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Abstract: Cardiorenal syndrome type 4 (CRS type 4) occurs when chronic kidney disease (CKD)
leads to cardiovascular damage, resulting in high morbidity and mortality rates. Mitochondria,
vital organelles responsible for essential cellular functions, can become dysfunctional in CKD. This
dysfunction can trigger inflammatory responses in distant organs by releasing Damage-associated
molecular patterns (DAMPs). These DAMPs are recognized by immune receptors within cells,
including Toll-like receptors (TLR) like TLR2, TLR4, and TLR9, the nucleotide-binding domain,
leucine-rich-containing family pyrin domain-containing-3 (NLRP3) inflammasome, and the cyclic
guanosine monophosphate (cGMP)–adenosine monophosphate (AMP) synthase (cGAS)–stimulator
of interferon genes (cGAS-STING) pathway. Activation of these immune receptors leads to the
increased expression of cytokines and chemokines. Excessive chemokine stimulation results in
the recruitment of inflammatory cells into tissues, causing chronic damage. Experimental studies
have demonstrated that chemokines are upregulated in the heart during CKD, contributing to CRS
type 4. Conversely, chemokine inhibitors have been shown to reduce chronic inflammation and
prevent cardiorenal impairment. However, the molecular connection between mitochondrial DAMPs
and inflammatory pathways responsible for chemokine overactivation in CRS type 4 has not been
explored. In this review, we delve into mechanistic insights and discuss how various mitochondrial
DAMPs released by the kidney during CKD can activate TLRs, NLRP3, and cGAS-STING immune
pathways in the heart. This activation leads to the upregulation of chemokines, ultimately culminating
in the establishment of CRS type 4. Furthermore, we propose using chemokine inhibitors as potential
strategies for preventing CRS type 4.

Keywords: chronic kidney disease; cardiorenal syndrome type 4; mitochondria; innate immune
response; chemokines; inflammation

1. Cardiorenal Syndrome Overview

The intrinsic association between cardiovascular disease (CVD) and kidney disease
was first described by Robert Bright over a century ago [1]. This maladaptive link is termed
cardiorenal syndrome (CRS) [2]. CRS comprises five distinct subtypes classified based on
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the initial pathology and temporality, as detailed in Table 1. Each subtype of CRS prevails
due to the high global prevalence of both cardiac and renal diseases [3–7]. Chronic kidney
disease (CKD), for instance, affects approximately 10–12% of the world’s population [6,8]
and ranks as the 12th leading cause of death. This predicament is projected to escalate due
to aging, diabetes, and hypertension [7]. CKD is characterized by persistent structural or
functional renal alterations, often defined by a glomerular filtration rate (GFR) of less than
60 mL/min/1.73 m2 [9,10].

Table 1. Classification and characteristics of the five cardiorenal syndrome subtypes.

CRS Subtype Description References

Type 1

It develops when there is an acute deterioration of cardiac function due to
conditions such as cardiogenic shock, ADHF, cardiac surgery, and acute

coronary syndrome leading to AKI (defined by an increase in serum
creatinine ≥ 0.3 mg/dL) or renal dysfunction.

[11,12]

Type 2
It characterizes chronic CVD, such as chronic HF, that leads to CKD. CKD
increases the frequency of hospitalizations and deaths from pump failure

and arrhythmia.
[2,13,14]

Type 3
Describes a sudden worsening of renal function, such as AKI or
glomerulonephritis, causing acute cardiac dysfunction (e.g., HF,

arrhythmia, or pulmonary edema).
[15,16]

Type 4

It defines CKD as leading to the progression of CVD. CVD may include
decreased cardiac function, diastolic dysfunction, ventricular hypertrophy,

or increased risk of adverse cardiovascular events due to pressure and
fluid overload, representing a risk factor for death.

[17,18]

Type 5
This syndrome appears when an acute or chronic systemic disease such as

diabetes mellitus, sepsis, systemic lupus erythematosus, vasculitis, and
sarcoidosis, leads to simultaneous cardiac and renal dysfunction.

[11]

Abbreviations: ADHF: acute decompensated heart failure, AKI: acute kidney injury, CKD: chronic kidney disease,
CRS: cardiorenal syndrome, CVD: cardiovascular disease, HF: heart failure.

CKD substantially augments the risk of cardiovascular mortality, with CKD patients
facing a 10–30 fold higher risk of cardiac-related death, a risk that escalates with declining
GFR [19–21]. The primary cardiovascular complications and causes of mortality associated
with CKD encompass ischemic heart disease, peripheral vascular disease, stroke, and
heart failure [7,22–24]. In the context of CRS classification, CRS type 4 emerges when
CKD plays a contributory role in CVD (as outlined in Table 1) [11,25]. CRS type 4 poses a
significant public health concern, yet its underlying pathophysiology remains inadequately
understood [17]. Furthermore, there is an alarming absence of effective therapies to mitigate
the proliferation of cardiovascular complications during CKD, and patients often face
early mortality despite undergoing renal replacement therapies [17,18,26]. As such, the
development of urgent treatments and the identification of potential intervention targets
are imperative.

The Kidney-Heart Crosstalk

The causes of CRS type 4 are multifactorial and encompass a range of factors, including
hemodynamic alterations, dysregulation of neurohormonal responses, overactivation of
the renin–angiotensin–aldosterone system (RAAS), anemia, and pressure overload, among
others [11,17,27]. Additionally, as renal function declines, the accumulation of uremic
toxins becomes a significant concern [28,29]. These factors have garnered attention for their
roles in inducing cardiovascular alterations secondary to CKD.

Consequently, uremic patients often experience endothelial dysfunction, a prevalent
complication of CKD [30,31]. Moreover, kidney–heart crosstalk is mediated by the systemic
trafficking of extracellular vesicles (EV). This concept gains support from discovering
EV-containing proteins in cardiac tissue that are not typically found in the heart but show
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increased presence in the kidney [32]. Such interorgan communication can shed light on
heart dysregulation in the context of CKD.

In response to proinflammatory insults, proximal tubule cells release exosomes, a
specific type of EV, which carry dysregulated micro ribonucleic acids (RNAs) associated
with the regulation of proinflammatory and profibrotic pathways, as well as dysregulated
mitochondrial RNAs [33]. As CKD progresses, uremic toxins continue to accumulate,
exacerbating inflammation and oxidative stress in the kidney [28,34]. This accumulation
likely induces inflammasome activation and pyroptosis by releasing cellular and mitochon-
drial components [35]. Notably, mitochondrial components are identified as mitochondrial
damage-associated molecular patterns (mtDAMPs), and they trigger inflammatory and
immune responses, contributing to inflammation in various organs [36–38].

Mitochondrial DAMPs stimulate innate immune signaling responses in different car-
diac cell lineages, triggering the activation of transcription factors such as the nuclear
factor-kappa B (NF-κB), a crucial factor for inflammation [39,40]. In addition, mitochondria
provide an assembly platform for signaling innate immune responses, contributing to addi-
tional inflammatory responses [41]. The main innate immune responses that are activated
during the cardiorenal association include Toll-like receptors (TLRs), the nucleotide-binding
domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome,
and cyclic guanosine monophosphate (cGMP)–adenosine monophosphate (AMP) synthase
(cGAS)–stimulator of interferon genes (STING) [42–46]. TLRs, NLRP3, and cGAS-STING
pathways produce the upregulation of cytokines, vasoactive substances, chemokines,
and inflammatory responses [46–48]. Chemokine’s overstimulation produces the recruit-
ment of leukocytes to tissues and dysregulated infiltration, leading to chronic cardiac
damage [49–51]. Interestingly, experimental studies have shown that chemokines are up-
regulated in the heart during CKD, establishing a link for CRS type 4 development [52,53].

Chemokine inhibitors have shown promise in reducing chronic inflammation and
preventing cardiac and cardiorenal impairment [52–55]. Despite these advancements,
the molecular mechanisms underlying how mtDAMPs are released by the kidneys in
CKD may trigger innate immune pathways in the heart, ultimately leading to chemokine
overactivation and the development of CRS type 4, remain poorly understood.

This review aims to provide a comprehensive understanding of the molecular mecha-
nisms involved in mtDAMP release within the context of CKD. Special attention will be
given to the role of kidney-derived mtDAMPs in initiating innate immune pathways such
as TLRs, NLRP3 inflammasome, and cGAS-STING pathway in the heart.

