Skip to main content
. 2023 Oct 24;23(21):8678. doi: 10.3390/s23218678
Algorithm 2 The proposed hybrid missing data imputation method
Input: The original dataset XORG
Output: The imputed complete dataset XIMP
1. Begin
2. Unfolding data along the batch dimension, get the 2D dataset X;
  • 3.

    Classifying the missing data into five categories: transient isolated missing values, short-term missing variables, long-term missing variables, short-term missing samples and long-term missing samples;

4. Splitting dataset X, get X=[X1, X1*, ,Xk, Xk**, , XK1,XK1*, XK];
  • 5.

    Imputing transient isolated missing values in each data segment Xk using single-dimensional interpolation models;

6. Xk(1)(k=1, ..., K) ← The imputed data segments;
7. Standardize each data segment;
  • 8.

    Imputing long-term missing variables in each data segment Xk using the iterative imputation based on multivariate regression model, and imputing short-term missing variables in each data segment Xk using the combination model based on single-dimensional interpolation and multivariate regression;

9. Xk(2)(k=1, ..., K) ← The imputed data segments;
  • 10.

    Imputing short-term missing samples and long-term missing samples (i.e., the missing data segments Xk**) using LSTM model;

11. Xk**(1)(k*=1, , K1) ← The imputed data segments;
12. Complete dataset XIMP ← De-standardize, and transform 2D data to 3D data;
13. End