Study (SHHS) [47]. The varied conclusions regarding the
performance of T90 and HB may be caused by the differences in database and target CVD
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events. As T90 and HB present different information derived from the SpO2 trace, future
research could consider T90 and HB as multivariate predictors of CVD events.

5.2. Respiratory Event Desaturation Transient Area

Studies note that HB has limitations when used for some noisy recordings or recordings
with few respiratory events. The accurate calculation of the desaturation area is challenging,
as the desaturation baseline and the onset or offset of the average desaturation response
are susceptible to noise. Moreover, the desaturation baseline is difficult to estimate when
the interval between desaturation events is less than 100 s [47]. Our group proposed
respiratory event desaturation transient area (REDTA) as a novel desaturation area-based
parameter, which is less sensitive to noise than HB and has good predictivity of long-term
CVD outcomes. REDTA is defined as the sum of the area between the SpO2 trace and the
100% desaturation baseline for all manually scored respiratory events divided by 3600, as
shown in Equation (2):

REDTA =

events
∑ area of an individual desaturation event

3600
, (2)

where the unit of each desaturation area is %seconds and the unit of REDTA is % hours [47].
REDTA is calculated using three main steps: (1) The search window is fixed and starts
from the midway through the event and extends for 2.5 times the event duration. The
search window is population-based (derived from the SHHS study) and is assumed to be
appropriate for all respiratory events. (2) The desaturation area for a single respiratory
event is the area between the 100% desaturation baseline and the SpO2 trace within the
search window, as shown in Figure 3. (3) REDTA is the sum of the desaturation area
divided by 3600. REDTA does not include the total time of sleep in the calculation. Its
value increases with longer desaturation duration, more desaturation events, and greater
depth of desaturation [47], and it thus is a measure of the hypoxemia insult per night. The
software ABOSA (Version 1.1) implements REDTA [56]. The unit of REDTA is % hours.

Figure 3. The example of REDTA calculation. (A) The nasal flow and a respiratory event are shown.
The search window starts at the midway of the respiratory event and extends for 2.5 T, where T is
the event duration. (B) The SpO2 trace of the corresponding respiratory event is shown. REDTA
is calculated as the sum of the area (grey) within the search window, SpO2 trace, and the 100%
desaturation baseline divided by 3600 [47].
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REDTA was proposed to provide a simple, reproducible area-based SpO2
measure [47,57–59]. Pahari et al. and de Chazal et al. compared the ability of T90, ODI3,
HB, and REDTA in predicting CVD mortality, and concluded that REDTA performed
equivalently to HB and outperformed ODI3 and T90 in predicting CVD mortality [47,60].
Further work investigating REDTA and other CVD events is required.

5.3. Desaturation Severity

Unlike HB and REDTA, desaturation severity (DesSev) does not use the respiratory
events to calculate the area. The software package ABOSA implements DesSev and is freely
available for other researchers to use [56]. DesSev is defined as the sum of the desaturation
area associated with SpO2 events with a saturation drop greater than 3% divided by the
total time of sleep [20,56]. The calculation of DesSev can be divided into three steps:
(1) The potential start and end points of desaturation events are approximately identified.
The start point is the peak of the SpO2 signal, and the end point is located at the minimum
of the SpO2 signal, with at least 5 s between start and end point. (2) The start and end
points are matched to form the candidate desaturation event list. The desaturation events
are selected from the candidate desaturation event list based on four criteria: the event
duration does not exceed 180 s; desaturation events do not overlap; if the flat plateau is
longer than 30 s, the corresponding end point moves up to the end of the plateau; and
the transient drop of desaturation event is greater than 3%. (3) As shown in Figure 4, the
desaturation area is calculated as the area between the desaturation baseline and the SpO2
trace within the search window, while the desaturation baseline is the value of the start
point, and the search window is defined by the start and end points. DesSev is calculated
using Equation (3):