Additionally, we explore the identification of chemokines associated with the car-
diorenal connection. Finally, we will review the potential use of chemokine inhibitors as a
strategy for preventing CRS type 4. By addressing these aspects, this review aims to shed
light on the intricate interplay between CKD, mtDAMPs, chemokines, and CRS type 4,
contributing to our understanding of these complex medical conditions.

2. Mitochondrial Dysfunction and Inflammatory Alterations in CRS Type 4

Mitochondria are versatile organelles with diverse roles encompassing biosynthesis,
metabolism, calcium (Ca2+) regulation, inflammation, and cell death, among other crucial
cellular processes [56]. Importantly, mitochondria are also the primary source of reactive
oxygen species (ROS), particularly in complexes I and III of the electron transport system
(ETS) [57]. At moderate levels, these ROS function as secondary messengers, governing
intracellular signal transduction cascades (Figure 1A) [58–60]. However, excess ROS pro-
duction, often associated with reduced oxidative phosphorylation and ETS activity, leads
to oxidative stress (Figure 1B). Notably, due to their high energy demands, the heart and
kidneys have a dense population of mitochondria [58,61–63]. Consequently, mitochondrial
dysfunction serves as a potent trigger for the development of renal, cardiac, and cardiorenal
diseases.
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Figure 1. Mitochondria in tubular cells and cardiomyocytes. (A) Under normal conditions, mito-
chondria regulate calcium (Ca2+) metabolism (Ca2+ ions pass the mitochondrial outer membrane 
(MOM) through the Voltage-dependent Anion Channel (VDAC) and the mitochondrial inner mem-
brane (MIM) through the mitochondrial calcium uniporter (MCU)), redox homeostasis, adenosine 
triphosphate (ATP) production, and reactive oxygen species (ROS) that act as second messengers 
for redox signaling. However, (B) mitochondrial damage leads to Ca2+ dysregulation, ROS overpro-
duction, mitochondrial deoxyribonucleic acid (mtDNA) damage, ATP decrease, and finally, inflam-
mation, the latter being induced by the release of mitochondrial damage-associated molecular pat-
terns (mtDAMPs). Figure created by using Biorender.com. 

Another critical characteristic of mitochondria is their ability to promptly detect and 
respond to insults through morphological changes, bioenergetic adaptations, self-re-
newal, and degradation [63,64]. However, in the context of CKD, fluid and electrolyte im-
balance, retention of fluids, increased blood pressure, ROS overproduction, and hypertro-
phy instigate a cascade of mitochondria alterations, beginning in proximal tubular epithe-
lial cells and subsequently affecting cardiomyocytes [63,65]. Furthermore, these maladap-
tive responses in tissues lead to functional declines in renal and cardiac mitochondria, 
culminating in inflammatory processes [62,66]. These responses are initiated by mitochon-
drial components typically located in the extracellular space or peripheral circulation de-
rived from damaged renal cells [67,68]. Elevated levels of circulating mitochondrial com-
ponents may inflict damage on the mitochondria of distant organs, disrupting ROS bal-
ance and provoking inflammation [41]. 

In the initial stages of inflammation, immune cells like neutrophils are recruited to 
phagocytose and clear dead cells and matrix debris, facilitating inflammation resolution 
despite the concomitant generation of ROS and inflammatory mediators [69–71]. Addi-
tionally, disturbances in anti-inflammatory processes interconnect the innate and adap-
tive immune systems, promoting oxidative stress and apoptosis in renal and cardiac cells 
[72,73]. Consequently, mitochondrial alterations and inflammatory responses are intrinsic 
mechanisms in establishing CRS type 4. 

  

Figure 1. Mitochondria in tubular cells and cardiomyocytes. (A) Under normal conditions, mitochon-
dria regulate calcium (Ca2+) metabolism (Ca2+ ions pass the mitochondrial outer membrane (MOM)
through the Voltage-dependent Anion Channel (VDAC) and the mitochondrial inner membrane
(MIM) through the mitochondrial calcium uniporter (MCU)), redox homeostasis, adenosine triphos-
phate (ATP) production, and reactive oxygen species (ROS) that act as second messengers for redox
signaling. However, (B) mitochondrial damage leads to Ca2+ dysregulation, ROS overproduction,
mitochondrial deoxyribonucleic acid (mtDNA) damage, ATP decrease, and finally, inflammation,
the latter being induced by the release of mitochondrial damage-associated molecular patterns
(mtDAMPs). Figure created by using Biorender.com.

Another critical characteristic of mitochondria is their ability to promptly detect and
respond to insults through morphological changes, bioenergetic adaptations, self-renewal,
and degradation [63,64]. However, in the context of CKD, fluid and electrolyte imbalance,
retention of fluids, increased blood pressure, ROS overproduction, and hypertrophy in-
stigate a cascade of mitochondria alterations, beginning in proximal tubular epithelial
cells and subsequently affecting cardiomyocytes [63,65]. Furthermore, these maladaptive
responses in tissues lead to functional declines in renal and cardiac mitochondria, culmi-
nating in inflammatory processes [62,66]. These responses are initiated by mitochondrial
components typically located in the extracellular space or peripheral circulation derived
from damaged renal cells [67,68]. Elevated levels of circulating mitochondrial components
may inflict damage on the mitochondria of distant organs, disrupting ROS balance and
provoking inflammation [41].

In the initial stages of inflammation, immune cells like neutrophils are recruited to
phagocytose and clear dead cells and matrix debris, facilitating inflammation resolution de-
spite the concomitant generation of ROS and inflammatory mediators [69–71]. Additionally,
disturbances in anti-inflammatory processes interconnect the innate and adaptive immune
systems, promoting oxidative stress and apoptosis in renal and cardiac cells [72,73]. Conse-
quently, mitochondrial alterations and inflammatory responses are intrinsic mechanisms in
establishing CRS type 4.
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2.1. Mitochondrial Dysfunction in CKD Activates the NLRP3-NF-κB Pathway

In severe stages of CKD or during hemodialysis, elevated levels of the NLRP3 inflam-
masome and its activators, including uremic toxins, oxidative stress, and mitochondrial
deoxyribonucleic acid (mtDNA), are observed in the serum or urine. These findings under-
score the persistence of inflammation and fibrosis [74–76]. Inflammasomes are cytoplasmic
multi-protein signaling complexes that mediate the host’s immune response to cellular dam-
age and infection [77]. When NLRP3 is exposed to pattern-associated molecular patterns
(PAMPs) such as viruses or bacteria, or DAMPs, it undergoes release and oligomerization
through its central nucleotide-binding (NACHT) domain [78]. The NLRP3 inflammasome
triggers the activation of the transcription factor NF-κB [79–81], thereby initiating additional
inflammatory responses.

The NF-κB family encompasses distinct but related transcription factors, including p50,
p52, p65 (RelA), c-Rel, and RelB [81,82]. These components form dimers and bind to specific
DNA target sequences known as “κB” sites to modulate gene expression [79,81]. Among the
many target genes under NF-κB’s control are cytokines (tumor necrosis factor-alpha (TNF-
α), interleukins (IL-) IL-1β, IL-6, and IL-12), adhesion molecules, and some chemokines
(CCL2, IL-18, CCL5, CXCL2, CXCL1, and CXCL10) [83]. Importantly, the orchestration of
NF-κB activation involves a critical role played by the NLRP3 inflammasome and ROS,
which promote the phosphorylation of the p65 subunit, thereby activating NF-κB [84].

Regardless of the underlying cause of CKD, renal mitochondria face challenges in
meeting the increased demand for ATP [85,86]. This imbalance favors inorganic phosphate
accumulation and increases oxygen uptake [87,88]. Notably, the reduction in adenosine
triphosphate (ATP) production is consistently associated with lower oxidative phospho-
rylation (OXPHOS) due to decreased levels and/or activity of mitochondrial ETS com-
plexes [89,90]. This decline in ETS activity, particularly in complexes I and III, augments
mitochondrial ROS production and oxidative stress within these organelles [91,92]. Fur-
thermore, the inhibition of complexes I and III activity is observed in the advanced stages
of CKD [93] and can be induced by the activation of the NLRP3-NF-κB pathway [94]. Inhi-
bition of complex I enhance the NLRP3 pathway by increasing ROS levels, promoting thiol
oxidation [95]. In addition to the ETS inhibition, the Krebs cycle also exhibits dysfunction in
CKD, as evidenced by decreased mRNA levels and reduced urinary Krebs cycle metabolites
concentrations in patient renal biopsies [88,96].

