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Abstract: Aim: Method: This research presents a model combining machine learning (ML) techniques
and eXplainable artificial intelligence (XAI) to predict breast cancer (BC) metastasis and reveal
important genomic biomarkers in metastasis patients. Method: A total of 98 primary BC samples
was analyzed, comprising 34 samples from patients who developed distant metastases within
a 5-year follow-up period and 44 samples from patients who remained disease-free for at least
5 years after diagnosis. Genomic data were then subjected to biostatistical analysis, followed by the
application of the elastic net feature selection method. This technique identified a restricted number of
genomic biomarkers associated with BC metastasis. A light gradient boosting machine (LightGBM),
categorical boosting (CatBoost), Extreme Gradient Boosting (XGBoost), Gradient Boosting Trees
(GBT), and Ada boosting (AdaBoost) algorithms were utilized for prediction. To assess the models’
predictive abilities, the accuracy, F1 score, precision, recall, area under the ROC curve (AUC), and
Brier score were calculated as performance evaluation metrics. To promote interpretability and
overcome the “black box” problem of ML models, a SHapley Additive exPlanations (SHAP) method
was employed. Results: The LightGBM model outperformed other models, yielding remarkable
accuracy of 96% and an AUC of 99.3%. In addition to biostatistical evaluation, in XAI-based SHAP
results, increased expression levels of TSPYL5, ATP5E, CA9, NUP210, SLC37A1, ARIH1, PSMD7,
UBQLN1, PRAME, and UBE2T (p ≤ 0.05) were found to be associated with an increased incidence
of BC metastasis. Finally, decreased levels of expression of CACTIN, TGFB3, SCUBE2, ARL4D,
OR1F1, ALDH4A1, PHF1, and CROCC (p ≤ 0.05) genes were also determined to increase the risk
of metastasis in BC. Conclusion: The findings of this study may prevent disease progression and
metastases and potentially improve clinical outcomes by recommending customized treatment
approaches for BC patients.

Keywords: breast cancer metastasis; machine learning algorithms; genomic biomarkers; eXplainable
artificial intelligence; SHAP

1. Introduction

Breast cancer (BC) is one of the most prevalent and life-threatening malignancies
that profoundly impact women on a global scale, contributing significantly to the burden
of cancer-related morbidity and mortality [1]. Despite remarkable strides made in the
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realms of early detection and therapeutic interventions, BC continues to pose a formidable
challenge to public health systems and healthcare providers worldwide [2].

Metastasis, defined as the dissemination of cancer cells from the primary tumor site
to distant organs or tissues, represents a critical turning point in the disease’s progression.
Metastatic BC, in particular, assumes a grim prominence due to its association with height-
ened levels of morbidity and mortality [3]. Hence, the development of precise predictive
models and the identification of genomic biomarkers assume paramount importance, offer-
ing potential solutions to the pressing need for early detection and effective management of
this life-threatening condition [4]. BC prognosis may be generally worse when metastases
are present with respect to clinical evaluation. Additionally, the survival of BC patients
relies on many predictors, including the stage/grade of the BC [5].

Genomic biomarkers are pivotal in predicting and detecting BC metastasis, offering
insights into the molecular complexities behind it. They facilitate early detection and assess
the tumor’s metastatic potential. Identifying specific metastasis-associated genes helps
identify high-risk patients for personalized treatment. Furthermore, these biomarkers
unveil the underlying mechanisms of metastasis, paving the way for targeted therapies
aimed at preventing its progression. This wealth of information not only enhances patient
care but also fuels ongoing research into more effective interventions, ultimately improving
outcomes for those affected by BC metastasis [6–8].

In recent years, machine learning (ML) and artificial intelligence (AI) approaches
have revolutionized the field of medical research by offering new ways to understand
complex diseases [9]. ML algorithms have demonstrated remarkable potential in the
analysis of large genomic datasets, thus facilitating the discovery of predictive biomarkers
and the development of innovative prognostic models [10]. Applications of ML in the
field of radiomics have also begun to attract ever more attention recently. Clinical quality
management systems have been improved with models to be developed beyond diagnosis
and treatment. Increasing data suggest that ML and radiomics can be used to improve
tumor characterization, such as some tumor molecular features, association with tumor
spread, and prognosis [11].

