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Abstract: Generalised Anxiety Disorder (GAD) is a prevalent, chronic mental health disorder. The
measurement of regional brain gamma-aminobutyric acid (GABA) offers insight into its role in anxiety
and is a potential biomarker for treatment response. Research literature suggests Piper methysticum
(Kava) is efficacious as an anxiety treatment, but no study has assessed its effects on central GABA
levels. This study investigated dorsal anterior cingulate (dACC) GABA levels in 37 adult participants
with GAD. GABA was measured using proton magnetic resonance spectroscopy (1H-MRS) at baseline
and following an eight-week administration of Kava (standardised to 120 mg kavalactones twice
daily) (n = 20) or placebo (n = 17). This study was part of the Kava for the Treatment of GAD (KGAD;
ClinicalTrials.gov: NCT02219880), a 16-week intervention study. Compared with the placebo group,
the Kava group had a significant reduction in dACC GABA (p = 0.049) at eight weeks. Baseline anxiety
scores on the HAM-A were positively correlated with GABA levels but were not significantly related
to treatment. Central GABA reductions following Kava treatment may signal an inhibitory effect,
which, if considered efficacious, suggests that GABA levels are modulated by Kava, independent of
reported anxiety symptoms. dACC GABA patterns suggest a functional role of higher levels in clinical
anxiety but warrants further research for symptom benefit. Findings suggest that dACC GABA levels
previously un-examined in GAD could serve as a biomarker for diagnosis and treatment response.

Keywords: anterior cingulate; GABA; generalised anxiety disorder; kava; magnetic resonance spectroscopy

1. Introduction

Generalised Anxiety Disorder (GAD) is a clinically challenging, prevalent, and chronic
affective disorder associated with functional disablement, frequent comorbidities, and high
psychological distress [1,2]. It is characterised by the two leading cognitive symptoms of
persistent worry and anticipatory anxiety [3]. GAD prevalence and severity may be under-
reported, due in part to low diagnostic reliability [4–7]. Current stepped-care treatment for
GAD typically involves antidepressant and benzodiazepine pharmacotherapies as well as
cognitive behavioural therapy (CBT) [8–10]. These approaches, however, provide modest
clinical effect and have limited utility for many patients [11–16]. Moreover, novel drug
development has not progressed for two decades [6,17–21], leading many consumers to
utilise anxiolytic phytomedicines [22,23].
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GAD remains the most understudied of the anxiety disorders [6,24]. One promising
avenue to advance GAD diagnosis and the assessment of treatment efficacy is to investigate
the neuroimaging biomarkers [25–28] that may offer insight into the mechanisms of anxiety;
however, the extent to which brain metabolic processes are instrumental in pathology
remains unclear.

1.1. Gamma-Aminobutyric Acid (GABA) and Quantification in the CNS

GABA (C4H9NO2C4) is a non-standard amino acid that acts as the major inhibitory
neurotransmitter [29,30]. GABA is distributed throughout the brain but is highly con-
centrated in cortical and limbic areas associated with ‘anxiety circuitry’ [31,32]. In these
regions, multi-modal neuroimaging studies demonstrate a trend of emotion task-dependent
stronger negative BOLD signal observed with a higher resting state GABA [33–35].

In pre-clinical rodent models, high anxiety-behaviour mice exhibit higher levels of
amygdala GABA and a greater expression of GABA pathway components GAD65 and
GAD67 than normal anxiety-behaviour mice [36]. Clinical studies place GABA in a central
role in neuropathology across anxiety states and disorders [15,32,34,37–39], whereby ele-
vated GABA is associated with anxiety cognitions in healthy samples in the ventral-medial
prefrontal cortex (vmPFC) [40] and the medial pre-frontal cortex in post-traumatic stress
disorder (PTSD) [41]. However, in PTSD, GABA levels are reduced compared to controls in
the lateral temporal lobe, ACC, insula, and parieto-occipital cortices, but no differences are
observed in the dACC region [42,43]. In panic disorder, GABA is reduced in the occipital
and ACC regions and the basal ganglia [44,45], but it is not different in the pre-frontal
cortex [46]. Social Anxiety Disorder (SAD) research suggests reduced thalamic GABA
levels but no other regional differences compared with controls [47]. Taken together, the
evidence suggests that GABA varies by region and disorder, but no research has yet directly
assessed regional levels in GAD adults compared with healthy controls. In GAD interven-
tion research, other metabolites such as n-acetyl aspartate following riluzole or paroxetine
administration [48–50] have been investigated, but no study has thus far assessed GABA
levels as a product of anxiolytic treatment.