In contrast, the renal succinate and fumarate levels increase in the unilateral ureteral
renal obstruction (UUO) and chronic hypoxia CKD models, increasing ROS produc-
tion [97,98]. Interestingly, the succinate accumulation induced by the hypoxia-inducible
factor-1 alpha (HIF-1α) triggers macrophage stimulation, mediated by NLRP3 pathway
activation, resulting in the rise of IL-1β and IL-18 secretion to the medium [99]. Fur-
thermore, succinate dehydrogenase (complex II) inhibition by itaconic acid can reduce
the NLRP3 activation and the release of pro-inflammatory molecules [100], suggesting a
robust metabolic regulation of this inflammatory pathway. For example, in the diabetic
kidney, renal succinate accumulation has been shown to reduce mitochondrial fatty acid
β-oxidation [101], inducing the acetyl-coenzyme A (acetyl-CoA)/CoA ratio to increase.
The acetyl-CoA excess can be excreted as acetylcarnitine in the urine. Remarkably, CKD
patients show significantly increased serum acetylcarnitine concentrations, which correlate
with the reduction of renal function [101].

In CKD, acetyl-CoA increase is associated with lipid intermediates and lipid deriva-
tives accumulation in the kidney, leading to lipotoxicity [102,103]. Since early CKD stages,
nephron segments like proximal tubules increase their lipid levels [96,102] and the fatty
acid uptake protein CD36 levels [102,104], associated with inflammatory pathways in-
duction [105]. CKD lipotoxicity increases fatty acid levels in plasma and kidneys, espe-
cially palmitic acid [103,106,107]. Palmitic acid has been shown to inhibit the adenosine
monophosphate (AMP)-activated protein kinase (AMPK) signaling, reducing mitochon-
drial function, and increasing mitochondrial ROS production to favor the NLRP3 inflam-
masome activation, caspase-1, IL-1β, and IL-18 production [107,108]. This agrees with
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recent works suggesting that the early mitochondrial ETS alteration triggers the decrease
in β-oxidation [89,93,109]. Advanced stages of CKD are also characterized by the downreg-
ulation of β-oxidation enzymes in the kidney [103,110,111], which induce inflammation in
proximal tubules and glomeruli [109,112]. Interestingly, we previously showed in folic acid
and 5/6 nephrectomy-induced CKD models that the reduction in palmitic acid β-oxidation
is related to mitochondrial hydrogen peroxide production, coupling reduction, and mi-
tochondrial fission induction, increasing inflammatory markers in the kidney [93,109].
The higher fatty acid synthesis in CKD may also induce NLRP3 pathway activation by
the fatty acid synthase (FASN) induction. This enzyme is upregulated in the remnant
kidney of 5/6 nephrectomy rats [106], likely leading to upregulation of the expression of
the inflammasome components: NLRP3, caspase-1, and pro-IL-1β [99]. Thus, renal mito-
chondria impairment could be an essential regulator of NLRP3 inflammasome activation
during CKD.

2.2. The Release of mtDAMPs during CKD and the Establishment of CRS Type 4

In the context of CKD, inflammation follows a distinct trajectory. Initially, it is char-
acterized by functional alterations, including glomerular hyperfiltration, which serves
as a compensatory mechanism [113,114]. However, structural changes emerge as time
progresses, giving rise to a cascade of complications. These structural transformations
encompass proteinuria, interstitial nephritis, tubular epithelial–mesenchymal transition,
nephron fibrosis, and scarring [65,115,116].

The structural changes are attributed to elevated circulating levels of various molecules,
including fibrinogen, TNF-α, and IL-1β and IL-6. These molecules trigger an inflammatory
response and promote the secretion of fibrotic mediators [117,118]. Consequently, inflamma-
tion leads to a reduction in mitochondrial ATP production, mitochondrial uncoupling, and
an increase in ROS, culminating in oxidative stress and mitochondrial damage [119,120].

In response to mitochondrial uncoupling or oxidative stress, cells activate apoptosis, a
programmed type of cell death. Apoptosis entails the release of mitochondrial proteins to
the cytosol. This process is initiated by the oligomerization of effector Bcl2-family proteins
such as B-cell lymphoma 2 (BCL-2)-associated X (BAX) and BCL-2 antagonist/killer 1 (BAK).
These proteins form oligomers that promote the permeabilization of the mitochondrial
outer membrane (MOM). As a result, mtDAMPs are released from both the intermembrane
mitochondrial space and the matrix to the cytosol [121,122].

Another main form of cell death is necrosis, characterized by the plasma membrane’s
rupture, which releases intracellular contents. The necrotic process is regulated, and it
encompasses various types of necrosis, including ferroptosis, necroptosis, and pyroptosis.
Each of these distinct mechanisms contributes significantly to various kidney diseases,
either by directly affecting kidney cells or by recruiting immune cells and triggering
inflammatory responses [123].

Moreover, the innate immune system plays a significant role in initiating acute in-
flammation in CRS. This inflammatory response is triggered by recognizing DAMPs or
mtDAMPs [124]. DAMPs are endogenous molecules that are released from cells, either pas-
sively during cell death processes or actively through exocytosis [121,125]. These molecules
include heat shock proteins (HSP) 90, 70, 60, and 27 [126], uremic toxins [120,127], extracel-
lular ATP, nucleic acids, and oxidative products derived from ROS [48,125].

On the other hand, mtDAMPs released by apoptosis or necrosis encompass mtDNA,
cytochrome c, ATP, N-formyl peptide, succinate, and cardiolipin [121]. DAMPs and mt-
DAMPs play a pivotal role in activating the innate immune system, primarily by inter-
acting with plasmatic and intracellular pattern-recognition receptors (PRRs) encoded in
the germline [128,129]. These essential PRR families encompass Toll-like receptors (TLRs),
C-type lectin receptors (CLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs),
and intracellular DNA sensors like cGAS [42,45,130].

In the context of CRS type 4 pathophysiology, the activation of TLRs, NLRs, and cGAS
receptors leads to the upregulation of genes involved in inflammatory responses. These
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genes encode inflammatory cytokines and chemokines, thereby initiating innate immune
responses (discussed below) [39,41,131].

DAMPs and mtDAMPs can also trigger endothelial dysfunction and affect cellular
membranes and mitochondria of the heart cells, resulting in premature cell death in the
form of apoptosis and necrosis [132]. In cardiac diseases, necrotic cell death further exacer-
bates the upregulation of proinflammatory cytokines and chemokines and the recruitment
of inflammatory cells such as neutrophils, macrophages, and mast cells, thereby worsening
inflammation [133]. The persistent inflammatory stimulus also leads to fibroblast activation
and cell proliferation, leading to fibrosis [36,133,134]. These processes collectively con-
tribute to chronic injuries and unremitting inflammation, establishing a positive feedback
loop between mitochondrial alterations and the activation of immune pathways, ultimately
culminating in the establishment of CRS type 4.

2.3. NLRP3-NF-κB Pathway Activation in the Heart by CKD-Derived mtDAMPs and ROS

One of the different important stimuli for ROS production and immune activation
in CKD occurs following the dissociation of the thioredoxin (TRX) complex from the
thioredoxin-interacting protein (TXNIP), ultimately leading to the activation of the NLRP3
inflammasome [135,136]. TRX are ubiquitously present redox-active proteins known for
their antioxidant and anti-inflammatory properties. Elevated ROS levels disrupt the TRX
complex, causing TXNIP to bind to the leucine-rich repeat region of NLRP3, consequently
activating the inflammasome [137]. Notably, the administration of recombinant TRX has
shown promise in ameliorating renal damage and preventing the progression of CKD [136].