Furthermore, the integration of eXplainable AI (XAI) techniques in the field of medical
research serves to elucidate the decision-making processes inherent in ML algorithms.
This increased transparency not only increases the interpretability of these algorithms, but
also strengthens their overall reliability, especially in the complex environment of medical
applications. XAI has the potential to advance a more comprehensive understanding of BC
metastasis and the identification of genomic biomarkers, thereby opening new avenues for
transformative advances in BC research and patient care. Additionally, XAI helps with drug
discovery in BC, personalizing early treatment plans [12,13]. XAI provides transparency in
decision-making, making the rationale behind diagnosis and treatment recommendations
clearer to patients and clinicians [14,15].

However, more evidence is needed regarding the poor performance of predictive
models in BC metastasis, and the difficulties in understanding complex model predictions.
This study used an innovative methodology that combines the power of ML and XAI to
obtain highly accurate predictions of BC metastasis. Moreover, this approach revealed
important genomic biomarkers that are intricately linked to the progression of metastasis.
By leveraging the computational power of ML and the interpretability of XAI, our aim is not
only to increase the accuracy of metastasis prediction but also to decipher potential genomic
signatures in prognosis and treatment strategies for BC patients. This multidisciplinary
approach represents an important step towards improving BC patient care.

2. Materials and Methods
2.1. Data Source and Selection Criteria

The gene expression data for this study were sourced from the National Center for
Biotechnology Information’s Gene Expression Omnibus (NCBI GEO) database [16]. A
total of 98 primary BC samples was strategically selected based on specific clinical criteria
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(all patients included in this study were categorized as ”sporadic”, were lymph node-
negative, and were under the age of 55 at the time of diagnosis). Of these, 34 samples were
from patients who developed distant metastases within a 5-year follow-up period, while
44 were from patients who remained disease-free for at least 5 years post-diagnosis. The
Inonu University Health Sciences Non-Interventional Clinical Research Ethics Committee
approved this study (approval number: 2023/5043).

2.2. Sample Preparation and RNA Isolation

For each selected patient, 5 mg of total RNA was meticulously isolated from instant-
frozen tumor tissue samples. This RNA served as the foundation for synthesizing comple-
mentary RNA (cRNA), which was subsequently used for microarray analysis. A reference
cRNA pool was generated by amalgamating equal quantities of cRNA from each sporadic
carcinoma sample, serving as a standard baseline for subsequent analyses.

2.3. Microarray Hybridization and Data Normalization

Two separate hybridizations were conducted for each tumor sample using a state-
of-the-art fluorescent dye inversion technique. These hybridizations were performed on
microarrays containing approximately 25,000 human genes, synthesized through advanced
inkjet technology. Following the hybridization process, the fluorescent intensities of the
scanned microarray images were quantitatively measured. These raw intensity values were
then subjected to a rigorous normalization and correction process to derive the relative
transcript abundance of each gene, expressed as an intensity ratio in comparison to the
reference cRNA pool.

2.4. Biostatistical Data Analysis

The conformity of the variables to the normal distribution was examined by visual
(histogram and probability graphs) and analytical (Shapiro–Wilk test) methods. Because
the data did not show a normal distribution, the genomic data were summarized using
the interquartile range (IQR) together with the median, and the Mann–Whitney U test was
used for comparisons between the two groups. A Spearman rank correlation graph was
drawn to examine the relationships between genomic biomarkers. A p-value of ≤0.05 was
considered statistically significant in all results. Statistical analyses were performed using a
SPSS 28.0 (IBM Corp., Armonk, NY, USA) package program.