1.2. The Dorsal Anterior Cingulate Cortex (dACC) as a Region of Interest

The ACC has a central role in the organisation of affective and cognitive informa-
tion that underpin anxiety states via its connectivity to prefrontal-cortical, lower lim-
bic, and hippocampal regions [51–55]. Sub-regions of the ACC are implicated in GAD
symptomatology—notably, anticipatory anxiety and negative bias cognitions [56–59]. Struc-
tural and functional studies support a rostral/affective and a dorsal/cognitive division of
ACC sub-regions, with a heterogeneous and integrative role of the latter in the cognitive
components of emotional processing [51,53,60–62].

This dorsal region comprises a fear network along with the ventromedial prefrontal
cortex and amygdala [63,64], with GABA levels in this region contributing to the mainte-
nance of anxiety cognition–emotion fear responses and reducing fear extinction [61,62],
suggesting that the cognitive control of worry thoughts is a hallmark of GAD. Yet, despite
the evidence that ACC sub-regions are a significant predictor in intervention studies—at
least in structural and functional studies [26,64]—it has received little focus in terms of
metabolic data quantification to establish patterns in GAD symptomology, and for these
reasons, the dACC is of particular interest in this investigation.

1.3. Kava for the Treatment of GAD Symptoms

The phytomedicine Piper methysticum (Kava) holds a compelling evidence base for
the alleviation of anxiety symptoms [65–68], and it is a popular consumer treatment with
over 1.2 million Kava extract tablets prescribed or purchased annually in Australia [69].
The water extraction method is the only allowable process in Australia, and tableted Kava
products are typically standardised to 30% kavalactones, constituting quantities of 80 to
250 mg.
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The Kava plant is a perennial shrub of the pepper family Piperaceae, and it is na-
tive to the South Pacific, where the rootstock lipid resin has been used for millennia in
traditional medicine for its anxiolytic, nootropic, neuroprotective, nociceptive, and anti-
dysphoria effects [70–73]. The chief bioactive constituents are kavalactones, six of which
comprise the majority of Kava’s pharmacodynamic effects: dihydrokavain/dihydrokawain,
kavain/kawain, dihydromethysticin, methysticin, yangonin, and demethoxyyangonin, in
order of typical proportion [74–77].

The proposed mechanism of the GABAergic effect occurs through the positive mod-
ulation of multiple benzodiazepine binding sites, including GABA-A and GABA-B from
kavain, yangonin, dehydromethysticin, and desmethoxyyangonin, through both enhanced
ligand displacement and binding [75,78–80]. Pre-clinical studies also suggest mechanisms
occurring within the GABA metabolic shunt, such as the modulation of the calcium ion
channel blockade of the monoamine oxidase-B receptor substrate, thereby inhibiting gluta-
mate and promoting GABA synthesis [70,81–83].

Previous Kava investigations in anxiety report significant improvements on anxiety
scales, such as the HAM-A [22,84,85]. However, only one study has investigated the mod-
ulation of brain markers. In an electroencephalography (EEG) resting state study [86],
acute doses of kavain (200, 400, 600 mg), placebo, and 30 mg of clobazam were adminis-
tered to a healthy sample (n = 15). Significant dose-dependent increases were observed
in frontal lobe delta, theta, and alpha 1 activity in the frontal lobe and, together with
improvements to mood and wellbeing measures, were reported in the kavain group. The
psychotropic effects and topographic pattern differed from the benzodiazepine, partic-
ularly with 200 mg, where benefits to mood measures were reported, but sedation was
reported at higher doses. The data are consistent with pre-clinical models on kavain as a
positive allosteric modulator of the GABA-A receptor outside the typical benzodiazepine
site binding [75]. Data from this study contribute to the evidence of unique GABAergic
action with kavalactones, supported by pre-clinical tissue studies. This single study also
highlights the need to examine Kava effects via other neuroimaging modalities to better
understand its neurobiological mechanisms.

To this end, this study aimed to investigate changes to GABA levels in the dorsal
ACC in a GAD sample following the daily ingestion of Kava extract for eight weeks in
comparison with a placebo group. This study also aimed to assess the relationship between
GABA levels and changes to reported anxiety symptoms as a product of Kava consumption
over the same period. It was expected that dACC GABA levels would decrease after Kava
treatment and a reduction to anxiety symptoms would also be observed in comparison
with the placebo group.

