Skip to main content
. 2023 Oct 26;23(21):8741. doi: 10.3390/s23218741

Table 8.

Architecture of hybrid (CNN+RNN) model.

Layer (Type) Output Shape Parameters
conv2d (Conv2D) (None, 62, 62, 32) 896
max_pooling2d (MaxPooling2D) (None, 31, 31, 32) 0
conv2d_1 (Conv2D) (None, 29, 29, 64) 18,496
max_pooling2d_1 (MaxPooling2D) (None, 14, 14, 64) 0
conv2d_2 (Conv2D) (None, 12, 12, 128) 73,856
max_pooling2d_2 (MaxPooling2D) (None, 6, 6, 128) 0
conv2d_3 (Conv2D) (None, 5, 5, 256) 131,328
max_pooling2d_3 (MaxPooling2D) (None, 5, 5, 256) 0
conv2d_4 (Conv2D) (None, 4, 4, 512) 524,800
max_pooling2d_4 (MaxPooling2D) (None, 4, 4, 512) 0
flatten (Flatten) (None, 8192) 0
reshape (Reshape) (None, 1, 8192) 0
lstm (LSTM) (None, 128) 4,260,352
dense (Dense) (None, 1) 129