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By measuring phosphate uptake by Mycobacterium tuberculosis strains with the pstSI and pstS2 genes
genetically inactivated, we showed that these pstS genes encode high-affinity phosphate binding proteins. In a
mouse infection model, both mutants were attenuated in virulence, suggesting that M. tuberculosis encounters
limiting phosphate concentrations during its intracellular life span.

As inorganic phosphate is an essential but often limiting
nutrient in the environment, its import in bacteria is important
and can be accomplished through the phosphate-specific trans-
porter (Pst) (7, 8, 19, 25, 28, 31). Pst is a membrane-associated
complex that belongs to the superfamily of ABC transporters
(1, 6, 15). In Escherichia coli (12, 30) and other procaryotes
(26), it is composed of four distinct subunits encoded by the
pstS, pstA, pstC, and pstB genes arranged in an operon. PstS is
the periplasmic phosphate binding protein, PstA and PstC are
integral inner membrane proteins, and the PstB subunit pro-
vides energy for transport through ATP hydrolysis. Interest-
ingly, in Mycobacterium tuberculosis, three putative pst operons
have been identified (7, 8, 10), which probably constitutes a
subtle biochemical adaptation of this microorganism for its
growth and survival under different phosphate-limiting condi-
tions during its infectious cycle (19). It has been shown that
PstS1 from M. tuberculosis is able to bind phosphate with an
affinity similar to that of PstS from E. coli (9, 29) and that the
production of the different PstS proteins is induced under
phosphate starvation in M. tuberculosis (3, 19).

To further investigate the importance of the pstSI and pstS2
genes for the phosphate uptake and virulence of M. tubercu-
losis, we created M. tuberculosis pstS1 and pstS2 knockout
strains using genes isolated from an M. tuberculosis H37Rv
cosmid library. A kanamycin resistance cassette (the aph gene
from pYUBS53) (18) was cloned into pstS1 and pstS2, yielding
pstS1::aph and pstS2::aph, respectively. These genes and the
xylE gene (from pXYL4 carrying the xylE colored marker gene
from Pseudomonas putida) were cloned into pPR27; trans-
formed into M. tuberculosis H37Rv, where the knockout mu-
tants were selected by a two-step counterselection strategy
(24); and further analyzed by Southern hybridization (Fig. 1A)
and immunoblot analysis (Fig. 1B). Anti-PstS1-reactive mate-
rial was lacking in the pstS1 knockout mutant but present in the
parental strain and in the pstS2 knockout mutant. Conversely,
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anti-PstS2-reactive material was lacking in the pstS2 knockout
mutant but present in the other strains. In this pstS2 knockout
mutant, we observed that the expression of the pknD (mbk)
gene (22, 23), located downstream of the pstS2 gene, is also
abolished (data not shown). The PstS3 subunit is present in all
strains (Fig. 1B). The different strains exhibited similar appar-
ent growth rates in Middlebrook 7H9 albumin-dextrose-cata-
lase (ADC) liquid medium in a 14-day experiment, suggesting
that the two PstS proteins are not essential for growth in this
phosphate-rich medium (25 mM P;).

To assess the involvement of PstS1 and PstS2 in phosphate
uptake, the different strains were grown in Middlebrook 7H9
ADC medium to an optical density at 600 nm of 0.3. The cells
were then washed in 7TH9 ADC medium without phosphate (4)
and further cultivated in this medium for 24 h at 37°C to induce
maximal phosphate uptake by the high-affinity Pst system (11).
The bacteria were then washed twice in the uptake buffer [S0
mM Tris-HCI (pH 6.9), 15 mM KCI, 10 mM (NH,),SO,, and
1 mM MgSO,] and incubated in the uptake buffer supple-
mented with 0.5, 2, 5, 10, or 25 pM P; and **P; (25 nM; 10
w.Ci/ml). The rate of uptake of orthophosphate was measured
as described previously (8). At 0.5 pM P;, the rates of phos-
phate uptake by the pstS1 and pstS2 knockout mutants were
reduced compared to that of the wild-type (Fig. 2A). The
reduced phosphate uptake by the pstS2 knockout strain is due
to the absence of the PstS2 protein and not to the absence of
the PknD protein kinase, since the rate of phosphate uptake by
a pknD knockout mutant is not reduced compared to that of
the parental strain (results not shown). These results indicate
that PstS1 and PstS2 are involved in phosphate uptake from
this medium. Increasing the phosphate concentration resulted
in less pronounced differences in phosphate uptake between
the parental and mutant strains (Fig. 2B, C, and D). At 25 uM
P,, no difference in phosphate uptake was observed among the
three strains (Fig. 2E), suggesting that PstS1 and PstS2 can
substitute for each other and/or that phosphate uptake may be
mediated by PstS3 or the putative Pit transporter (14, 27, 32).

