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Abstract: Airway inflammation and pro-inflammatory cytokines such as tumor necrosis factor al-
pha (TNFα) underlie the pathophysiology of respiratory diseases, including asthma. Previously,
we showed that TNFα activates the inositol-requiring enzyme 1α (IRE1α)/X-box binding protein
1 spliced (XBP1s) endoplasmic reticulum (ER) stress pathway in human airway smooth muscle
(hASM) cells. The ER stress pathway is activated by the accumulation of unfolded proteins in the ER.
Accordingly, chemical chaperones such as 4-phenylbutyric acid (4-PBA) may reduce ER stress activa-
tion. In the present study, we hypothesized that chemical chaperone 4-PBA mitigates TNFα-induced
ER stress in hASM cells. hASM cells were isolated from bronchiolar tissue obtained from five patients
with no history of smoking or respiratory diseases. The hASM cells’ phenotype was confirmed
via the expression of alpha-smooth muscle actin and elongated morphology. hASM cells from the
same patient sample were then separated into three 12 h treatment groups: (1) TNFα (20 ng/mL),
(2) TNFα + 4-PBA (1 µM, 30 min pretreatment), and (3) untreated control. The expressions of total
IRE1α and phosphorylated IRE1α (pIRE1αS724) were determined through Western blotting. The
splicing of XBP1 mRNA was analyzed using RT-PCR. We found that TNFα induced an increase in
pIRE1αS724 phosphorylation, which was mitigated by treatment with chemical chaperone 4-PBA. We
also found that TNFα induced an increase in XBP1s mRNA, which was also mitigated by treatment
with chemical chaperone 4-PBA. These results support our hypothesis and indicate that chemical
chaperone 4-PBA treatment mitigates TNFα-induced ER stress in hASM cells.

Keywords: airway smooth muscle; chemical chaperone; endoplasmic reticulum stress; 4-phenylbutyric
acid; unfolded protein

1. Introduction

An underlying characteristic in the pathophysiology of airway diseases such as asthma,
COVID-19, or chronic bronchitis is inflammation mediated by pro-inflammatory cytokines,
such as tumor necrosis factor alpha (TNFα) [1–5]. We previously showed that the exposure
of human airway smooth muscle (hASM) cells to TNFα results in an accumulation of
damaged or misfolded proteins in the endoplasmic reticulum (ER), which then leads to the
activation of an unfolded protein response (UPRer) (Figure 1) [6,7].

Binding immunoglobulin protein (BiP), also known as glucose-regulated protein 78
(GRP78), is a chaperone protein that acts as a sensor of protein unfolding. With the accumu-
lation of unfolded proteins in the ER, BiP/GRP78 dissociates from sentinel proteins, leading
to their autophosphorylation and downstream signaling (Figure 1) [6–10]. Three ER stress
sentinel proteins involved are (1) inositol-requiring enzyme 1α (IRE1α), with autophospho-
rylation leading to the downstream splicing of X-box binding protein 1 (XBP1s), (2) protein
kinase RNA-like endoplasmic reticulum kinase (PERK), with autophosphorylation leading
to the phosphorylation of eukaryotic initiation factor 2 (eIF2), and (3) translocation to and
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cleavage of the activating transcription factor 6 (ATF6) within the Golgi [6–10]. These path-
ways trigger a homeostatic signaling cascade to restore normal function, such as halting
protein translation or increasing the production of chaperone proteins, for example. In
previous studies, we found that TNFα activates only the pIRE1α/XBP1s ER stress pathway
in hASM cells [6,7].
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Figure 1. Conceptual framework of this study. Tumor necrosis factor alpha (TNFα) induces the
accumulation of unfolded proteins (unfolded and folded proteins represented in yellow) in the
endoplasmic reticulum (ER), causing the dissociation of binding immunoglobulin protein (BiP) from
sentinel proteins and triggering an ER stress response. In human airway smooth muscle (hASM)
cells, TNFα induces phosphorylation of inositol-requiring enzyme 1α (IRE1α) at serine residue 724
with downstream alternative splicing of X-box binding protein 1 (XBP1) mRNA. In the present
study, we tested the hypothesis that promoting the refolding of proteins using chemical chaperone
4-phenylbutyric acid (4-PBA) will mitigate the ER stress response.