2.5. ML and XAI Approach
2.5.1. Data Preprocessing

In this study, robust standardization was first applied to the data to convert the inputs
to comparable scales and purify the effects of outliers on the modelling [17]. The elastic net
feature selection method was applied to the data to reduce the size of the genomic data
and identify a small number of biomarkers. The elastic net is an orchestration method
used in ML and statistical modeling to handle multicollinearity and feature selection tasks.
The elastic net is a valuable method for datasets with a large number of related features
that can handle high-dimensional datasets. The method balances sparsity and model
interpretability by combining L1 and L2 regularization, performing feature selection and
coefficient narrowing [18,19].

2.5.2. ML Algorithms Used for BC Metastasis Prediction

Light Gradient Boosting Machine (LightGBM): A gradient boost-based algorithm,
LightGBM is a fast and efficient algorithm for ML tasks. Thus, it is often used for ML
tasks on large-scale datasets. This algorithm uses a “Gradient-based One-Side Sampling”
(GOSS), which reduces memory usage and considerably speeds up model training. It also
natively supports categorical features and implements histogram-based splitting for faster
computation [20,21].
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Categorical Boosting (CatBoost): CatBoost, a gradient boost-based algorithm, is fitted
with built-in processing of categorical features, eliminating the need for manual coding.
CatBoost uses a sequential boosting method that considers the order of categorical variables
during the boosting process. In addition, it uses symmetric decision trees to improve
generalization performance and includes various techniques to optimize sequencing in the
learning process [22,23].

Extreme Gradient Boosting (XGBoost): XGBoost is one of the most widely used
gradient boosting algorithms, providing high performance and flexibility. This algorithm
supports various loss functions and customization options. XGBoost uses a more regular
model formalization compared to the traditional gradient boosting method and includes
techniques such as weighted quantitative plotting for approximate tree learning [24,25].

Gradient Boosting Trees (GBT): GBT is an algorithm that uses decision trees as core
learners and expresses the general concept of gradient reinforcement. GBTs work iteratively
to build a collection of weak decision trees, and each subsequent tree is trained to correct
the errors of previous trees. GBTs can use different loss functions, but the most widely used
method relies on squared error loss for regression tasks [26,27].

Ada Boosting (AdaBoost): AdaBoost is an ensemble learning method that combines
multiple weak classifiers to create a strong classifier. It highlights difficult samples by
adjusting the weights of misclassified samples at each iteration. Misclassified samples are
given higher weights, allowing greater focus on these samples in subsequent iterations.
AdaBoost can work with any classification algorithm as its base estimator, and decision
logs (single-level decision trees) are generally preferred. It adjusts the weights of the
misclassified samples to improve the model’s performance and makes the weak classifiers
a strong ensemble [28,29].

2.5.3. Performance Evaluation Metrics

The performance of the ML models was evaluated by calculating the accuracy, F1
score, precision, recall, area under the ROC curve (AUC), and Brier score, and the results
were compared [30,31]. Below is a brief description of each metric:

Accuracy: Accuracy measures the overall accuracy of the model’s predictions and is
the most fundamental metric in classification tasks. It can be calculated by dividing the
correctly predicted samples by the total number of samples in the data set.

F1 score: The F1 score is a harmonic mean of precision and recall. It provides a single
measurement that balances both precision and recall. The F1 score is often quite important
when the dataset is unbalanced.

Precision: Precision measures the proportion of positive cases correctly predicted out
of all positively predicted cases. It is calculated as the ratio of true positives to the sum of
true positives and false positives.

Recall: Recall, also known as the sensitivity or true positive rate, measures the propor-
tion of correctly predicted positive samples out of all true positive samples. It is calculated
as the ratio of true positives to the sum of true positives and false negatives.

AUC: AUC measures the model’s ability to distinguish between positive and negative
classes. A higher AUC value indicates better model performance.

Brier score: The Brier score is a convenient scoring rule used to evaluate the accuracy
of probabilistic predictions. It measures the mean squared difference between predicted
probabilities and actual results. Lower Brier scores indicate better calibration and accuracy
of the model.

2.5.4. XAI Approach and Feature Importance

ML models are often called “black boxes” because it can be challenging to understand
why an algorithm produces accurate predictions for a given cohort of patients. This
study used the model with optimal performance for the final estimation, and the SHAP
method was applied to explain the model’s decisions. The relevance of features in the
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final predictive model was prioritized to find important metastasis biomarkers in the
patient group.