2. Methods and Materials
2.1. Design

This neuroimaging sub-study was conducted as part of the Kava for the Treatment
of Generalised Anxiety Disorder clinical trial (KGAD) [87], a double-blinded, placebo-
controlled investigation of 16-week’s administration of Kava in individuals with GAD.
The sub-study’s eight-week duration was selected based on kava pharmacodynamics in
both pre-clinical and clinical efficacy studies. The KGAD trial was registered via Clin-
icalTrials.gov (NCT02219880), with approval from the University of Melbourne/Alfred
Hospital, the University of Queensland, and Swinburne University’s Human Research
Ethics Committee. The clinical trial was conducted in accordance with the Declaration
of Helsinki.

2.2. Participants

Participants involved in the neuroimaging component of the study were adults aged
18–65 years with Generalized Anxiety Disorder; n = 37 (male n = 18). Screening and
eligibility criteria can be found in both the protocol and main outcome papers for the
KGAD study [87,88] and are summarised in Appendix A. All enrolled participants received
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a bursary of $200 to cover expenses. Written and informed consent was collected from all
participants before comprehensive screening for eligibility.

2.3. Sample Size

With an a priori population sample size of N = 40 (n = 20 per group), a 95% confidence
interval, a 5% margin of error (for a standard alpha of 0.05), and a small-to-medium effect
size (confidence interval reporting was the chosen parameter), a minimum total sample
size of n = 37 was determined using the G.Power calculation program [89].

2.4. Measures
2.4.1. Screening and Eligibility

The Mini-International Neuropsychiatric Interview (MINI 6.0) [90] was used to con-
firm the presence of current GAD according to the Diagnostic and Statistical Manual of
Mental Disorders (5th ed.; DSM-5) [91], as well as identify secondary anxiety disorders
and major depressive disorder (MDD) and the exclusion of other disorders. To ensure
current GAD, moderate levels of anxiety (minimum 18 score) were required for enrol-
ment to the study, assessed via the Hamilton Anxiety Rating Scale (HAM-A) [92]. The
Montgomery–Asberg Depression Rating Scale (MADRS) [93] was utilised at both time
points in the GAD group to ensure that symptoms of depression were not primary upon
enrolment nor emergent following treatment (maximum score 18). The Structured Inter-
view Guide for the MADRS was administered using a standardised line of questioning to
ensure reliability and consistency (SIGMA) [94].

2.4.2. Assessment of Comorbidity in GAD

Comorbidity (anxiety disorder or major depression) is not typically accounted for
in neuroimaging studies with GAD samples. The prevalence of comorbidity in GAD is
higher compared with other affective disorders, amplifying impairment [95,96]. Allowable
secondary conditions were SAD, panic disorder with/without agoraphobia, and phobic
disorder. MDD history was allowable if no episodes had occurred in the previous three
years. This approach considers the likelihood of overlap in diagnoses in GAD where
symptoms might be best explained by comorbidities such as MDD. Additional comorbid
conditions may imply an increased severity of symptoms where higher anxiety measure
scores may be observed. For this reason, a comorbid presence was either defined as a
separate GAD group or used as a covariate in regression models.

2.4.3. Assessment of Anxiety

The HAM-A is a 14-item 5-point Likert scale to quantify the severity of anxiety symp-
tomatology. The Structured Interview version (SIGH-A) was used in this study to ensure a
standardised questioning format in the assessment of anxiety levels at baseline and eight-
week time points. The reliability and validity of the SIGH-A was assessed to be moderate
to high [97].

2.5. H-MRS Protocol

A 3T Siemens TIM Trio magnetic resonance imaging system (Erlangen, Germany) with
a 32-channel head coil housed at Swinburne Neuroimaging Centre (Hawthorn, Australia)
was used for collecting 1H-MRS and T1-weighted structural imaging data. T1-weighted
images were acquired for the localisation of the MRS voxel at dorsal anterior cingulate cortex
(high-resolution 1 mm3, 176 slices, voxel resolution = 1.0 × 1.0 × 7.0 mm3, TR = 1900 ms,
TE = 2.52 ms, flip angle = 9◦, field of view 256 × 256 mm, orientation sagittal, acquisition
time = ~3 min).

GABA quantification was conducted using Mescher–Garwood algorithm (MEGA) [98]
in a Point RESolved Spectroscopy sequence (MEGA-PRESS), which is sensitive to GABA
by editing the J-coupling between GABA-3 (peak at 3.01 ppm) and GABA-4 (peak at
1.89 ppm). The details of the sequences are as follows: TE = 68, TR = 2000, suppression
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freq. = 1.95 ppm, Ave = 64, ~5 min, editing pulse at 1.95 ppm (edit-on) interleaved with
scans with a pulse at 7.5 ppm (edit-off). The water signal (unsuppressed signal) was
acquired at the identical location with 16 averages for two minutes’ duration. Shimming
was automatic and manual until the linewidth was less than 20 Hz for the 80/68 TE PRESS
and MEGA-PRESS sequences.