In the context of CVD, several CKD-related alterations, including increased levels
of angiotensin II levels, ROS production, reduced activity of antioxidant enzymes, and
inflammation, contribute to decreased levels of thioredoxins [138–140]. Furthermore, the
depletion of mitochondrial TRX2 in cardiomyocytes leads to hypertrophy and disrupts mi-
tochondrial respiratory function by reducing AMPK activity [141]. Impaired mitochondrial
function and the activation of the NLRP3 inflammasome are associated with decreased
levels of TRX2 during myocardial ischemia–reperfusion injury [142]. Intriguingly, elevated
levels of NLRP3 and IL-1β observed in patients with coronary artery disease exhibit an
inverse association with the expression and protein levels of TXNIP and TRX1 [143]. Ad-
ditionally, in a rat model of diabetes-associated aortic remodeling, the reduction of ROS
levels improved TXNIP protein levels and prevented an increase in the mRNA levels of
NF-κB, NLRP3, and IL-1β [144,145]. These findings underscore the critical role of ROS in
inducing inflammatory activation through alterations in the TRX system.

The rise in ROS levels due to disturbances in redox balance can also lead to the
oxidation of mtDNA, a mtDAMP that activates the NLRP3 inflammasome [146]. Addi-
tionally, ROS can directly activate NLRP3 inflammasome in CVD [147]. These ROS may
especially damage cardiomyocytes by activating the NF-κB pathway and the NLRP3 in-
flammasome [148]. In addition, activation of the NLRP3-NF-κB-ROS pathway in CKD
not only initiates inflammation but also triggers additional mechanisms contributing to
cardiorenal disturbances. For instance, ROS levels may activate the transforming growth
factor beta (TGFβ-1), a key player in cardiac fibrosis [149]. TGFβ-1, in turn, further elevates
ROS levels, promoting the activation of intracellular Smad pathways, leading to fibrosis,
and decreasing antioxidant enzyme levels [149,150]. The consequence of reduced levels
of antioxidant enzyme levels following kidney injury is the promotion of oxidative stress.
This increase in ROS, primarily produced by mitochondria and NADPH oxidases (NOXs)
in the heart, sets the stage for a cascade of events. These events include hemodynamic
alterations, dysregulation of neurohormonal responses, overproduction of angiotensin I,
and pressure overload, among others [11,17,27].

On the other hand, TNF-α, a pro-inflammatory cytokine known to induce cardiac hyper-
trophy, fibrosis, dysfunction under pressure overload, and chronic heart injuries [151,152],
may trigger the activation of NLRP3 through the elevation of ROS levels [153,154]. This
phenomenon can be elucidated by the chronic exposure of cells to TNF-α, which sets off
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p38-mitogen-activated protein kinases (MAPK) signaling, instigates inflammatory pheno-
types, and suppresses the expression of antioxidant genes, resulting in an increase in ROS
levels [155].

Furthermore, the exposure of fibroblasts and human immune cells to TNF-α, in
combination with oxidative stress, may prompt the degradation of the IκBα subunit by
the IκB Kinase (IKK). This degradation event, in turn, leads to NF-κB activation and
the transcription of genes associated with proinflammatory cytokines, chemokines, and
NLRP3 inflammasome [156,157]. Interestingly, the antihyperglycemic peptide Nesfatin-1
has shown promise in ameliorating hypertrophy and heart dysfunction in uremic car-
diomyopathy by mitigating ROS levels, suppressing p38-MAPK signaling, and reducing
TNF-α levels [158]. In particular, the measurement of TNF-α levels in serum can serve
as a predictor for cardiovascular mortality in CKD patients [159,160]. This underscores
the significance of sustained inflammatory signaling and ROS during CKD in potentially
contributing to the development of CRS type 4 (Figure 2).
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Figure 2. Mechanisms of mtDAMPs release in CKD and NLRP3 activation in cardiomyocytes during 
CRS type 4. (A) In chronic kidney disease (CKD), hemodynamic changes and metabolic alterations, 
mainly in proximal tubular epithelial cells (PTECs), cause reactive oxygen species (ROS) overpro-
duction, activating hypoxia-inducible factor-1 alpha (HIF-1α). HIF-1α induces renal succinate accu-
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mainly in proximal tubular epithelial cells (PTECs), cause reactive oxygen species (ROS) over-
production, activating hypoxia-inducible factor-1 alpha (HIF-1α). HIF-1α induces renal succinate
accumulation, leading to β-oxidation decrease and acetyl-CoA and lipid accumulation. The increase
in superoxide anion (·O2

−) can be determined through NADPH oxidase 2 (NOX2), found in the
cytosolic membrane, which causes damage to mitochondria and mitochondrial deoxyribonucleic
acid DNA (mtDNA). The upregulation of xanthine oxidase (XO) activity in CKD also produces
·O2
− anion and, importantly, its last product is the uremic toxin: uric acid. ROS also induce the

activation of heat shock proteins (HSPs) and, along with uric acid, participate as Damage-associated
Molecular Patterns (DAMPs). Damaged mitochondria release their mitochondrial components in
mitochondrial-derived vesicles (MDV) containing mtDNA, ATP, DNA, and mitochondrial fragments.
(B) MDVs, HSPs, mtDAMPs, and uric acid are transported by blood. They might arrive at car-
diomyocytes inducing inflammatory responses by pattern-recognition receptors such as Toll-like
receptors (TLRs) or the nucleotide-binding domain-like receptor family pyrin domain-containing
protein 3 (NLRP3). These receptors may produce the transcription of inflammatory genes, such as
chemokines, which produce inflammatory cell infiltration into the heart cells. ATP can be recognized
by purinergic receptors (P2YRs and P2XRs). One type is ionotropic receptors, such as P2XRs, that
open upon the binding of ATP. This allows sodium and Ca2+ influx and potassium efflux. Potassium
efflux activates the inflammasome in cardiomyocytes and inflammatory cells such as macrophages
and dendritic cells. The release of mtDAMPs also damages cardiomyocytes’ mitochondria, which
might be visualized by NOX4 overactivation, ROS increase, decreased electron transport system
(ETS), loss of the mitochondrial membrane potential (∆Ψ), and cardiolipin oxidation. The damage
in these mitochondria leads to cell death in the form of apoptosis or necrosis, promoting the exit of
cardiomyocyte mitochondrial components via endocytic and direct pathways. This vicious cycle
of mtDAMPs release and damage establishes CRS type 4. ATP: adenosine triphosphate, MOMP:
mitochondria outer membrane permeabilization, MPTP: mitochondrial permeability transition pore
opening, PTECs: proximal tubular epithelial cells, ↑: increase, ↓: decrease. Figure created by using
BioRender.com.

2.4. Involvement of NLRP3 Inflammasome and Toll-like Receptors 2 and 4 in CRS Type 4

Overactivation of NLRP3 inflammasome has been linked to myocardial fibrosis, hy-
pertrophy, and cardiac dysfunction [154,161]. The upregulation of NLRP3, IL-1β, and IL-18
in the heart during CKD is closely associated with exposure to DAMPs, thus highlighting
the cardiorenal connection [146,162].

DAMPs and mtDAMPs can trigger NLRP3 activation through TLRs, including ure-
mic toxins, mitochondrial components released due to defects in membrane integrity,
mitochondrial ROS, and cardiolipin [45,131].

TLRs are type I integral transmembrane proteins composed of three main components:
an ectodomain with leucine-reach repeats (LRRs), a transmembrane domain, and a cyto-
plasmic Toll/IL-1 receptor (TIR) domain. LRRs recognize PAMPs or DAMPs, while the
TIR domain initiates the downstream signaling [128,163]. The primary functions of TLRs
include stimulating phagocytosis and mediating inflammation by sensing molecules from
damaged cells [164].

The activation of TLRs by ligands results in the dimerization of TLRs’ cytoplasmic
signaling domains [165]. This TIR-TIR complex initiates downstream signaling by recruiting
specific adaptor molecules [166]. DAMPs and mtDAMPs, such as debris from apoptotic and
necrotic cells, inflammatory factors, nucleic acid fragments, oxidative products, and uremic
toxins generated during renal damage can activate classical TLR2 and TLR4 pathways in
the heart [51,71].

Upon recognition of DAMPs and mtDAMPs by TLR2 and TLR4, they stimulate
macrophages to produce inflammatory cytokines [145,167,168]. TLR2 and TLR4 rely on
adaptor molecules, with TLR2 engaging myeloid differentiation factor 88 (MyD88) and
TLR4 utilizing Toll/IL-1 receptor (TIR) domain-containing adaptor inducing interferon
beta (TRIF) [166]. Activation of the MyD88-dependent pathway involves the participation
of IL-1 receptor-associated kinases (IRAK), including IRAK1 and IRAK4, TNF receptor-
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associated factor 6 (TRAF-6), and MAPK. These events culminate in the activation of the
transcription factor NF-κB, leading to the production of proinflammatory cytokines such as
pro-IL-1β and pro-IL-18 [71,169].