PstS1 and PstS2 may contribute to the intracellular survival
of M. tuberculosis, since both PstS1 and PstS2 appear to be
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FIG. 1. (A) Southern blot analysis of the M. tuberculosis (M. tub.) H37Rv pstS1 and pstS2 knockout (k/o) mutants. Genomic DNA was digested
with EcoRI, subjected to electrophoresis, blotted onto membranes, and probed with the pstS7 (an Nael-Sall fragment of the pstSigene) (a) or the
pstS2 (a SacI-Pstl fragment of the pstS2 gene) (b) probe. The probes were labeled with [a-*?P]dCTP using the Megaprime random-primed labeling
kit (Amersham). The hybridization and washing protocols were carried out under high-stringency conditions as described previously (5). The sizes
of the hybridizing bands, indicated on the left, were determined from the migration distance of the DNA molecular marker Smartladder
(Eurogentec). The arrows depict the lengths and transcriptional orientations of the pstS1 and pstS2 genes. The black boxes represent the aph gene,
and the hatched boxes show the pstS1 and pstS2 gene flanking regions used for allelic exchange. Only the relevant restriction sites are indicated.
wt, wild type. (B) Immunoblot analysis of the lysates of the pstS7 and pstS2 knockout mutants and the wild-type M. tuberculosis strain. Total cell
extracts of the wild-type and the pstS1 (S17) and pstS2 (S27) knockout mutant strains were probed with anti-PstS1 (HBT12) (2, 8) (blot 1),
anti-PstS2 (2A1-2) (17, 19) (blot 2), and anti-PstS3 (2F-8) (7, 17) (blot 3), and goat alkaline phosphatase-conjugated anti-mouse immunoglobulin
G (Sigma). Bound antibodies were detected using BCIP (5-bromo-4-chloro-3-indolylphosphate)—nitroblue tetrazolium visualization solution
(Promega). The electrophoretic mobilities of the rainbow-colored protein molecular mass markers (Amersham Pharmacia Biotech) as observed
on the blots are indicated on the left.

involved in phosphate uptake from media with low phosphate rophages were infected with the three M. fuberculosis strains,
concentrations. This concentration is similar to what has been and we observed that both pstS knockout mutant strains
found within macrophages infected with Salmonella enterica showed significantly reduced multiplication within the macro-

serovar Typhimurium (20). Therefore, mouse peritoneal mac- phages compared to the parental strain (results not shown).
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FIG. 2. Phosphate uptake rates of the pstSI and pstS2 knockout (k/o) mutant and the wild-type M. tuberculosis (M. tub. wt.) strains. The uptake
rate of orthophosphate (10 mCi/mmol; Amersham-Pharmacia) (expressed in nanomoles of P; per milligram of mycobacterial protein extract) of
the parental wild type and the pstS1 and pstS2 mutant derivatives of M. tuberculosis H37Rv were measured at 0.5 (A), 2 (B), 5 (C), 10 (D), and

25 (E) uM P,.