2.5.1. Voxel Placement and Check

The MRS voxel was 25 × 25 × 15 mm and covered the dACC. An in-house MATLAB
(R2013b) script was applied to build a voxel image based on the location information on
the head of MRS data. This voxel image indicates the location of the MRS voxel, when
overlapping on the corresponding structural image at the same scan session. To check
whether the location of the MRS voxel covered the target region, i.e., dACC at coordinates
[0, 34, 26] in MNI (standard) space, individual structural images were co-registered to a
MNI template, and the same transform matrix was applied on the corresponding voxel
images. Finally, tissue segmentation was conducted at individual space to segment grey
matter (GM), white matter (WM), and CSF. The volumetric proportion (percentage) of each
tissue type within the MRS voxel was further calculated for partial volume correction and
quality check (refer to Figure 1). All individual voxel images were summarised and plotted
on top of an MNI template using MRIcron [99], visible in Figure 2, where the dACC was
well covered.
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2.5.2. GABA Analysis

The difference spectrum (edit-on versus edit-off) was used to quantify the concen-
tration of metabolites, including GABA. Fit checks were performed during preprocessing
using GANNET, which utilises a peak fitting/integration method and applies a stricter
model in its Fit Error quality control, aiding the removal of spurious cases [100]. Following
vetting of the data against quality check parameters (SNR > 5, SD < 20%, FWHM < 0.15), the
voxel location was also visually inspected by overlapping the reconstructed voxel image
and the T1-weighted MR image using in-house script and the MRIcron program. The
LCModel toolbox (version 6.1) [101,102] is a widely used program for 1H-MRS analyses,
and a standard GABA basis set, matching the imaging protocol, was used for model fittings.

Partial volume correction (e.g., voxel segmentation) is a crucial component of the imag-
ing pipeline when assessing voxel metabolite levels to prevent the inflation of quantification
data that come from variances in grey and white matter [103–106]. As the concentration of
GABA in grey matter is substantially higher than in white matter, further partial volume
effects were corrected approximately by considering the grey matter volume ratio of the
voxel of interest [107]. Briefly, tissue segmentation was conducted at a whole brain level by
SPM12; then, the reconstructed MRS voxel (detailed in Section 2.5.1) were overlapped on
tissue maps to determine the volume of grey matter, white matter, and CSF. The corrected
GABA concentration was converted using the equation below, where GMV, WMV, and CSF
represents the volume of grey matter, white matter, and CSF.

GABAcorrected = GABALCModel ÷
GMV

GMV + WMV + CSFV
× 100%

2.6. Treatment Handling

Procedures relating to treatment randomisation, the handling of treatment-related
adverse events, and liver function assessment, as well as treatment compliance, are detailed
in the KGAD study protocol and main outcome papers.

2.7. Statistical Analyses

Data were analysed using the IBM Statistical Package for Social Sciences software (SPSS;
v.22, Armonk, NY, USA). All relevant demographic data were assessed at baseline treatment
group differences via simple significance testing (t-tests and non-parametric tests were used
when parametric criteria were not met), following quality checks for outliers and missing or
incorrect data. Volumetric data, GABA QC variables, and GABA concentration results were
reported separately by means and SDs for the variable of interest. It is feasible that age and
sex-related differences would be observable in the samples tested in this study, potentially
affecting results if not accounted for. For this reason, age and sex were employed in all
group-based analyses to best delineate treatment group-based differences in function and
GABA. An initial correlation test was performed to assess the relationship between GABA
concentration levels and anxiety baseline data with covariates of sex, age, and comorbidity.

Intervention analyses were performed using a custom main effects format for GABA
outcomes, with the main outcome reported from the interaction of treatment x time on GABA
concentration and a linear mixed model format for treatment x time x GABA significance
on anxiety symptoms change. Confidence intervals were reported to establish parameter
estimates, with a proportion of variance (reported in the text as a percent) for significant
predictors. Statistical findings were considered significant if the probability value p ≤ 0.05.