Sustained inflammation in the kidney may lead to the activation of TLR2 and TLR4
in the heart, thereby contributing to CRS type 4. Supporting this notion, the deletion of
both TLRs during unilateral kidney ischemia/reperfusion has demonstrated a reduction
in cardiac hypertrophy markers such as B-type natriuretic peptide and α-actin. This
suggests that sustained inflammation in the kidney can upregulate TLRs in the heart [170].
Activation of the TLRs pathway induces the translocation of NF-κB to the nucleus, where it
promotes transcription of inflammation mediators, including IFN-γ, IL-6, and TNF-α, all
of which are associated with cardiac hypertrophy [171].

Another set of activators for TLR2 and TLR4 includes HSP proteins. HSPs are intra-
cellular chaperones with a pivotal role in stress responses. In particular, HSP70 has been
identified in the extracellular medium, where it is recognized as a DAMP and activates
immune cells. This activation results in the secretion of pro-inflammatory cytokines such
as IL-1β, IL-6, and TNF-α [172]. The release mechanism of extracellular HSP70 involves a
membrane-associated form [173]. In the context of CKD, HSP70 levels appear elevated in
the urine and serum of patients, which is closely associated with inflammation and immune
responses [174,175]. Furthermore, high levels of HSP70 in plasma have been linked to
cardiac alterations [176]. As such, systemic HSP70 during CKD may induce disturbances
in the heart by activating TLR2 and TLR4.

It has been reported that the uremic toxin indoxyl sulfate induces an elevation in HSP90
levels, subsequently triggering the activation of TLR4. This suggests that HSP90 plays a
pivotal role in promoting inflammation through the TLR4 pathway. Notably, HSP90 is a
protein essential for sustaining renal vascular tone, as its inhibition has been associated with
a reduction in GFR [177]. Recent studies have indicated that HSP90α, an isoform of HSP90,
is required for its interaction with endothelial nitric oxide synthase (eNOS). However, in
the context of CKD, this interaction is impaired, leading to a decreased availability of NO.
This reduction in NO contributes to the development of CRS type 4 [178].

Therefore, maintaining regular levels of HSP90 is necessary to prevent cardiovascular
disturbances. However, it is important to note that an excessive increase in this protein
could also potentially favor the development of CRS type 4. In summary, TLR2 and TLR4
activation and downstream inflammatory signaling are central factors contributing to
cardiac disorders during CKD, ultimately promoting the establishment of CRS type 4
(Figure 3).

2.5. Role of TLR9 in Inflammation and Its Implication in CRS Type 4

Another TLR known to induce inflammation through the adaptor molecule MyD88
is TLR9 [166]. TLR9, primarily localized in endolysosomes, is associated with activating
p38 MAPK signaling [179]. The inflammatory response initiated by TLR9 is triggered by
DNA fragments rich in unmethylated cysteine–phosphate–guanine motifs, with mtDNA
being a notable example [180]. These DNA fragments can be internalized in various tissues
by dendritic cells and macrophages [162] and subsequently delivered to endolysosomes,
where they activate TLR9 [166].

Upon activation, TLR9 interacts with the endoplasmic reticulum (ER) membrane
protein UNC93B, facilitating its transportation to the endolysosomal compartment [181,182]
(Figure 3). TLR9 activation leads to two distinct pathways [183]: one is associated with
the transcriptional activation of proinflammatory cytokines, requiring the involvement of
NF-κB, while the other relates to the activation of type I interferon genes [184].
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Figure 3. Toll-like receptors (TLRs) in cardiorenal syndrome type 4 (CRS type 4). In chronic kidney
disease (CKD), several factors contribute to the initiation of inflammation, oxidative stress, and fibro-
sis in renal tubular epithelial cells. These cellular insults result in the release of Damage-associated
Molecular Patterns (DAMPs), including mitochondrial deoxyribonucleic acid (mtDNA), ATP, peroxi-
dized lipids, and uremic toxins, which play a pivotal role in mediating inflammatory responses in
cardiomyocytes and the recruitment of inflammatory cells. mtDNA, extracellular ATP, peroxidized
lipids, and uremic toxins can activate membrane-bound Toll-like receptors, specifically TLR2 and
TLR4. The activation of these receptors is mediated by the adaptor molecule myeloid differentiation
factor 88 (MyD88). Once TLR2 and TLR4 are engaged, they initiate the mitogen-activated protein
kinases (MAPKs) pathway. Activated MAPKs ultimately lead to the activation of nuclear factor
kappa B (NF-κB), a transcription factor involved in the regulation of inflammatory genes. NF-κB
promotes the assembly of the NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3)
inflammasome. Within this complex, pro-interleukin-1 beta (pro-IL-1β) and pro-interleukin-18 (pro-
IL-18) are processed to form the mature and active IL-1β and IL-18. TLR9 might be activated by
internal, external, or mtDNA, which induces the recruitment of TLR9 by UNC93B protein from the
endoplasmic reticulum to endolysosomes. It leads to the activation of MAPKs mediated by MyD88
by following the same steps of TLR2 and TLR4. The activation of NLRP3 results in a cascade of
events, ultimately leading to pyroptosis. Pyroptosis is mediated by gasdermin D (GSDMD), which
forms pores in the cell membrane, causing cell lysis and the release of pro-inflammatory intracellular
contents. The mitochondrial antiviral proteins (MAVS) also activate NLRP3, leading to pyroptosis
induction. IL-1 receptor-associated kinases (IRAK), IRAK1 and IRAK4, TNF receptor-associated
factor 6 (TRAF-6). Figure created by using Biorender.com.

In an experimental model of CKD induced by diabetic nephropathy, researchers
observed an upregulation of TLR9 expression in the kidneys. This upregulation was linked
to an increase in NF-κB activity and apoptosis, with a dependence on the upregulation of
the NLRP3 inflammasome [185].

Activation of TLR9 increases in renal proximal tubular cells following ischemic injury,
initiating a cascade of events that promote inflammation, apoptosis, and necrosis through
NF-κB and caspase-dependent pathways [186]. Because of apoptosis or necrosis, renal
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DAMPs are released. These DAMPs may be exposed to the cell surface and released into
the extracellular space, acting as potent inflammation triggers [125].

Renal DAMPs have the potential to activate TLR9 in cardiac cells, inducing oxidative
stress and inflammatory responses, which can lead to the release of mtDNA or other mt-
DAMPs within cardiomyocytes. This process has been observed in mice cardiomyocytes,
where the release of mtDNA after myocardial injury activated NF-κB through TLR9, ul-
timately contributing to cell death [187]. Furthermore, in patients with end-stage heart
failure, the stimulation of TLR9 in cardiac tissue resulted in inflammation via the activation
of NF-κB, causing additional cardiac damage [188]. The release of circulating mtDNA,
potentially originating from the damaged kidney, could be responsible for this activation,
especially in conditions like hypertension, where elevated levels of circulating mtDNA
have been observed [189].

2.6. Extracellular Vesicles (EV) and Their Role in Inflammation

Exogenous mtDNA and other signaling molecules may also be transported into other
cells, including cardiac cells, through extracellular vesicles (EVs). These EVs, such as
exosomes, microvesicles, and apoptotic bodies, carry various cargo, including nucleic acids,
proteins, and metabolic intermediaries [190,191].

Apoptotic bodies, in particular, contain fragments of nucleic acids, lipids, proteins,
and organelles [192]. Notably, apoptotic cells release ATP, which can serve as a signaling
molecule by binding to purinergic receptors on cell membranes, activating intracellular
signaling pathways, and potentially inflammasome assembly. For instance, ionotropic re-
ceptors such as P2XRs are nucleotide-gated ion channels that open upon the binding of ATP.
This allows the influx of sodium and Ca2+ and the efflux of potassium. Importantly, when
intracellular levels of Ca2+ increase, it activates p38-MAPK or phospholipase A2 signaling,
while P2X7R can activate the inflammasome assembly [193]. The interplay between EVs,
mtDAMPs, and purinergic receptors may contribute to the induction of inflammation in
the heart during CKD, further complicating the cardiorenal connection [194]. Uncontrolled
inflammation driven by these mechanisms could contribute to chronic inflammatory dis-
eases [195]. In summary, the activation of TLR9 and the involvement of EVs and mtDAMPs
create a complex web of interactions that link renal damage to cardiac inflammation and
dysfunction in the context of CKD. Understanding these pathways is crucial for developing
targeted interventions to mitigate the CRS observed in these patients.