DesSev =
∑number of desaturation events

n=1 Desaturation arean

∑ time of sleep
, (3)

and the unit of DesSev is % [56].
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Figure 4. DesSev is calculated as the sum of the desaturation area divided by the total time of sleep.
The desaturation area is calculated as the area between the desaturation baseline (magenta) and the
SpO2 trace (blue) within the search window. The search window is to be defined as the time between
the maximum and minimum values (blue triangles). However, due to the presence of a plateau (red
arrow), the end of the search window is shifted forward to the end of the plateau (purple star). The
desaturation baseline is the maximum value associated with the event [56].
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Studies have used DesSev to explore the association between OSA, CVD events,
and cardiac response, and have concluded that DesSev is an informative indicator of
OSA and cardiac response [61–67]. Kainulainen et al. concluded that there is a stronger
association between average daytime sleepiness latency and DesSev than AHI or ODI. They
suggested that excessive daytime sleepiness is more related to the depth and duration of
desaturation events rather than to the number of desaturation events [65–67]. Associations
between DesSev and the short-term time- and frequency-domain HRV parameters have
been explored, and authors concluded that there is a significant association between DesSev
and HRV in OSA patients [63]. DesSev may have some key limitations when applied
to OSA patients. Because DesSev is independent of respiratory events, the desaturation
area associated with respiratory events may be overestimated due to incomplete recovery
from prior desaturation or non-OSA-induced hypoxemia [52]. To improve the accuracy
of respiratory event-related desaturation severity estimation, Kulkas et al. introduced
obstruction severity (ObsSev), later renamed sleep breathing impairment index (SBII) by
Cao et al., which links DesSev to hypopnoea and apnoea events, as shown in Equation (4):

ObsSev = SBII =
∑

number o f Hyps
n=1 HypDur × Desaturation arean + ∑

number o f Aps
n=1 ApDur × Desaturation arean

∑ time o f sleep
, (4)

where Hyps is the number of hypopnoea events, Aps is the number of apnoea events,
HypDur is the duration of a single hypopnoea event, and ApDur is the duration of a single
apnoea event. The unit of ObsSev (SBII) is %seconds [20,68]. The authors suggested that as
ObsSev (SBII) captures more respiratory event information than other conventional SpO2
parameters, it may better predict OSA-related CVD outcomes [20,68]. Investigators have
also found that ObsSev (SBII) is more age-related than AHI, and therefore can be used to
estimate long-term CVD progression [69].

5.4. Hypoxia Load

Hypoxia load (HL) differs from other desaturation area-based parameters, as it is
independent of any desaturation threshold or respiratory events. As shown in Figure 5,
HL is defined as the desaturation area above the SpO2 trace divided by the total time of
sleep. The calculation of HL can be divided into two steps: (1) The SpO2 saturation area
is calculated by the numerical integration of the SpO2 trace using the trapezoidal rule, as
shown in Equation (5):

∫ total time o f sleep

0
AreaSpO2 ≈ ∑N

n=1

(
SpO2n + SpO2n+1

)
× (t n+1 − tn

)
2

, (5)

where SpO2n and SpO2n+1 are successive samples of the SpO2 trace, and the unit of the
integrated area is %seconds [49]. (2) The average saturation is then calculated by dividing
this area by the sleep time. HL is calculated using Equation (6). It is worth noting that
the average saturation values in HL are also most exactly equal to the average SpO2 value
during sleep reported by most PSG analysis software packages, the only difference being
that the trapezoidal rule is used to calculate the area for HL whereas the average value use
the rectangular rule to calculate the area.

HL = 100% − saturation area during sleep
∑ time o f sleep

≈ 100% − average SpO2 value during sleep, (6)

The unit of HL is % [49]. Because HL, unlike all previously discussed parameters,
is not affected by any desaturation event criteria and thresholds, it is less likely to be
miscalculated, which is ideal for cross-study analysis. However, the limitations of HL are
also prominent: the information revealed by HL is not specific to transient changes in the
SpO2 and may down-play the importance of OSA-related oxygen transients.
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HL has not been widely used in the prediction of CVD events, but its association with
other OSA-related symptoms has been explored. HL has been shown to be an independent
predictor of fasting blood glucose and haemoglobin A1c (HbA1c) levels [70]. Linz et al.
demonstrated that HL is also significantly correlated with CVD indicators in OSA patients
after acute myocardial infarction, whereas AHI and other traditional metrics are not [49].
Similarly, Khoshkish et al. found a strong association between HL and blood pressure,
while the conventional metrics of hypoxemia do not show an association. Although the
correlation between nocturnal systolic blood pressure (BP) and HL became insignificant
after adjusting for BMI, HL was strongly associated with the pulse pressure before and after
the adjustment for BMI. It was suggested that HL is a suitable marker of BP patterns [71,72].
Considering that hypertension and diabetes are all associated with OSA, future studies
using HL may reveal further associations between OSA and CVD [73–76].