3. Procedure

Participants attended a screening session at the study site (Swinburne University of
Technology, Melbourne) to assess study eligibility, followed by a baseline session, a supply
of study treatment (240 mg daily tablets of kava or placebo), and a follow-up at eight weeks.
Sociodemographic information included age in years, sex (male/female), BMI, medical
conditions, alcohol consumption per week, allowable medication use (prophylactics), and
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eligible vitamins and supplements as determined by the protocol for the KGAD study [87].
Blood samples were collected at screening and follow up to assess liver function following
overnight fasting, without alcohol or caffeine in the previous 24 h period. A standardised
breakfast was provided followed by demographic data collection and psychiatric assess-
ments. The scan was conducted in the same building one hour following arrival for the
testing sessions. Processes, including the time of visit and scheduled scan, were replicated
at the second time point (eight weeks).

4. Results
4.1. Description of the Study Population

The CONSORT diagram in Figure 3 illustrates the study processes as well as participant
numbers at screening, allocation, follow-up, and analysis. Demographic statistics overall
and per treatment groups, including HAM-A scores and GABA data, are reported in
Table 1. Treatment groups at baseline showed no significant differences in demographic
data including age, sex, years of education, medication use, and caffeine or alcohol use.
Baseline HAM-A scores for anxiety and the MADRS for depression symptoms were not
significantly different between treatment groups (p = 0.714; p = 0.456, respectively).
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Table 1. Demographics and GABA data for treatment groups and time points.

Demographics
Mean (S.D.), n or %

where relevant

Baseline
Whole Group

Baseline
Placebo Baseline Kava Tmt

p-Value *
Week 8

Whole Group
Week 8
Placebo

Week 8
Kava

Participants (n) 37 17 (9 male) 20 (11 male) 0.653 20 9 11

Age 36.16 (13.09) 36.06 (11.31) 36.25 (14.73) 0.965 - - -

Education (years) 17.65 (3.91) 18.59 (4.70) 16.85 (2.98) 0.181 - - -

Psychiatric

Comorbid condition 21 12 9 0.110 - - -

Comorbid: SAD 11 6 5 0.395 - - -

Comorbid: PD 9 7 2 0.034 * - - -

Comorbid: AGO 17 9 8 0.324 - - -

Comorbid: PTSD 1 1 0 0.460 - - -

Comorbid: MDD 20 9 11 0.581 - - -

HAM-A a 23.05 (3.60) 23.29 (4.19) 22.85 (3.10) 0.714 15.55 (5.69) 14.00 (6.20) 16.82 (5.17)

MADRS b 13.59 (2.99) 14.00 (2.91) 13.25 (3.09) 0.456 10.38 (5.30) 10.67 (4.82) 10.17 (5.84)

Medical

Medications 15 7 6 0.357 - - -

Supplements 9 2 7 0.103 - - -

Substance

Caffeine (mg/daily) 135.54 (127.64) 156.47 (132.96) 117.75 (123.51) 0.365 100.55 (83.71) 107.27 (68.93) 94.50 (98.52)

Alcohol (SD/weekly) 2.86 (3.08) 1.88 (2.02) 3.70 (3.60) 0.073 4.10 (3.65) 1.67 (1.50) 6.09 (3.73)

Volumetric

dACC GM (%, mm3) 60.29 (13.20) 59.41 (12.22) 61.05 (14.25) 0.712 58.35 (12.33) 53.11 (15.89) 62.64 (6.45)

dACC WM (%, mm3) 23.48 (11.46) 24.58 (11.86) 22.55 (11.34) 0.597 23.40 (10.78) 27.67 (13.90) 19.91 (6.02)

dACC CSF (%, mm3) 15.57 (5.04) 14.53 (3.93) 16.47 (5.77) 0.249 18.01 (6.18) 19.44 (4.56) 16.84 (7.26)

GABA toolkit

LCModel
GABA/GM 3.67 (0.88) 3.66 (1.01) 3.69 (0.77) 0.932 3.59 (0.74) 4.07 (0.75) 3.23 (0.53)

LCModel SD (%) 9.39 (2.30) 9.47 (1.58) 9.31 (2.83) 0.843 9.50 (2.68) 8.89 (0.78) 10.00 (3.55)

LCModel SNR 9.00 (2.58) 9.70 (2.26) 8.37 (2.75) 0.123 9.05 (2.42) 9.44 (2.13) 8.73 (2.69)

LCModel FWHM 0.08 (0.04) 0.06 (0.02) 0.09 (0.05) 0.025 * 0.07 (0.03) 0.06 (0.02) 0.08 (0.04)

* Significance values derived from independent sample t-tests or Chi Square tests where appropriate and
significant, where p < 0.05; a Hamilton Anxiety Rating Scale; b Montgomery–Asberg Scale of Depression;
AGO—Agoraphobia; MDD—Major depressive disorder; PD—panic disorder; PTSD—Post-traumatic stress disor-
der; SAD—social anxiety disorder; SD—standard drink/10 g of alcohol; CSF—cerebrospinal fluid; df—degrees
of freedom; dACC—dorsal anterior cingulate cortex; GM—grey matter; Fit Err—Fit error %; FWHM—full
width at half-maximum; GABA—gamma amino-butyric acid; ROI—Region of interest, SNR—signal–noise ratio;
SD—standard deviation; Tmt—treatment (group difference); WM—White Matter.

