Skip to main content
. 2023 Oct 26;23(21):8741. doi: 10.3390/s23218741

Table 7.

Architecture of proposed CNN-2 model.

Layer (Type) Output Shape Parameters
conv2d (Conv2D) (None, 62, 62, 32) 896
activation (Activation) (None, 62, 62, 32) 0
max_pooling2d (MaxPooling2D) (None, 31, 31, 32) 0
conv2d_1 (Conv2D) (None, 29, 29, 64) 18,496
activation_1 (Activation) (None, 29, 29, 64) 0
max_pooling2d_1 (MaxPooling2D) (None, 14, 14, 64) 0
conv2d_2 (Conv2D) (None, 12, 12, 128) 73,856
activation_2 (Activation) (None, 12, 12, 128) 0
max_pooling2d_2 (MaxPooling2D) (None, 6, 6, 128) 0
conv2d_3 (Conv2D) (None, 4, 4, 256) 295,168
activation_3 (Activation) (None, 4, 4, 256) 0
max_pooling2d_3 (MaxPooling2D) (None, 2, 2, 256) 0
flatten (Flatten) (None, 1024) 0
dense (Dense) (None, 512) 524,800
activation_4 (Activation) (None, 512) 0
dropout (Dropout) (None, 512) 0
dense_1 (Dense) (None, 256) 131,328
activation_5 (Activation) (None, 256) 0
dropout_1 (Dropout) (None, 256) 0
dense_2 (Dense) (None, 128) 32,896
activation_6 (Activation) (None, 128) 0
dense_3 (Dense) (None, 64) 8256
activation_7 (Activation) (None, 64) 0
dense_4 (Dense) (None, 32) 2080
activation_8 (Activation) (None, 32) 0
dense_5 (Dense) (None, 1) 33
activation_9 (Activation) (None, 1) 0