Chemical chaperones such as 4-phenyl butyric acid (4-PBA) promote protein refolding
and thus potentially inhibit ER stress. The therapeutic use of chemical chaperone 4-PBA has
been explored in a variety of ER stress-associated diseases [11–15]. The aim of this study is
to explore the potential of chemical chaperone 4-PBA to mitigate ER stress in hASM cells.
In the present study, we hypothesize that treatment with chemical chaperone 4-PBA will
mitigate the TNFα-induced pIRE1α/XBP1s ER stress pathway in hASM cells (Figure 1).

2. Results
2.1. TNFα Induces Phosphorylation of IRE1α in hASM Cells

Using Western blotting, we found that the ratio of pIRE1αS724 to total IRE1α was
increased after 12 h TNFα treatment compared to the untreated time-matched control
groups (n = 5, * p < 0.05) (Figure 2A–C and Supplemental Figure S1). The total IRE1α
protein expression level was comparable between the 12 h TNFα-treated group and the
untreated time-matched control group for each patient (Figure 2B). The mean percent
change from the control for the ratio of pIRE1αS724 to total IRE1α in the 12 h TNFα-treated
groups was ~50%, with values ranging from 17 to 115% (Figure 2D).
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Figure 2. Chemical chaperone 4-PBA mitigates the increase in pIRE1αS724 induced by TNFα exposure
in hASM cells. Representative Western blots of (A) pIRE1αS724 (ab124945) and (B) total IRE1α (NB100-
2324) showing in increase in pIRE1αS724 after TNFα exposure, which is mitigated by treatment with
chemical chaperone 4-PBA. In each patient, the ratio of pIRE1αS724 to total IRE1α (C) is increased after
TNFα exposure compared to untreated control hASM cells and is summarized in a box–whisker plot
with each patient represented by different colors. The ratio of pIRE1αS724 to total IRE1α, expressed as
% change from untreated control hASM cells (D), is summarized in a box–whisker plot and shows an
increase in the pIRE1αS724/total IRE1α ratio after TNFα exposure in each patient, which is mitigated
by chemical chaperone 4-PBA. Statistical analyses were performed using a two-way ANOVA (*, **
and *** p < 0.05; n = 5 per treatment group).

2.2. Chemical Chaperone 4-PBA Mitigates TNFα-Induced Phosphorylation of IRE1α in
hASM Cells

Using Western blotting, we found that the ratio of pIRE1αS724 to total IRE1α was
decreased after 12 h 4-PBA + TNFα treatment compared to the 12 h TNFα groups (n = 5,
* p < 0.05) (Figure 2A–C). The total IRE1α protein expression level was comparable between
the 12 h 4-PBA + TNFα-treated group and the 12 h TNFα treatment for each patient
(Figure 2B). The mean percent change from the TNFα-treated groups to the TNFα + 4-
PBA-treated groups for the ratio of pIRE1αS724 to total IRE1α was ~50% (n = 5, * p < 0.05)
(Figure 2D). A significant decrease in the ratio of pIRE1αS724 to total IRE1α was also
observed in the 12 h 4-PBA + TNFα treatment groups compared to the untreated time-
matched control groups (n = 5, * p < 0.05) (Figure 2C and Supplemental Figures S2 and S3).

2.3. TNFα Induces Splicing of XBP1 mRNA in hASM Cells

Using PCR, we found that the ratio of XBP1s to XBP1u was increased after 12 h TNFα
treatment when compared to the untreated time-matched control groups (Figure 3A–C)
(n = 5, * p < 0.05). The XBP1u mRNA level was comparable between the 12 h TNFα-treated
group and the untreated time-matched control group for each patient (Figure 3B). The
mean percent change from the control for the ratio of XBP1s to XBP1u in the TNFα-treated
groups was ~50%, with values increasing by ~200% (n = 5, * p < 0.05) (Figure 3D).
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Figure 3. Chemical chaperone 4-PBA mitigates the increase in XBP1s induced by TNFα exposure
in hASM cells. Representative PCR agarose gel images for XBP1s (A) and XBP1u (B), showing an
increase in XBP1s after TNFα exposure that is mitigated by chemical chaperone 4-PBA treatment. In
each patient, the ratio of XBP1s to XBP1u mRNA (C) is increased after TNFα treatment compared to
untreated control hASM cells, summarized in a box–whisker plot with each patient represented by
different colors. The ratio of XBP1s to XBP1u mRNA expressed as % change from untreated control
hASM cells (D) is summarized in a box–whisker plot, showing an increase in the XBP1s/XBP1u
ratio after TNFα exposure in each patient that is mitigated by chemical chaperone 4-PBA. Statistical
analyses were performed using a two-way ANOVA (* and ** p < 0.05; for each measure, n = 5 per
treatment group).