2.7. The Role of Autophagy and Mitophagy in NLRP3 Signaling Pathway in CRS Type 4

Autophagy consists of vesicular sequestration of cellular components, inducing their
degradation and further recycling [196]. This process comprises initiation, elongation,
fusion, and degradation and is regulated by the phosphoinositide-3 kinase (PI3K) and
Unc-51-like kinase (ULK) complexes [197]. The activation of ULK depends on the AMPK
protein that phosphorylates and inhibits the mammalian target of Rapamycin complex 1
(mTORC1). PI3K is activated after the autophagic protein Beclin is disassembled from Bcl2,
forming the PI3K complex to produce phosphatidyl inositol triphosphate (PI3P).

On the other hand, mitophagy is a specialized form of autophagy that removes
damaged mitochondria and is crucial for immune system vigilance and mitochondrial
quality control. Mitophagy occurs when the mitochondrial membrane potential (∆Ψ) is
disrupted and involves PTEN-induced kinase (PINK) and E3 ubiquitin ligase (Parkin)
proteins. Both in autophagy and mitophagy processes, sequestosome p62 proteins (p62)
are necessary for degradation because these proteins recognize and ubiquitinate damaged
organelle and protein aggregates. Moreover, the microtubule-associated protein 1A/1B-
light chain 3 (LC3) is involved in the elongation of autophagosomes [198]. Importantly, the
two processes may occur in response to stimuli like hypoxia, ROS, and starvation.

Mitophagy’s role in NLRP3 inflammasome activation is shown by removing autophagy-
related proteins, causing the accumulation of damaged mitochondria, and increasing mt-
DAMPs production [199]. For example, it has been demonstrated that NF-KB restricts



Int. J. Mol. Sci. 2023, 24, 15875 13 of 35

NLRP3 inflammasome activation through p62-dependent mitophagy; conversely, the ab-
sence of p62 promotes greater mitochondrial damage and increased inflammation [200].
Recently, the role of inflammation and autophagy, specifically mitophagy, has been pro-
posed in kidney diseases, and it has been more studied in acute kidney injury (AKI) models.
For instance, in sepsis-induced AKI, the knockout of PINK increased the expression of
inflammasome components, such as NLRP3, ASC, and IL-1β [201]. In vitro, the silencing
of PINK and Parkin, in contrast-induced AKI, augmented mitochondrial ROS, producing
the induction of NLRP3 [202].

In CKD, Zhuang et al. [203] proposed that proteinuria resulted from inflammasome
activation, which induced mitochondrial impairment. The authors suggested that the
blockage of the NLRP3/caspase-1 pathway might restore mitochondrial damage. Thus, a
relationship between mitochondria and inflammasome might be established. Supporting
the latter, using the antioxidant targeting mitochondria mitoTEMPO reduced the upregula-
tion of inflammasome components [204]. However, in CRS type 4, the role of mitophagy
and inflammasome activation has been poorly explored. An attempt could be made in the
hyperuricemic nephropathy model, where the levels of PINK and Parkin are reduced in
the kidney, promoting NLRP3 activation and the production of IL-1β, possibly affecting
the heart [205]. Interestingly, in the model of CRS type 3 induced by renal ischemia–
reperfusion, it was observed that mitophagy was inhibited in cardiomyocytes, promoting
inflammation [206]. Thus, the dysregulation of mitophagy might be a factor in activating
inflammation through NLRP3 inflammasome.

2.8. MAVS and NLRP3-NF-kB Signaling in CRS Type 4

Another role of mitochondria in NLRP3 activation is associated with mitochondrial
antiviral proteins (MAVS). MAVS comprises an N-terminal CARD-like domain and a
C-terminal transmembrane domain, essential for MAVS signaling. Notably, the transmem-
brane domain targets MAVS to the mitochondria in the MOM [207]. The latter allows MAVS
to participate in the relocalization and association of NLRP3 with ER and mitochondria
organelle clusters [137]. This facilitates NLRP3 oligomerization [208,209]. Furthermore, the
signaling function of MAVS with mitochondria is essential to enhance downstream factors
such as NF-κB and IRFs [210].

Low active caspase-1, IL-1β, and IL-18 levels induce cytokine production, but higher
levels of these molecules can induce cell death by apoptosis or pyroptosis. When NLRP3 is
activated and associated with MAVS, it leads to pyroptosis [211].

Pyroptosis is a caspase-1-dependent death mediated by the cleavage of gasdermin D
by caspase-1 and the subsequent formation of stable pores in the cell membrane [212,213].
The pores formed by gasdermin D proteins promote cell swelling and lytic cell death,
releasing cytosolic contents into the extracellular space that act as DAMPs [214]. Also,
pyroptosis is regulated through the NLRP3 inflammasome [215]. It could be associated
with the release of DAMPs from renal cells, which may activate inflammatory processes in
other organs, such as the heart. Accordingly, in uremic cardiomyopathy, increased levels of
caspase-1, IL-1β, IL-18, and cleaved gasdermin D p30 protein, the active form of gasdermin
D, induced myocardial hypertrophy, interstitial fibrosis, and functional alterations in the
heart [216]. Pyroptosis is also associated with renal and cardiovascular diseases [217].
Thus, although NLRP3, MAVS, and pyroptosis are recognized as intrinsic mechanisms
underlying the development of cardiovascular alterations during CKD, further research is
warranted to comprehensively explore these mechanisms within the context of CRS type 4.

3. The Role of the cGAS-STING Pathway in CRS Type 4
3.1. The cGAS-STING Pathway

The cGAS-STING pathway plays a pivotal role in mediating inflammation in re-
sponse to infections, cellular stress, and tissue damage [218]. cGAS activity is triggered
by interactions with various ligands, including double-strand DNA (dsDNA), neutrophil
DNA–protein complexes, and mtDNA in mammals [218,219]. When cGAS interacts with
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these ligands, it generates a product known as 2′3′cyclic GMP-AMP [220]. This cyclic
GMP-AMP molecule then binds to the STING protein located in the ER membrane [221].

The downstream signaling cascade begins with the translocation of STING from the
ER to the Golgi apparatus, facilitated by the ER-to-Golgi transport machinery, specifically
the ER–Golgi intermediate compartment (ERGIC) [218,221]. This translocation of STING is
a critical step in activating the immune signaling pathway [222,223]. Once in perinuclear
compartments, STING forms a complex with TRAF family member-associated NF-κB
activator (TANK)-binding kinase (TBK1) [224]. TBK1, in turn, phosphorylates transcription
factors, including the interferon regulatory factor 3 (IRF3) and NF-κB [218]. These two
factors, IRF3 and the p65 subunit of NF-κB, are the principal downstream effectors of the
cGAS-STING pathway [225].

Moreover, it is important to note that the cGAS-STING pathway also functions as a
classical PRR, and it can be activated by various myeloid cells and molecular events [217].

3.2. The Activation of the cGAS-STING-NF-κB Axis by mtDNA Release in CKD

CKD has been strongly linked to the activation of the cGAS-STING pathway. For
instance, in a study conducted by Chung et al. [226], a positive correlation was observed
between CKD-induced fibrosis and the expression of cGAS and STING in over 400 kidney
tissue samples. Experimental models of diabetic kidney disease and Alport syndrome
have shown that the cGAS-STING pathway plays a significant role in the development
and progression of glomerular damage by regulating inflammation [227]. Specifically,
this pathway is associated with cell damage and chronic inflammation, resulting in the
production of inflammatory cytokines and interferons [228].

In CKD, an oxidative stress state is closely related to renal functional and structural
alterations, primarily through mitochondrial dysfunction and increased production of
ROS [8]. Notably, the plasma of patients receiving platinum-based nephrotoxic anticancer
therapy showed elevated levels of mtDNA in plasma, suggesting that STING signaling
might be activated through this mechanism [229]. Various mechanisms can lead to the
release of nucleic acids in CKD, including increased ROS, apoptosis, mitophagy, and
inflammation [230].