SHapley Additive exPlanations (SHAP)

SHAP is a unified framework for interpreting ML models. Compared to other XAI
methods, SHAP can provide both local and global interpretability simultaneously and is
based on a solid theoretical foundation. It provides a game-theoretic approach to attributing
the contribution of each feature to the prediction made by a model. The Shapley value
measures the average marginal contribution of each trait across all possible coalitions.
SHAP is a method that also provides a way to evaluate the importance of features by
measuring their contribution to the prediction. The method allows us to interpret the
contribution of individual characteristics for a given prediction. By attributing each fea-
ture, it provides the difference between the model’s estimate and the baseline estimate in
local annotations. SHAP can also provide an overview of feature importance across the
entire dataset. It quantifies the overall effect of each feature on the model’s predictions
by aggregating the Shapley values of each feature across multiple samples. The SHAP
method provides a comprehensive understanding of feature significance and individual
feature contributions, assisting model debugging, validation, and decision-making. In
addition, SHAP differs from other ML models’ ability to evaluate whether each input
feature positively or negatively impacts the prediction [32–34].

3. Results

The initial dataset contained expression levels for a substantial number of 24,481 genes,
presenting a challenge of high dimensionality that is often encountered in genomics re-
search. To address this issue, we employed the elastic net feature selection algorithm, a
method known for its capability to manage multicollinearity while simultaneously per-
forming variable selection. Subsequent to the application of the elastic net algorithm, we
were able to identify a refined set of 18 genes that emerged as strong biomarker candidates
for BC metastasis. The elastic net model reduced the size of the data set by 99.93%. These
genes were selected based on their statistical significance and potential biological relevance
to metastatic progression.

Descriptive statistics and effect size estimates for these 18 biomarker-candidate genes
are comprehensively reported in Table 1. Notably, the p-values for all selected genes were
found to be statistically significant with p ≤ 0.05, reinforcing the robustness of our feature
selection process and the putative relevance of these genes in the context of BC metastasis.
Our analysis further revealed that among the 18 selected genes, TSPYL5 exhibited the
most substantial effect size (ES: 0.306). This suggests that TSPYL5 serves as a potent
discriminator between the metastasis-positive and metastasis-negative groups, thereby
warranting further investigation as a potential therapeutic target or diagnostic biomarker
(Table 1).

In this investigation, Spearman correlation analysis was applied to explore the inter-
play among 18 genes identified as potential BC metastasis biomarkers, visualized through
a heatmap for clarity (Figure 1).

Table 2 comprehensively delineates the performance metrics—namely, accuracy, F1
score, precision, recall, AUC, and Brier score—for five ML algorithms: LightGBM, CatBoost,
XGBoost, GBT, and AdaBoost. These metrics were meticulously evaluated to provide a
holistic understanding of each model’s predictive capabilities for BC metastasis. Following
scrutiny of the performance metrics, LightGBM emerged as the most efficacious algorithm,
significantly outperforming the other four models. It achieved an impressive accuracy of
96% and an AUC value of 99.3%, metrics that are generally considered gold standards
in classification tasks. Equally noteworthy is the Brier score, a lesser-known but highly
informative metric for evaluating the predictive reliability of probabilistic models. The
Brier score for the LightGBM model was 0.024, falling well below the generally accepted
threshold of 0.25. This suggests that not only is the model highly accurate, but it is also well
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calibrated, providing a high level of confidence in its predictive probabilities. The superior
performance of LightGBM can be attributed to its robust handling of high-dimensional,
imbalanced datasets, a common challenge in medical research. Additionally, the AUC
value of 99.3% indicates an almost perfect ability of the model to discriminate between
metastasis-positive and metastasis-negative cases, further solidifying its utility in clinical
settings (Table 2).

Table 1. Descriptive statistics with respect to the study groups.