2.4. Chemical Chaperone 4-PBA Mitigates TNFα-Induced Splicing of XBP1 mRNA in hASM Cells

Using PCR, we found that the ratio of XBP1s to XBP1u was decreased after the 12 h
4-PBA + TNFα treatment compared to 12h TNFα treatment (n = 5, * p < 0.05) (Figure 3A–C).
The ratio of XBP1s to XBP1u after 12 h 4-PBA + TNFα treatment was comparable to the
untreated time-matched control (Figure 3A–C). The XBP1u mRNA level was decreased
after 12 h 4-PBA + TNFα treatment compared to 12 h TNFα treatment (Figure 3B). The
mean percent change from the TNFα-treated groups to the TNFα + 4-PBA-treated groups
was ~50% for the ratio of XBP1s to XBP1u (n = 5, * p < 0.05) (Figure 3D).

2.5. 4-PBA Alone Has No Effect on Phosphorylation of IRE1α and XBP1 Splicing in hASM Cells

In selected experiments, we examined the effect of 4-PBA treatment alone on the ratio
of pIRE1αS724 to total IRE1α and the ratio of XBP1s to XBP1u. We found that treatment
with chemical chaperone 4-PBA alone had no effect (Supplemental Figures S2 and S4).

3. Discussion

The results of the present study show that exogenous chemical chaperone 4-PBA is ef-
fective in mitigating the unfolded protein response and activation of the pIRE1αS724/XBP1s
ER stress pathway induced by TNFα treatment in hASM cells. This was reflected by a
decrease in TNFα-induced pIRE1αS724 phosphorylation and the subsequent splicing of
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XBP1s. Treatment with chemical chaperone 4-PBA alone showed no effect on pIRE1αS724

or XBP1s.

3.1. TNFα Induces Phosphorylation of IRE1α and mRNA Splicing of XBP1 at 12 h

Inflammation is a key component of airway diseases and has been shown to induce
ER stress in many cell types, including hASM cells [3,6,7,16–20]. Consistent with our previ-
ous studies, we showed that pro-inflammatory cytokine TNFα induces ER stress in hASM
cells, reflected by the activation of the pIRE1αS724/XBP1s pathway [6,7]. Interestingly, pro-
inflammatory cytokine TNFα does not activate the PERK/eIF2α or the ATF6 ER stress path-
way [6,7]. Previously, we showed that TNFα treatment induces pIRE1αS724 and subsequent
XBP1s at 6 h with maximal pIRE1αS724 at 12 h [7]. IRE1α contains two enzymatic activi-
ties, a kinase and an endoribonuclease (RNase), both located on the cytosolic side [21–23].
Upon sensing ER stress, IRE1α oligomerizes, which juxtaposes the kinase domains, leading
to trans-autophosphorylation, and activates the RNase activity of pIRE1αS724, leading to
the splicing of XBP1 mRNA [21–23]. XBP1s has been shown to transcriptionally activate
a multitude of target genes [21–27] and could potentially affect hASM cells’ contractility
and/or proliferation. The protein kinase activity of pIRE1αs724 has been reported in several
studies, but its role is still under scrutiny [21,28,29]. In the current study, we confirmed that,
in hASM cells, TNFα treatment increases the phosphorylation of IRE1α as well as increasing
the mRNA splicing of XBP1 at 12 h. We also found that TNFα treatment has no effect on
total IRE1α protein expression at 12 h. This result indicates that TNFα treatment does not
increase pIRE1αS724 through an increase in total IRE1α protein expression.