4.2. Adverse Events

Adverse events reported during the study enrolment were not significantly different
between participants in the kava and placebo groups (p = 0.508). The active treatment
P. methysticum extract was well tolerated, with one participant reporting an adverse event
of dizziness and a headache of mild severity with a probable association to kava. There
were no serious adverse events reported in this study.

4.3. Withdrawals

The attrition of the sample size following the baseline visit was 46% (n = 17) and was
not significantly different between the two groups (p = 0.482) for the following reasons and
frequencies: non-compliance with study protocol (n = 6), lost to follow-up (n = 3), personal
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reasons/unspecified (n = 5), psychiatric status change (depression symptoms worsening,
n = 2), medication status change (antidepressant course, n = 2), and pregnancy (n = 1).

4.4. Structural Data and Metabolite Quantification

The volumetric analysis showed no significant treatment group differences. The only
quality parameter to display significant group differences was FWHM, t(37)2.29, p = 0.025,
which was higher in the kava group (m 0.09, SD 0.05) than placebo (m 0.06, 0.02), meaning
a better quality signal for the placebo group.

4.4.1. GABA Concentration Levels and HAMA at Baseline

The t-test for the treatment group difference on anxiety levels via the HAMA at baseline
was not significant (p = 0.932). Partial correlation revealed a significant moderate positive
relationship between HAMA scores and GABA concentration level, r(24) = 0.40, p = 0.05.

4.4.2. GABA Concentration Level Changes as a Function of the Eight-Week Kava Treatment

The partial volume-corrected GABA concentration in the grey matter model showed a
significant treatment by time interaction, F(1, 21) = 4.36, p = 0.049. The model is shown in
Table 2. Pairwise comparisons at the second time point indicated that the kava group was
1.06 units lower than the placebo group, and this was statistically significant (p = 0.008),
95% CI [−1.83, −0.28]. Refer to Figure 4.

Table 2. Corrected GABA concentration changes, baseline to eight weeks.

GABA Model B/Estimate 95% CI t df p-Value

Corrected GABA concentration

Time 0.48 −0.09, 1.06 1.74 21 0.097 a

Treatment 1.06 0.28, 1.83 2.75 46 0 0.008 *
Sex −0.28 −0.78, 0.23 −1.14 21 0 0.268
Age 0.01 0.00, 0.03 1.58 19 0.129

Comorbid 0.13 −0.39, 0.65 0.53 24 0.603
Baseline alcohol 0.05 −0.04, 0.03 1.58 21 0.129
Time*Treatment −0.87 −1.74, 0.00 −2.09 21 0 0.049 *

* Significant at p < 0.05; a Marginally significant at p = 0.05–0.10; B/coefficient unit decimal places are variable due
to LCModel level ranges; df—degrees of freedom.
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5. Discussion

The purpose of the study was to investigate GABA concentration in the dorsal ACC
in adults with diagnosed GAD and to assess whether these levels were modified by Kava.
A significant difference in GABA concentration was observed in the Kava group at eight
weeks compared with the placebo group, showing a reduction in GABA concentration
levels in the ROI.

The study operated as a ‘proof of concept’ investigation, both in establishing the
measurement of GABA in GAD and in evidencing neural mechanisms amenable to Kava.
It addressed these aims through assessing GAD symptoms and biological outcomes before
examining the role of Kava on both GABA levels and anxiety symptoms.

This study found that baseline anxiety levels were positively associated with GABA
levels in the dACC but that a daily dose of 240 mg P. methysticum extract for eight weeks
was not successful in reducing anxiety symptomatology at the eight-week time point. The
overarching clinical trial for which this study was conducted similarly found no anxiety
improvements in the Kava group over the 16-week treatment period [88]. These findings
contribute evidence for a lack of efficacy of the particular Kava extract in GAD, which is in
contrast to earlier studies, reviews, and meta-analyses suggesting otherwise [22,108,109]. A
caveat may be the small–moderate effect sizes in intervention efficacy studies [10], where
many findings were also equivocal, supporting the observation in the literature that GAD
is a clinically challenging disorder to treat.