The generation of ROS and Ca2+ ion accumulation can trigger the opening of the
mitochondrial permeability transition pore (mPTP), resulting in the loss of ∆Ψ, uncoupling
of the ETS, and the release of proapoptotic factors like cytochrome c, which can lead to
apoptosis or necrosis. During apoptosis, macropores form in the MOM due to the regulation
of BAX and BAK [231–233]. These BAX-mediated pores in the MOM allow the inner
membrane to herniate, leaking mtDNA and other mitochondrial matrix components in the
cytoplasm. The rate of growth of these apoptotic pores and the release of mitochondrial
contents depends on the bioavailability of BAX and BAK molecules [234].

In the context of cisplatin-induced nephrotoxicity, it has been suggested that mitochon-
drial permeabilization induced by BAX pores in the MOM can activate the cGAS-STING
pathway, thus triggering inflammation [225]. Small-molecule STING inhibitors, such as
H151, have shown promise in ameliorating renal function, kidney morphology, inflamma-
tion, and mitochondrial alterations following cisplatin-induced nephrotoxicity [229]. Addi-
tionally, activation of the cGAS-STING pathway has been observed in diabetic kidney dis-
ease resulting from mitochondrial damage [235]. Zang et al. [236] elegantly demonstrated
that the leakage of mtDNA into the cytosol promotes the activation of the cGAS-STING
pathway, facilitated by BAX pore formation in podocytes. Furthermore, the transfection
of podocytes (MPC5) with cytosolic mtDNA led to cGAS-STING activation and the pro-
duction of proinflammatory cytokines, dependent on NF-κB p65 and TBK1. The authors
also established that BAX macropores are the primary mechanism responsible for mtDNA
efflux, causing podocyte injury and cGAS-STING activation.

Additionally, in immune cells, intense STING activation can drive apoptosis, which
is induced by the activation of mitochondrial B cell lymphoma 2-homology domain 3
(BH3-only) proteins, ultimately leading to inflammatory signaling [237]. Thus, it can be
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suggested that mtDNA-cGAS-STING pathway activation and apoptosis of immune cells
are critical regulators of inflammation in kidney damage.

Mitophagy is a specialized form of autophagy responsible for selectively removing
damaged mitochondria. It is orchestrated by PINK and Parkin [218,238]. Mitophagy is
crucial in maintaining cellular health by eliminating compromised mitochondrial com-
ponents [239]. Consequently, when the process of mitophagy is disrupted or impaired,
it contributes to inflammation due to the accumulation of damaged mitochondria [240].
These disruptions lead to an increased production of ROS, triggering the release of mtDNA
and the activation of the cGAS-STING pathway [234]. Furthermore, the inadequate pack-
aging of mtDNA, which occurs when mitochondrial transcription factor A (TFAM) is
depleted, is a critical regulator for cGAS activity [241]. In line with this, Chung et al. [226]
demonstrated that the depletion of TFAM in various experimental models of CKD resulted
in the translocation of mtDNA into the cytosol of renal cells. This, in turn, activated the
cGAS-STING pathway, thereby promoting renal inflammation and fibrosis.

In normal circumstances, autophagy helps regulate the cGAS-STING pathway by
promoting the degradation of STING and terminating its activation signal. This process
involves activated STING molecules on the ERGIC binding to LC3 on the autophagy
membrane [46]. It is also responsible for the removal of host cytoplasmic DNA through
enzymatic degradation within the autolysosome [242]. However, in CKD, there is a dis-
turbance in the autophagic flux [243], suggesting that the STING pathway may become
overactivated.

3.3. The Activation of the cGAS-STING-NF-κB Axis by mtDNA Release in CRS Type 4

Activation of the immune response in CRS type 4 has been linked to the escape
of mtDNA into the cytoplasm, thereby triggering the cGAS-STING pathway [226]. In
experimental diabetic cardiomyopathy, the release of mtDNA into the cytosol of heart cells
induces inflammation through the cGAS-STING pathway, activating downstream genes,
including IRF3, NF-κB, IL-18, and IL-1β [219]. IL-1β, in particular, can potentially disrupt
mitochondrial homeostasis by amplifying immune reactions through its activation of cGAS
via mtDNA [244,245].

In experimental models of uremic cardiomyopathy, mitochondrial oxidative stress
emerges as a consequence of CKD. Oxidative stress triggers the voltage-dependent anion
channel (VDAC)-mediated MOM permeabilization, leading to the release of mtDNA and
subsequently activating the STING-NF-κB pathway within the heart [41]. DNA fragments
released from metabolic organs, originating from the body’s own cells, promote chronic
inflammation as they serve as endogenous ligands for the cGAS-STING pathway [227].
Intriguingly, clinical studies have also shown that STING signaling can be activated in
patients with metabolic diseases due to the release of mtDNA [246,247].

Furthermore, experimental studies have confirmed that the release of mtDNA into
the cytoplasm of cardiac cells induces inflammation by activating both the cGAS-STING
and NF-κB pathways [146,219]. Consequently, the activation of NF-κB in the myocardium
through cGAS-STING signaling during CKD is closely associated with the leakage of
mtDNA into the cytosol (as illustrated in Figure 4). In addition, Han et al. [44] observed that
ornithine decarboxylase–putrescine metabolic flux was transactivated by NF-κB, triggering
cardiac hypertrophy in CKD. By contrast, pharmacologic inhibition of STING myocardial
mitochondria prevented CKD-associated cardiac hypertrophy. This, in turn, leads to the
overproduction of cytokines and chemokines within the heart.
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Figure 4. The cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP) synthase
(cGAS)–stimulator of interferon genes (STING) pathway is activated during cardiorenal syndrome
type 4. In chronic kidney disease (CKD), reactive oxygen species (ROS) and other factors cause the
release of mitochondrial deoxyribonucleic acid (DNA) fragments that might travel to the cardiomy-
ocytes of the heart. Mitochondrial DNA (mtDNA) or foreign DNA enters the cell and activates cGAS,
beginning the signaling cascade. In addition, external perturbations cause damage to cardiac mito-
chondria, inducing the opening of the mitochondrial outer membrane (MOM) via the pro-apoptotic
B-cell lymphoma proteins B-cell lymphoma 2 (BCL-2)-associated X (Bax) and promoting the release
of mtDNA. The latter activates cGAS. cGAS activation forms the product 2′3′cyclic GMP-AMP, which
induces cyclic GMP-AMP binding to the STING protein in the endoplasmic reticulum (ER) membrane.
Then, STING translocates from ER to Golgi, forming a complex with the Tumor necrosis factor recep-
tor (TNFR)-associated factors (TRAF) family member associated NF-κB activator (TANK)-binding
kinase (TBK1), delivering TBK1 to endolysosomes. TBK1 phosphorylates the interferon regula-
tory (IRF3) and nuclear factor-kappa B (NF-κB) in endolysosomes, promoting their translocation to
the nucleus to induce the transcription of type I interferon (IFN) and inflammatory cytokines and
chemokines, respectively. Finally, c-GAS and STING are degraded via autophagy. ∆Ψ: mitochondrial
membrane potential. Figure created by using Biorender.com.

4. Chemokines Activation and the Pathophysiology of CRS Type 4
4.1. Chemokines Overview

In the context of the heart, inflammation resulting from a uremic state and mitochon-
drial dysfunction often leads to endothelial dysfunction, oxidative stress, atherosclerosis,
vascular calcification, and progressive tissue damage [248,249]. This suggests that the
dysregulation of NF-κB via TLRs, NLRP3, and cGAS-STING could serve as a mechanism
underlying chronic heart inflammation and the overproduction of chemokines in CRS
type 4.
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Chemokines are small-molecular-weight chemotactic cytokines [250] that play pivotal
roles in directing the migration of neutrophils and monocytes during both acute and
chronic inflammation [251]. These chemokines are classified into the following subfamilies,
including CXC, CC, XC, and CX3C, based on the position of conserved cysteine residues in
their N-terminal domain [252]. The signaling pathways activated by chemokines commence
upon their binding to specific chemokine receptors, which are members of the seven-
transmembrane G protein-coupled receptor family, a feature unique to vertebrates. It is
worth noting that a single chemokine can be recognized by multiple receptors, underscoring
their diverse functions in various cell types [69,253].