3.2. 4-PBA Mitigates ER Stress in hASM Cells

The chemical chaperone 4-PBA is a low-molecular-weight fatty acid commonly consid-
ered an ER stress inhibitor [30–32]. The hydrophobic regions of chemical chaperone 4-PBA
interact with the exposed hydrophobic parts of unfolded proteins, promoting the refolding
of these proteins and reducing protein accumulation, thus reducing ER stress [30–32]. Pre-
vious studies have shown that chemical chaperone 4-PBA is effective in reducing ER stress
induced by inflammation in various cell types and diseases, such as urea cycle disorders,
cystic fibrosis, malignant gliomas, or motor neuron diseases. [31,33,34]. However, the
potential effect of chemical chaperone 4-PBA in hASM cells has not been explored. In the
present study, we examined the effect of chemical chaperone 4-PBA on ER stress induced
by pro-inflammatory cytokine TNFα in hASM cells. We found that pretreatment with
chemical chaperone 4-PBA mitigated the TNFα-induced phosphorylation of IRE1α as well
as the increase in the mRNA splicing of XBP1, thus reducing the TNFα-induced ER stress
in hASM cells. Importantly, the treatment of hASM cells with only chemical chaperone
4-PBA has no effect on pIRE1αS724 or XBP1s.

3.3. Study Limitations

The number of patients was determined through a power analysis of the primary
outcome measures. The patient sample size was small, but it is unlikely that these five
patients were outliers. However, further experiments will be needed to both confirm the
effect of chemical chaperone 4-PBA on TNFα-induced ER stress and confirm that chemical
chaperone 4-PBA has no effect on its own, before any clinical study can be contemplated.
While patients did not have a history of chronic lung disease, asthma, any other respiratory
disease, or smoking, they were undergoing lung surgery, most likely related to cancer
resection. Tissue samples were evaluated by a clinical pathologist and only “normal” lung
tissue was used in this study. We observed a large variance in the phosphorylation of
IRE1α as well as in the mRNA splicing of XBP1, which may be a reflection of the age of,
or medications taken by, the patients. The effect of age on TNFα-induced ER stress and
the efficacy of chemical chaperone 4-PBA is of great interest, but is beyond the scope of
this study.
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3.4. Clinical Significance

Chemical chaperone 4-PBA is a United States Food and Drug Administration-approved
drug which has been tested as a potential therapeutic agent in patients with urea cycle
disorders, cystic fibrosis, malignant gliomas, or motor neuron diseases, amongst other
conditions. The role of ER stress in airway diseases such as asthma or COPD is still un-
der investigation. In the present study, we show that pro-inflammatory cytokine TNFα
induced ER stress and chemical chaperone 4-PBA mitigated TNFα-induced ER stress in
hASM cells, showing a potential future therapeutic application of chemical chaperones in
airway diseases.

4. Material and Methods
4.1. Experimental Design
4.1.1. Patient Samples

Mayo Clinic’s Institutional Review Board (IRB #16-009655) reviewed the research
protocol and determined no further review was required due to minimal risk to patients
for the following reasons: (1) patient anonymity was maintained and no patient identifiers
were stored when collecting the tissue, although patient history was recorded, including
sex, demographics, pulmonary disease status, pulmonary function testing, imaging, co-
morbidities, and medications; (2) patient samples were numbered without the possibility
of identifying patients; (3) patient consent was obtained during pre-surgical evaluation
in a non-threatening environment. Samples from 5 patients (3 males, 2 females) were
selected. Patients ranged in age from 34 to 75 years, without a history of chronic lung
disease, asthma, or any other respiratory disease, or a history of smoking (Figure 4, Table 1).
However, patients were undergoing lung surgery, most likely related to cancer resection.
Importantly, all tissue was evaluated through clinical pathology and only “normal” lung
tissue was provided for this study.
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Figure 4. Experimental design. Third- to sixth-generation bronchiolar samples were obtained from
5 patients ranging in age from 30–75 years. The smooth muscle layer was dissected, and cells
dissociated. Cells were phenotyped based on expression of alpha-smooth muscle actin (α-SMA) and
morphologically distinct elongated shape. hASM cells from the same patient were divided into three
groups and treated for 12 h: (1) TNFα-treated (20 ng/mL); (2) TNFα + 4-PBA-treated (1 µM; 30 min
pretreatment prior to TNFα); and (3) untreated time-matched control.
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Table 1. Patient demographics.