Gene *
BC Metastasis Status

U-Value p-Value ** ES
Non-Metastasis Metastasis

ARL4D 0.401 (1.028) −0.198 (0.477) 1093 <0.001 0.143 (medium)
TGFB3 0.38 (0.994) −0.248 (0.754) 1093 <0.001 0.164 (medium)
PHF1 0.409 (0.916) −0.221 (0.505) 788 <0.001 0.173 (medium)

PSMD7 −0.228 (0.67) 0.458 (0.808) 887 <0.001 0.188 (medium)
CACTIN 0.248 (0.74) −0.36 (0.748) 865 <0.001 0.213 (medium)
OR1F1 0.404 (1.237) −0.128 (0.471) 932.5 <0.001 0.143 (medium)

ALDH4A1 0.312 (0.713) −0.412 (0.962) 982.5 <0.001 0.194 (medium)
PRAME −0.072 (0.226) 0.744 (1.158) 1086.5 <0.001 0.135 (medium)

UBQLN1 −0.381 (0.755) 0.262 (1.06) 1042 <0.001 0.17 (medium)
UBE2T −0.329 (0.923) 0.327 (0.635) 986 <0.001 0.176 (medium)

SCUBE2 0.245 (0.484) −0.576 (0.735) 915 <0.001 0.212 (medium)
TSPYL5 −0.305 (0.599) 0.51 (0.759) 961.5 <0.001 0.306 (large)
ARIH1 −0.396 (0.935) 0.331 (0.792) 844 <0.001 0.197 (medium)
CROCC 0.455 (0.77) −0.291 (0.706) 1022 <0.001 0.191 (medium)
ATP5E −0.401 (0.818) 0.283 (1.057) 1013 <0.001 0.196 (medium)

NUP210 −0.094 (0.532) 0.468 (0.958) 1075 0.001 0.117 (medium)
CA9 −0.177 (0.617) 0.379 (1.171) 852 <0.001 0.176 (medium)

SLC37A1 −0.121 (0.872) 0.338 (1.085) 1051 0.002 0.0977 (medium)

*: Gene expression levels are summarized as ‘Median (IQR)’; **: Mann–Whitney U test; ES: effect size; BC: Breast cancer.

Figure 2 offers a detailed visual representation of SHAP annotations, elucidating
the positive or negative contributions of candidate biomarker genes in the context of
our optimal ML model—LightGBM. SHAP values serve as an indispensable tool in the
interpretability of complex ML models, especially in critical domains such as healthcare.
In this analysis, a positive SHAP value signifies a positive contribution toward the target
variable (metastasis risk), while a negative SHAP value indicates an inverse relationship.
These values are arranged in descending order to prioritize their influence on the model’s
output. According to the SHAP analysis, the genes TSPYL5, CACTIN, and ATP5E emerge
as the top contributors to BC metastasis prediction. Their prominent roles in the model
underscore their potential importance as therapeutic targets or early-warning biomarkers.
The graphical representation employs a color-coded scheme based on normalized gene
expression levels. A shift toward blue represents a decrease in gene expression levels, while
a shift toward pink indicates an increase. The analysis reveals that higher expression levels
of TSPYL5, ATP5E, CA9, NUP210, SLC37A1, ARIH1, PSMD7, UBQLN1, PRAME, and
UBE2T are associated with an increased risk of BC metastasis. Furthermore, lower levels of
expression of CACTIN, TGFB3, SCUBE2, ARL4D, OR1F1, ALDH4A1, PHF1, and CROCC
(p ≤ 0.05) genes were also determined to increase the risk of metastasis in BC (Figure 2).

Upon scrutinizing the normalized SHAP values presented in Table 3, we identify a
set of five genes—TSPYL5, CACTIN, ATP5E, CA9, and NUP210—as the most salient risk
factors contributing to the likelihood of BC metastasis. These genes contribute distinct
percentages to the model’s prediction of metastasis risk. Specifically, TSPYL5 contributes
9.2%, CACTIN accounts for 8.8%, ATP5E for 7.6%, CA9 for 7.2%, and NUP210 for 7.1%.
The substantial contributions of these genes point to their potential as critical biomarkers
for early detection or as novel targets for therapeutic interventions. Their varying but
significant percentages indicate a complex interplay of genetic factors that need to be
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considered in the development of more personalized and effective treatment regimens for
BC patients.
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Table 2. Results of ML models performance metrics for BC metastasis prediction.