6. Other Parameters

In studies exploring the associations between OSA and CVD outcomes, several other
parameters derived from pulse oximetry have been investigated. Time domain parameters,
such as mean SpO2, variance of SpO2, skewness of SpO2, and kurtosis of SpO2, were used
measuring OSA characteristics [77–83]. Power spectral density as a frequency domain
parameter, and sample entropy and central tendency measure as non-linear parameters
were also considered in the OSA analysis [38,84–86]. These parameters are involved in the
automated detection of OSA and infrequently investigated in CVD/OSA associations [29].
Sutherland et al. performed a comprehensive comparison of their performance in predicting
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incident CVD among OSA patients. The results showed no association between these
parameters and incident CVD in men, with some parameters having marginal significance
in the analysis of women [29]. These outcomes are based on a single study, and further
studies on different databases are needed to confirm these results.

7. Summary of the Performance of Novel Oximetry-Derived Parameters in Predicting
CVD Events

Table 2 summarises the performance of novel oximetry-derived parameters in predict-
ing CVD events. Parameters that showed a statistically significant association with a CVD
outcome ares listed in the second column. The third column lists the parameters that did
not demonstrate a statistically significant association with a CVD outcome.

Table 2. The summary of AHI and oximetry-derived parameters and their performance in the
prediction of CVD outcomes.

Parameter Is a Predictor of Is Not a Predictor of

AHI All-cause mortality [87]
Incident heart failure [54]

Composite CVD outcomes * [26]
Hypertension [88]

TST90

MACE [27]
Hypertension [89]

Diabetes [89]
Endothelial dysfunction [90]

Composite CVD outcomes ** [91]

T90%
Incident CVD in patients with non-sleepy SDB [18]

Right ventricular stroke [92]
Metabolic syndrome in women [93]

Incident CVD in patients with OSA only [29]

T90desaturation CVD mortality [4]

T90non-specific Pulmonary hypertension [94] CVD mortality [4]

ODI3
Coronary plaque burden [42]

Severity of OSA [39]
CVD risks *** [95]

Incident CVD in patients with OSA only [29]

ODI4 CVD mortality [4]
Composite CVD outcomes * [91]

HB

CVD mortality [14]
Stroke incidence [53]

MACE **** [50]
Incident heart failure [54]

Incident CVD in patients with OSA only [29]

REDTA CVD mortality [47]

DesSev Excessive daytime sleepiness [59]
HRV [58]

ObsSev/SBII
Mean daytime sleep latency [67]

Acute stroke and transient ischemic attack [96]
CVD morbidity [68]

HL HbA1c level [70]
Blood pressure [71]

* Composite CVD outcomes include myocardial infarction, congestive heart failure, stroke, revascularization
procedure, or death from any cause. ** Composite CVD outcomes (CVD death, stroke, myocardial infarction,
heart failure, angina, transient ischemic event) in OSA patients with high CVD risks. *** CVD risks: the risks
of CVD and CVD events including hypertensive disease, ischemic heart disease (IHD), cerebrovascular disease,
diseases of arteries, arterioles, capillaries, and congestive heart failure (CHF). **** MACE: a composite outcome
including all-cause mortality, acute myocardial infarction, stroke, and unplanned coronary revascularization.

8. Discussion

AHI remains the gold standard parameter for determining the OSA severity in clin-
ical practice, but has shown poor performance in predicting future CVD events in OSA
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patients [97]. AHI focuses only on the frequency of apnoea and hypopnoea events, and
assumes that all respiratory events have the same impact on OSA. It fails to show inter-
individual differences in pathological effects of respiratory events and to present more infor-
mation on the characteristics of the associated oxygen desaturation and cortical arousals [98].
Muraja-Murro et al. demonstrated that AHI after adjusting for duration of obstruction was
better than AHI in predicting CVD mortality and morbidity. Azarbarzin et al. found that
AHI was insufficient to predict heart failure in men, and that T90% and HB outperformed
AHI in the prediction of all-cause mortality [14,54]. Not only did AHI prove to be inferior
to T90% in predicting CVD mortality, but it also had limited effectiveness in predicting
hypertension [88]. Butler et al. stated that other parameters derived from overnight PSG,
such as respiratory event duration, could predict CVD events beyond AHI [15]. These
suggest the need for parameters beyond AHI with other information when analysing the
association between OSA and CVD [99].