Patient No. 1 2 3 4 5

Sex F F M M M

Age (years) 64 61 71 75 34

Asthma No No No No No

COPD No No No No No

Pulmonary Fibrosis No No No No

Pulmonary Hypertension No No No No No

4.1.2. Dissociation of Cells from Bronchiolar Tissue Samples

During lung surgery, samples of third- to sixth-generation normal (non-diseased) bron-
chiolar tissue were obtained. After pathological evaluation and determination of normal
tissue, the smooth muscle layer was dissected. Cells were then dissociated using papain
and collagenase with ovomucoid/albumin separation as per manufacturer instructions
and as previously described (Worthington Biochemical, Lakewood, NJ, USA) [7,35–38].
Cells were maintained in phenol red-free DMEM/F-12 medium (Invitrogen, Carlsbad, CA,
USA), supplemented with 10% fetal bovine serum (Cat. No. A3840002, Gibco, Thermo
Fisher Scientific, Rockford, IL, USA) and 100 U/mL penicillin/streptomycin culture dishes
at 37 ◦C, 5% CO2—95% air. Only passages 1–3 were used in our study (Figure 4).

4.1.3. Confirmation of hASM Phenotype

The phenotype of the hASM cells was confirmed through immunocytochemical anal-
ysis of the expression of α-smooth muscle actin (α-SMA), as previously described [39]
(Figure 5). Additionally, cells expressing α-SMA were found to be larger, with an elongated
shape (Figure 5). Cells were plated at a density of ~10,000 cells per well in a Nunc™
Lab-Tek™ II Chamber 8-well multi-chamber slide (Thermo Fisher Scientific, Rockford, IL,
USA), then fixed with 4% paraformaldehyde in 1X phosphate-buffered saline (PBS) for
10 min (room temperature) and finally washed with 1X PBS. Cells were blocked using an
antibody diluent solution containing 10% normal donkey serum (Sigma-Aldrich, St. Louis,
MO, USA), 0.2% triton X-100, and 1X PBS, incubated overnight at 4 ◦C with anti-α-SMA
antibody (ab5694, Abcam, Boston, MA, USA) at a dilution of 1:500, and then incubated for
1 h with donkey anti-rabbit biotin-conjugated secondary antibody at 1:400 concentration
(Jackson Immunoresearch, West Grove, PA, USA), followed by Streptavidin Alexa Fluor 568
(1:200 in PBS; Invitrogen, Carlsbad, CA, USA). Cells were then mounted using Fluoro-Gel
II medium with 4′,6-Diamidino-2-Phenylindole and Dihydrochloride (DAPI) (Cat. No.
17985-50 Electron Microscopy Sciences, Hatfield, PA, USA), and imaged using a Nikon
Eclipse A1 laser scanning confocal microscope with a ×60/1.4 NA oil-immersion objective
at 12-bit resolution into a 1024 × 1024-pixel array (Nikon Instruments Inc., Melville, NY,
USA). Cells expressing α-SMA (hASM cells) with an elongated shape accounted for ~95%
of all dissociated cells (Figures 4 and 5).
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Figure 5. Phenotyping of dissociated hASM Cells. Representative Z projection image of hASM cells
displaying immunoreactivity for α-SMA expression (red channel). In addition, hASM cells showed a
morphologically distinct elongated shape (scale bar = 50µm).

4.1.4. Treatment Groups

Prior to experimentation, cells were serum-deprived for 48 h, and then cells from each
patient were assigned to one of three groups: (1) 12 h TNFα-treated (TNFα, 20 ng/mL; Cat.
No. T6674, Sigma Aldrich, St. Louis, MO, USA), (2) 12 h TNFα + 4-PBA-treated (1 µM,
30 min pretreatment, CAS. No: 1716-12-7, Tocris Bioscience, Bristol, UK), and (3) 12 h
time-matched untreated control (Figure 4). The concentration (20 ng/mL) and exposure
time (12 h) for the TNFα treatment were based on our previous study showing that the
maximal phosphorylation of pIRE1αS724 and splicing of XBP1 were achieved under those
conditions [7]. In selected experiments, we examined the effect of 4-PBA treatment alone
on pIRE1αS724 and the splicing of XBP1 (Supplemental Figures S2 and S4). All experiments
were in duplicate.