Model Accuracy F1 Score Precision Recall AUC Brier Score

LightGBM 96 96.8 100 93.8 99.3 0.024
CatBoost 84 86.7 92.9 81.2 85.1 0.057
XGBoost 92 93.8 93.8 93.8 97.9 0.026

GBT 80 82.8 92.3 75 94.4 0.081
AdaBoost 88 90.9 88.2 93.8 93.1 0.077

LightGBM: light gradient boosting machine; CatBoost: categorical boosting; XGBoost: extreme gradient boosting;
GBT: gradient boosting tree; AdaBoost: Ada boosting; AUC: area under the curve.
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Figure 2. LightGBM model interpretation. (A): Using the final model, we rank the relevance of the
top 18 biomarker genes regarding stability and interpretation. (B): The mean order of importance of
the first 18 biomarker genes (|SHAP value|); the higher the SHAP value of a feature is provided, the
more likely it is the patient will be BC metastasis-positive.

Table 3. Contribution of the genes to BC metastasis prediction.

Gene Name Importance Score

TSPYL5 0.092
CACTIN 0.088
ATP5E 0.076

CA9 0.072
NUP210 0.071
TGFB3 0.070

SCUBE2 0.062
SLC37A1 0.055
ARL4D 0.055
ARIH1 0.047
OR1F1 0.047
PSMD7 0.042

ALDH4A1 0.042
UBQLN1 0.037
PRAME 0.035

PHF1 0.035
UBE2T 0.032
CROCC 0.032
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4. Discussion

In this study, the 18 most important genes (TSPYL5, CACTIN, ATP5E, CA9, NUP210,
TGFB3, SCUBE2, SLC37A1, ARL4D, ARIH1, OR1F1, PSMD7, ALDH4A1, UBQLN1, PRAME,
PHF1, UBE2T, and CROCC) associated with BC metastasis were identified after elastic net
feature selection due to its ability to manage both multicollinearity and feature selection
efficiently [35]. Among the algorithms evaluated in the study, which applied a versatile
ML approach to predicting BC metastasis, LightGBM achieved an impressive accuracy
rate of 96%. This superior performance highlights the potential and robustness of ad-
vanced ML algorithms for complex and high-dimensional datasets commonly encountered
in medical research, especially genomics. Identification of important predictive genes
(TSPYL5, CACTIN, ATP5E, CA9, and NUP210) opens up new avenues for early diagnosis
and targeted therapies. The potential to tailor treatment regimens to an individual’s unique
genetic profile holds promise for significantly improving clinical outcomes. It shifts the
paradigm from a ”one size fits all” approach to a more personalized healthcare model.
Furthermore, SHAP results reveal that higher expression levels of TSPYL5, ATP5E, CA9,
NUP210, SLC37A1, ARIH1, PSMD7, UBQLN1, PRAME, and UBE2T are associated with an
increased risk of BC metastasis. Conversely, lower expression levels of CACTIN, TGFB3,
SCUBE2, ARL4D, OR1F1, ALDH4A1, PHF1, and CROCC appear to mitigate this risk. In
addition to accuracy and interpretability, calibration of predictive models is also crucial to
their clinical applicability. The Brier score, an often overlooked metric, was calculated to
evaluate the model’s predictive performance. A score of 0.024, well below the generally
accepted threshold of 0.25, indicates that the model is well calibrated [36]. This adds
another layer of confidence in the usefulness of the model in the clinical setting. Our work
addresses an important gap in the existing literature by harmoniously integrating advanced
prediction algorithms with explainability elements. While previous studies often prioritize
either prediction accuracy or model interpretability, our approach manages to strike a
balance between the two [37,38]. This harmonization is vital to the practical application of
the model, as clinicians need models that are both accurate and interpretable for effective
decision-making.