As the understanding of the links between CVD and sleep apnoea has grown, param-
eters based on oximetry have emerged as an area to explore for developing PSG-based
parameters predictive of future CVD events. Currently, there is no single oximetry param-
eter that is predictive of all event types. As shown in Table 2 HB, T90desaturation and
REDTA are proven to be the most effective in predicting CVD mortality, while T90non-
specific and ODI4 have insignificant hazard ratios in the analysis. TST90 works well in
the prediction of MACEs, hypertension, diabetes, and endothelial dysfunction, some of
which are pre-symptoms of CVD events. T90% outperforms other parameters in predicting
right ventricular stroke, metabolic syndrome in women, and incident CVD in patients with
non-sleepy SDB, while T90non-specific is recommended in the prediction of pulmonary
hypertension. Although Karhu et al. proposed that ODI4 is more reliable than ODI3, more
recent studies suggest that ODI3 is superior in predicting coronary plaque burden, the
severity of OSA, and specific CVD risks [21,33]. HB has good performance in the prediction
of stroke incidence, incident heart failure, and MACE, compared to other desaturation
area-based parameters. DesSev and ObsSev/SBII differ from HB and REDTA in that they
are independent of scored respiratory events. These parameters predict excessive daytime
sleepiness, HRV, mean daytime sleep latency, acute stroke and transient ischemic attack,
and CVD morbidity [58,59,67,68,96]. A few studies consider HL in their analysis. HL per-
forms well at predicting HbA1c levels and blood pressure in patients with sleep disorders,
which aids in diagnosing diabetes and hypertension.

Despite the significant results in the prediction of CVD events, most parameters fail to
predict CVD outcomes in databases that includes OSA patients only. Sutherland et al. and
Linz et al. found that TST90, T90%, ODI3, ODI4, and HB have insignificant predictions of
incident CVD in OSA patients, and composite CVD outcomes in OSA patients with high
CVD risks, respectively.

We see three main reasons for the varied results. First is the choice of database used
to assess the parameters. Databases such as the SHHS are community sample which
have a much greater representation of controls than clinical samples or OSA-only samples,
and it is perhaps unreasonable to expect a particular parameter to perform well across
these distinct populations. We believe that the most useful populations to study these
parameters in are clinical populations, because these are patient populations (by definition)
seen in clinical practice. Second, baseline comorbidities and treatment programs need to be
accurately recorded by studies. Third, without unambiguous and reproducible definitions
of parameters, prediction performance may be impacted by individual implementations
of parameters.

The definitions and calculation methods of each parameter provide different represen-
tations of the oximetry information content. For example, T90s focus on the duration of
exposure to hypoxemia, whereas desaturation area-based parameters measure the transient
hypoxemia associated with desaturation events. Until we have a complete understanding
of the role of hypoxia in impacting CVD outcomes, a multivariate approach to CVD out-
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come prediction, which includes a range of oximetry and other PSG sensor parameters,
will likely be a more successful approach than focusing on one particular parameter [100].

The main limitation of current studies is the inconsistent choice of computational
algorithms, definitions, or databases, which hampers cross-study comparisons of results
from the parameters. The lack of calculation standards for each parameter and the chang-
ing AASM criteria of standards affect the performance of parameters in predicting CVD
events [101,102]. Moreover, the chosen databases may also influence the resultant outcomes.
Some databases such as the SHHS were acquired decades ago and with advancements
of sensor technology, results from these databases may have less relevance today. Some
databases with a small sample size or referral bias compromise the generalizability of re-
sults derived from them [71,103–107]. Some studies used commercial software to calculate
parameters, which lack uniformity and validation due to the unclear criteria for calculating
parameters and different data processing techniques [34]. As we have focused on com-
putational methods, we have not considered the level of evidence in the publications. In
future studies, improvements could be made to address these issues: calculations or criteria
for each parameter could be standardized; when determining the association between a
parameter and CVD events, multiple analyses could be performed in different databases to
reduce non-symptom-induced interference; and software-calculated parameters should be
carefully considered for their accuracy and reliability.

9. Conclusions

This review discusses novel parameters derived from pulse oximetry for the predic-
tion of CVD events, and summarises their corresponding computational methods and
predictive results. These parameters fall into three main categories, namely, T90-based,
ODI-based, and desaturation area-based parameters, each of which has its own strength in
predicting particular CVD outcomes. We believe that standardized computational methods
of parameters will help reduce some of the conflicting outcomes currently observed in
the literature. As no single parameter is a stand-out predictor, we propose that advances
in the prediction of CVD events in OSA patients may arise by considering multivariate
SpO2 analysis.
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