Despite these findings, results suggest that Kava modifies brain GABA levels, as
GABA level reductions were observed in the Kava group in the dACC region compared
with the placebo group. This reduction could represent a ‘normalisation’ in GABA levels,
which is reflected in the handful of studies in the area that show that raised GABA is linked
to anxiety levels in healthy samples, as well as elevations in PTSD compared with healthy
controls [41,42]. Overall, the evidence is not sufficient to conclude trends in the dorsal ACC
or within GAD groups.

Given the bioactive constituent profile of the extract used in this study and the GABAer-
gic mechanisms exerted by kavain, dihydrokavain, and methysticin in particular, it is feasi-
ble that the observed effects have occurred via enhancement to particular GABA-A receptor
subtypes in the ROI through direct ligand-binding enhancement or indirectly via reductions
to thromboxane A (2), which antagonises GABA-A receptor functions. It is also likely that
modulations have occurred elsewhere in the shunt, such as the excitatory glutaminergic
corollary through calcium ion channel blockades via the MAO-B receptor substrate, and
there is increasing evidence of glutaminergic modulation in preclinical research [110]. The
precise mechanisms, and the relationship to GABA levels, are yet to be understood through
pre-clinical studies, but modulation within the shunt could improve the physiology of the
GABA substrate, shown through reduction to GABA levels in the ROI.

5.1. Limitations in This Current Study

Importantly, a sample size attrition of 46% from baseline to the second time point
(n = 8 kava; n = 9 placebo), resulting in the reduced power of this study overall and
the reduced accuracy of predictor effects, will impact the interpretation of the results. A
borderline p-value for the interaction terms in the model may reflect this attrition. The
reporting of confidence intervals, illustrating appropriate variance ranges, may have added
some support to a significant result. Although the use of linear mixed modelling is partly
protective against such impacts, the results need to be considered in this context.

Secondly, GABA concentration levels in the brain derived from spectral data requires
high amounts of data modelling to expose GABA peaks, and there is debate on the optimal
methods for sequencing, spectral analysis, quality parameters, or data modelling of ‘con-
taminants’ such as macromolecules. All magnify the risk of measurement errors, among
other methodological issues [111–113]. However, an advantage was the MEGA-PRESS
protocol, which is able to derive metabolite data separate from macromolecules, and the use
of GANNET in the processing pipeline. Furthermore, LCModel’s toolbox-specific quality
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parameters could identify technical factors affecting the analysis of GABA levels. Despite
removing scans of spurious quality, group differences were still observed for these variables
in this current study. FWHM, as a measure of linewidth in the spectrum quantifying the
signal decay rate in the time-domain as a result of shimming, was significantly different
between the treatment groups. It is possible that the methods applied within the toolbox
have influenced the observed GABA concentration, thereby requiring caution in interpret-
ing the results and subsequent conclusions. However, the baseline GABA concentration
was not related to FWHM, so the different quality parameters had limited impact on the
reported findings.

Thirdly, scan novelty may also be an influencing factor in participants with clinical
anxiety. This current study did not collect data as to whether participants were familiar with
MRI scan environments. A ‘sham’ scan session for each participant might have reduced
this confound.

For these reasons, this study’s novel findings should be considered pilot data at best,
offering a novel insight into the pattern of GABA levels in a GAD as a product of Kava, as
well as an example of greatly needed biomarker research for the benefit of clinical anxiety.

5.2. Future Research Directions

The findings in this study between Kava treatment, anxiety symptoms, and GABA
levels warrant further examination. Given the role the dACC may play in hallmark anxiety
cognition symptoms in GAD, as well as evidence of kava efficacy in the literature, it
would be of value to examine whether kava-based modulations were observed on selected
HAM-A items (such as cognitive over somatic symptoms), which might clarify the pattern
observed in the ROI. Similarly, a division of higher anxiety and low anxiety may reveal
different Kava responses. Secondly, beyond the modulation of GABA by Kava, given the
likely mechanisms in the GABA metabolic shunt of Kava in preclinical studies on NMDA
receptors, an examination of glutamate levels may also reveal Kava mechanisms beyond
GABA, supporting recent preclinical research and offering potential avenues for future
therapeutic approaches.

This current study was valuable for understanding the mechanisms of Kava in GAD,
and future research should extend Kava dosing in other anxiety cohorts and healthy
controls and assess patterns of GABA levels in comparison with GAD. This could include
major depressive disorder or state-based anxiety disorders, such as phobias and panic
disorder, to delineate differences in ROI GABA levels and determine the relationship to
anxiety symptoms.