The current study encompassed the most important genes associated with BC metas-
tasis. As reported in this article, the TSPYL5 gene, situated at the 8q22.1 locus, encodes the
testis-specific Y-encoded-like protein 5, as highlighted in previous research [39]. Notably,
heightened expression of this gene has emerged as a significant factor in breast oncogenesis
and has been linked to an unfavorable prognosis. This effect is attributed to its capacity to
suppress the function of the tumor suppressor protein P53, a pivotal guardian of genomic
integrity and cell cycle regulation. While our understanding of the precise role of TSPYL5
in the context of cancer remains somewhat limited, earlier studies have posited that it may
operate as a transcription factor for a spectrum of genes associated with ER-positive BC [40].
This implies that TSPYL5 may exert regulatory influence over genes that are crucial in the
context of estrogen receptor-positive BC, a subtype that constitutes a substantial proportion
of BC cases. Consequently, further exploration of the molecular mechanisms underlying
TSPYL5’s involvement in BC is warranted, as it may yield critical insights into the develop-
ment and progression of this disease, potentially paving the way for targeted therapeutic
strategies for ER-positive BC patients [41]. According to the SHAP results, TSPYL5 was
determined as the most important gene for BC metastasis prediction in our study.

One of the most well-known genes linked to hypoxia in tumor cells is CA9, which
is rapidly and significantly increased in hypoxic environments. A family of zinc metal-
loenzymes is known as CAs. In another study in the literature, the authors reported that
the CA9 gene was detectable in breast tumors and was associated with resistance to both
adjuvant chemotherapy and endocrine therapy [42]. In the current study, we found that
the CA9 gene is important in BC metastasis prediction.

The role of ALDH1A1 in the retinoic acid signaling pathway is crucial, as it governs the
self-renewal and differentiation processes of normal stem cells and also holds significant
implications in cancer progression. Liu et al. [43] have underscored the importance of



Diagnostics 2023, 13, 3314 10 of 12

ALDH1A1 mRNA expression levels within tumor tissues, suggesting that it could serve as
an independent predictor for a favorable outcome in triple-negative BC. This finding implies
that monitoring ALDH1A1 expression may offer valuable insights into the prognosis of
triple-negative BC cases.

NPC proteins have lately been linked to a number of malignancies and developmen-
tal abnormalities [44,45]. The NPC protein gene Nup210, which affects the mechanical
response, focal adhesion, and cell migration without affecting nucleocytoplasmic transport,
has been found to be responsive to mechanical signals in the extracellular microenviron-
ment and to promote lung metastasis in mouse models of breast cancer [46]. In another
study, the authors identified the NUP210 gene as a potential metastasis susceptibility gene
for human ER+ BC patients [46]. NUP210 was among the five most important genes in the
metastasis prediction model in the current study.

Epping et al. [47] have underscored the significance of PRAME expression as a prog-
nostic marker in BC patients. Their study results indicated that PRAME serves as an
independent predictor of a shortened metastasis-free interval, particularly in patients not
receiving adjuvant chemotherapy. Furthermore, PRAME expression has been associated
with tumor grade and negative estrogen receptor status, signifying its potential utility in
delineating high-risk BC cases.

5. Limitations

One of the limitations of the current study is that the prediction of BC metastasis
requires further validation. Larger and more diverse datasets are required to confirm
the generalizability of findings. The exploration of other ML techniques, such as neural
networks, could yield even more nuanced insights into BC metastasis. Furthermore,
the incorporation of additional clinical variables could enrich the model, enhancing its
predictive power and clinical relevance.

6. Conclusions

In conclusion, the study makes a seminal contribution to BC research by achieving
a symbiotic balance between predictive accuracy and model interpretability. It sets a
new benchmark for future research in this critical healthcare domain by offering not
only a robust predictive model but also unprecedented insights into the genomic variables
influencing BC metastasis. By bridging the gap between high predictive accuracy and model
interpretability, our study paves the way for more effective and personalized healthcare
solutions in the fight against BC.
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