4.2. Determining pIRE1αS724 and XBP1s ER Stress Response

4.2.1. pIRE1αS724 and Total IRE1α Protein Expression

hASM cells were lysed using 1X Cell Lysis Buffer (Cat. No. 9803, Cell Signaling
Technology, Danvers, MA, USA) containing protease (Cat. No. 11836170001, Roche,
Burlington, MA, USA) and phosphatase inhibitors (PhosSTOP, Cat. No. 4906845001, Roche).
Protein samples were extracted and the protein concentration was determined using a
Lowry assay (Bio-Rad, Berkeley, CA, USA), following manufacturer protocol. For each
Western blot, 100 µg total protein was denatured in 1X Laemmli sample buffer (Bio-Rad)
with 5% β-mercaptoethanol at 95 ◦C for 5 min, separated by stain-free SDS-PAGE (Bio-
Rad), and transferred to a polyvinylidene difluoride (PVDF) membrane (Bio-Rad) using a
Trans-Blot Turbo system (Bio-Rad). The protein levels of total IRE1α (NB100-2324, Novus
Biologicals, Littleton, CO, USA) and pIRE1αS724 (ab124945, Abcam) were detected using
primary antibodies at a dilution of 1:1000. The antibodies for total IRE1α and pIRE1αS724

were validated in a previous study [7]. The total protein in each lane was visualized using
the ChemiDoc Imaging system (Bio-Rad) and analyzed using Image Lab software version
6.0.1. Band intensity corresponding to total IRE1α or pIRE1αS724 was normalized to the
total protein in the gel.
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4.2.2. Measuring the Splicing of XBP1 mRNA

The total RNA from the hASM cells was extracted using an RNeasy extraction kit
(Cat. No. 74104, Qiagen, Hilden, Germany) according to manufacturer instructions and
quantified using a Nano Spectrophotometer (Thermo Fisher Scientific). A total of 500 ng
mRNA was used for complementary DNA (cDNA) synthesis. Subsequently, traditional
PCR and quantitative real-time qPCR were conducted using a LightCycler 480 SYBR Green
I Master (Cat. No. 04707516001, Roche) to estimate the mRNA expression of XBP1s and
XBP1u. The primers for XBP1s are 5′-TCTGCTGAGTCCGCAGCAGG-3′ for XBP1s-F
and 5′-CTCTAAGACTAGAGGCTTGG-3′ for XBP1s-R. The primers for XBP1u are 5′-
CAGACTACGTGCGCCTCTGC-3′ for XBP1u-F and 5′-CTTCTGGGTAGACCTCTGGG-3′

for XBP1u-R. The samples were then separated in a Tris Borate EDTA (TBE) agarose gel
to validate and quantify the expression of XBP1s and XBP1u using a ChemiDoc Imaging
system (Bio-Rad).

4.3. Statistical Analysis

Cells from bronchiolar samples from five patients were used for each experimental
protocol (Table 1). Cells from female and male patients were evaluated and sex was
considered a random variable. From the same patient, cells were divided into three groups
for within-subject comparisons. The Shapiro–Wilk test was performed to confirm normal
distribution and a power analysis was conducted using the preliminary results to determine
the number of patient samples for both Western blot and PCR analyses. A two-way ANOVA
was performed for statistical analyses using GraphPad Prism 9. If justified through ANOVA,
a Bonferroni post hoc test was used to compare across groups. All data represent mean ±
SEM, and each color represents data from one patient. Significant differences are indicated
by * (p < 0.05).

5. Conclusions

Chemical chaperones such as 4-PBA have been extensively used to mitigate ER stress
in several disease models. In airway diseases, the role of ER stress induced by inflammation
is still under investigation. The present study shows that chemical chaperone 4-PBA
mitigates TNFα-induced ER stress in hASM cells, showing a potential future therapeutic
application in airway diseases.
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