There remains a shortfall in brain biomarker research in anxiety disorders, especially
GAD. Emerging approaches now exist to guide the identified need, such as the Research
Domain Criteria (RDoC) framework [114,115], which was founded on the premise that it is
insufficient to assess symptoms alone to treat (or diagnose) GAD, yet there is insufficient
data serving as biomarker evidence. This current study serves to address this shortfall.
Biomarker treatment approaches assert that biological patterns may not fit with current di-
agnostic categories, signalling a vital need for research that clarifies neurobiological marker
roles in symptom maintenance and response patterns with treatment [115–118]. These
markers also have potential to identify disorders before the onset of anxiety symptoms
and to identify variants or clinically meaningful subsets [18,119,120]. What is measured
as biomarkers in neuroimaging is arguably closer to the exact substrates that underpin
disorders, and we are therefore able to more precisely gauge the relationship between
biomarkers and clinical endpoints for the individual [18,25,115,121].

This current study showed that GABA metabolic data were successful in producing
differences that could be utilised as GAD biomarkers, with some considerations. The assess-
ment of the neurobiological effects of Kava is novel in GAD samples and shows how our
methodology could be applied to other anxiolytic phytomedicines. Data from MRS GABA
can contribute to an integrative efficacy model of imaging modalities and psychological
measures for future efficacy studies of biological substrates. More work is needed in the



Nutrients 2023, 15, 4586 12 of 18

establishing of biomarkers for clinical benefit, but there is a strong translational rationale
for the investigation of novel anxiolytics like Kava as GAD treatment, as demonstrated in
this current study.

6. Conclusions

In order to elucidate the role of GABA or its metabolic components either as a predis-
posing, preventative, or therapeutic utility, it is important to quantify GABAergic processes.
This research represents the first study to assess brain GABA concentration levels in adults
with GAD, as well as the first to assess modulations following a treatment intervention
using Kava. This study demonstrated that GABA levels are modulated via Kava treat-
ment, and regional brain GABA concentration levels could be linked to anxiety symptoms
in GAD. The findings also indicate that GABA levels can change without concomitant
changes in anxiety symptoms, suggesting that symptom profiles in GAD is complex and
multi-factorial. Further studies quantifying brain anxiety markers over time, controlling
for other associated variables, and the use of a benzodiazepine comparator could clarify
the role of GABA as a marker of anxiety in brain regions associated with cognitive anxiety
symptoms. It is also vital for future studies to determine levels of GABA in brain regions
using wider healthy cohorts.
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Appendix A
Enrolment Criteria
Generalised Anxiety Disorder Group
Inclusion Criteria
• Meets the DSM-5 diagnostic criteria for generalised anxiety disorder based on structured interview

MINI 6.0.
Note that while the MINI 6.0 uses the DSM-IV criteria, the same criteria are used in the DSM-5.
• Presentation with anxiety (HAM-A ≥ 18) at the time of study entry
• Presentation of mild depressive symptoms (MADRS ≤ 18) at the time of study entry
Exclusion Criteria
• Primary diagnosis other than GAD
• Presentation of moderate to severe depressive symptoms (MADRS ≥ 18) at the time of study entry
• Presentation of suicidal ideation (≥ 3 on MADRS suicidal thoughts domain) at the time of study entry
• Current diagnosis of a psychotic disorder (bipolar disorder I, schizophrenia) on structured interview

(MINI 6.0)
• Current or past diagnosis of obsessive compulsive disorder or bipolar I or II disorders
• Current substance/alcohol use disorder on structured interview (MINI 6.0)
• Currently taking an antidepressant, mood stabiliser, antipsychotic, anticonvulsant, warfarin, or thyroxin,

or regularly using a benzodiazepine or opioid-based analgesic (more than 2 days per week)
• Current use of St John’s wort
• Three or more failed trials of pharmacotherapy for the current GAD episode
• Recently commenced psychotherapy (within four weeks of study entry)
• Known or suspected clinically unstable systemic medical disorder
• Pregnant or breastfeeding or trying to conceive
• Not using a medically approved form of contraception (including abstinence) if female and of

childbearing age
• Unable to participate in all scheduled visits, treatment plan, tests, and other trial procedures according

to the protocol
Imaging eligibility criteria—exclusions
• Left-handed
• Pacemaker
• Infusion pumps
• Aneurysm clips
• Metal prostheses
• Metal joints
• Metal rods
• Metal plates
• Metal staples
• Non-removable body piercings
• Persons who have worked as welders or may have metal splinters in their body
• Females: taking hormone-modulating contraception including oral contraceptive pill or implants
• Females: irregular menstrual cycle in order to ascertain days 1–10 for the conducting of scans
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