To further investigate the roles of the two PstS proteins in
tuberculosis virulence, we used an in vivo infection model.
BALB/c and C57BL/6 mice were infected intravenously with
either the mutant or wild-type strain, and growth in lungs and
spleens was monitored over time (Fig. 3). In both mouse
strains, the pstS1 and pstS2 mutants were attenuated (10- to
30-fold lower CFU numbers). In the spleen (Fig. 3B and D),
this reduction was observed throughout the entire 3 and 5
months in the BALB/c and C57BL/6 mice, respectively. How-
ever, in the lungs (Fig. 3A and C), attenuation was strong for
the first 3 months, but in the C57BL/6 mice, the CFU numbers
of both mutant strains started to increase at later time points.
The observed effect on the multiplication of the pstS2 knock-
out mutant strain is most probably due to the inactivation of

the pstS2 gene and not to the disruption of the pknD gene,
since in mice, a pknD knockout mutant does not seem to be
attenuated compared to the parental strain (preliminary re-
sults).

The reduced multiplication of the two pstS mutants observed
in infected macrophages and mice suggests that PstS1 and
PstS2 are functional in vivo during infection and cannot be
replaced by each other, by PstS3, by the putative Pit trans-
porter, or by any other phosphate transporter. In addition, our
results suggest that during intracellular growth, M. tuberculosis
encounters low phosphate concentrations. M. fuberculosis pref-
erentially resides within macrophages; little is known about the
biochemical environment in the phagosomes harboring M. fu-
berculosis (21), and restrictions in phosphate availability for M.
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FIG. 3. Growth of pstS1 (M. tub S1™) and pstS2 (M. tub S27) knockout mutant and wild-type (M. tub wt.) M. tuberculosis strains in lungs (A
and C) and spleens (B and D) of infected mice. The bacteria were grown as a surface pellicle on synthetic Sauton medium for 14 days at 37°C and
then harvested and homogenized by ball mill as previously described (16). The M. tuberculosis H37Rv wild-type and pstS1 and pstS2 knockout
mutant strains were used to infect BALB/c (A and B) and C57BL/6 (C and D) mice intravenously with 2 X 10° CFU from the different M.
tuberculosis H37Rv strains. At the indicated time points, the spleen and lungs from individual mice were homogenized in phosphate-buffered saline,
and serial threefold dilutions were plated in duplicate onto Middlebrook 7H11 oleic acid-albumin-dextrose-catalase medium and incubated at 37°C
for 3 to 4 weeks. The bacteria were then counted visually, and the numbers of CFU per organ were determined. The results represent the mean
log,, values = standard deviations of at least four mice per group. The mice (3 to 4 months old at the time of infection) were bred in the animal
facilities of the Pasteur Institute of Brussels from breeding pairs obtained from Bantin and Kingman (Grimston, United Kingdom).

tuberculosis have not been shown in vivo. Our results suggest
that low phosphate concentrations in intracellular vacuoles of
phagocytic cells may stimulate bacteria to differentially express
genes so as to survive and replicate within the host.

The M. tuberculosis complex is unusual in having three phos-
phate binding proteins and four membrane-spanning proteins
organized in three operons. There is only one pstB gene en-
coding an ATP-binding subunit from the transporter in these
operons, but another gene, called phoT, located 130 kb from
pstB on the chromosome also encodes ATP-binding protein
from the transporter. In fact, this protein has even higher
homology to PstB in some other prokaryotes (http://genolist
.pasteur.fr/TubercuList) than does PstB of M. tuberculosis. Se-
quencing of the Mycobacterium bovis genome has revealed that
in this member of the M. tuberculosis complex, the pstB gene is
frameshifted (13). It has been shown that PhoT is necessary for
growth at low phosphate concentrations (11) and that PhoT is
a virulence gene, since an M. bovis phoT knockout strain was
significantly less virulent than its parental strain in different
animal models (11). These results, together with our observa-
tion that the phosphate concentration is restricted to the in-
tracellular vacuoles of phagocytic cells, lead to the hypothesis
that the high-affinity phosphate-specific transporters are viru-
lence factors of M. tuberculosis and M. bovis.
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