CC chemokines, characterized by two adjacent cysteine residues, primarily attract
monocytes and macrophages through distinct receptors [254]. On the other hand, CXC
chemokines feature two cysteine residues separated by a single amino acid (C-X-C) [255,256].
The transcription of certain chemokines is modulated by NF-κB, depending on regulatory
elements, including the adjacent activating protein 1 and C/EBP elements. The promoter
activation of these chemokines relies on the p65 subunit, which recruits the cAMP-response
element binding protein (CREB), an intracellular protein responsible for regulating the
expression of multiple genes [257].

Inflammatory chemokines are activated during cellular stress or infection [258]. These
specialized chemokines primarily recruit monocytes, leukocytes, and effector T
cells [249,259]. Inflammatory processes lead to the upregulation of these chemokines
on cell surfaces, facilitating the adhesion of leukocytes to the endothelium [159,259]. How-
ever, it is important to note that excessive activation of chemokines can exacerbate damage
to the host’s tissues [51]. The following sections will delve into the specific chemokines that
play a role in the pathophysiology of CKD and CRS type 4.

4.2. The Role of Chemokines and Receptors in the Pathophysiology of CKD

In a healthy kidney, various cell types, including endothelial cells, podocytes, mesan-
gial cells, tubular epithelial cells, and interstitial fibroblasts, typically produce low levels of
inflammatory chemokines [260,261]. In patients with CKD, these chemokines are predomi-
nately induced by pro-inflammatory cytokines and ROS [262].

The primary role of chemokines in the kidney is to facilitate the recruitment of
leukocytes and T cells, which play a central in interstitial fibrosis and the progression
of CKD [260,263]. Other factors contributing to chemokine activation in CKD include
uremic toxins, cyclic adenosine monophosphate (cAMP), growth factors, lipopolysaccha-
rides, low-density lipoprotein (LDL), IFN-γ, and vasoactive substances [253,262,264]. These
factors can further upregulate chemokines by influencing NF-κB and other transcription
factors [150]. Consequently, an excess of damaging stimuli in CKD can lead to the over-
stimulation of chemokines, accelerating disease progression.

4.2.1. Monocyte Chemoattractant Protein-1 (MCP-1)/CCL2 and CCR2 Receptor in CKD

CCL-2 is a well-studied chemokine in cardiac and renal diseases, known for its ability
to attract monocytes, T lymphocytes, and natural killer cells [250]. Excessive activation of
CCL2 leads to an overwhelming cellular infiltration and prolonged inflammatory response,
exacerbating tissue damage and affecting kidney function [265,266]. Upregulation of CCL2
by NF-κB has been linked to tubulointerstitial injury in proteinuric renal disease [267].
Conversely, reducing protein accumulation in renal disease has been shown to decrease
CCL2 levels [268].

In advanced CKD, the TGF-β/Smad2,3 pathway activation induces CCL2 expression
in renal cells, resulting in a chemotactic effect on macrophages [269]. Likewise, in the UUO
model, a well-established model for studying fibrosis in CKD, a wide expression of CCL2
is observed, leading to macrophage infiltration, tubulointerstitial CCL2 expression, leading
to macrophage infiltration via a TGF-β/Smad3-dependent signaling pathway [270,271].
Therefore, CCL2 plays a pivotal role in progressive interstitial fibrosis in CKD.
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Blocking chemokine activity through neutralizing antibodies, chemokine receptor
antagonists, and targeted receptor gene disruption has been shown to prevent glomerular,
tubular, and interstitial injury in renal disease models [69,261]. For instance, in a two-month
study of acute renal failure in mice with Goodpasture syndrome, CCL2 inhibition using an
anti-oligodeoxynucleotide reduced monocyte infiltration and preserved renal function [272]
(Table 2).

Table 2. Chemokines and inhibitory strategies in experimental CKD studies.

Chemokine/
Chemokine

Receptor

Inhibitory
Strategy

Species
(Mice or

Rats)
CKD Type Beneficial Effects Reference

MCP-1/
CCL2

Blocking of MCP-1
by injecting

antisense
oligodeoxynu-

cleotide

Rats
Two months model

of Goodpasteur
syndrome.

↓MCP-1 mRNA.
↓Mononuclear cell infiltration.
↓Monocity/macrophages in the

interstitium.
↓ Tubulointerstitial damage.

[272]

CCL8 Anti-CCL8 mAb Mice

UUO mouse
model (14 days).

End-stage CKD in
the obstructed

kidney.

↓ Fibrosis and apoptosis.
↓ E-cadherin and BCL-2.

↓ Fibronectin.
↓ CCR2.

[50]

CXCL10/
IP-10

Inhibition by anti-
IP-10/CXCL10

antibody
Rats

Rat model of renal
endothelial

microvascular
injury in CKD.

↓ Tubulointerstitial T cell recruitment.
Improved renal function.
↓ Serum creatinine.

↓ BUN.

[273]

Abbreviations: MCP-1: monocyte chemoattractant protein-1, mAb: monoclonal antibody, mRNA: messenger
ribonucleic acid, BCL-2: B-cell lymphoma 2, BUN: blood urea nitrogen, CCR2: C-C chemokine receptor 2, CKD:
chronic kidney disease, UUO: unilateral ureteral obstruction, CCL2: C-C motif ligand 2, CCL8: C-C motif
chemokine 8. Symbols: ↓ decrease.

This experimental model involves glomerulonephritis development due to autoanti-
body accumulation in the basement membrane [274], eventually leading to renal failure.
Similarly, targeted deletions of CCR2, a primary receptor for CCL2, impaired monocyte
recruitment to inflammation sites in diabetic nephropathy [256], emphasizing their role
in mediating macrophage recruitment. Additionally, disruption of CCL2 or CCR2 helps
prevent the excessive production of Th1-type cytokines [258,275], which have immunosup-
pressive effects by regulating Treg cells [276,277]. Thus, inhibiting CCL2 holds promise
as a potential therapy to mitigate excessive macrophage infiltration and fibrotic processes
in CKD.

4.2.2. C-C Motif Chemokine 8 (CCL8/MCP-2) in CKD

CCL8 is a CC chemokine that plays a pivotal role in attracting inflammatory monocytes
and T lymphocytes in various pathological conditions [278,279]. In advanced CKD and
fibrosis-related human glomerulopathies [280], CCL8 levels significantly increase, primarily
due to the activation of the TGF-β pathway. Consequently, inhibiting CCL8 has been pro-
posed as a preventive therapy against fibrosis in CKD. In the mice-UUO model, functional
blockade of CCL8 with a monoclonal antibody has been shown to prevent fibrosis and
apoptosis in renal cells [50] (Table 2). Additionally, inhibiting CCL8 reduces peritoneal
inflammation and fibrosis following TGF-β treatment in peritoneal dialysis, underscoring
its critical role in promoting inflammation, fibrosis, senescence, and apoptosis [281].

CCL8 has also been associated with early allograft inflammation by promoting the
infiltration of CCR8+ T cells. Resident macrophages are the primary sources of CCL8,
as blocking CCL8-CCR8 or depleting donor kidney resident macrophages inhibits early
allograft immune cell infiltration [282]. Therefore, CCL8’s pathological consequences
include fibrosis and early inflammatory processes, possibly driven by transcriptional
changes.
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4.2.3. Chemokine Interferon-γ-Inducible Protein 10 (IP-10)/Chemokine (C-X-C Motif)
Ligand (CXCL)10 in CKD

CXCL10, a member of the CXC chemokine family, exerts its biological functions by
binding to the CXCR3 receptor [283]. CXCR3 is expressed in T lymphocytes, natural
killer (NK) cells, inflammatory dendritic cells, macrophages, and B cells [284]. CXCL10
is involved in chemotaxis, apoptosis induction, cell growth regulation, and angiostatic
effects. It is primarily secreted by leukocytes, activated neutrophils, eosinophils, epithelial
cells, and endothelial cells in response to IFN-γ [273]. Once activated, CXCL10 attracts
Th1 lymphocytes, monocytes, T cells, and NK cells [273,283]. Interstitial CXCR3 has been
implicated in the progressive loss of renal function in human glomerular diseases [260].
While this study did not inhibit CXCR3, reducing CXCL10 expression could potentially
decrease the infiltration of immune cells associated with the condition.

In a rat model of renal microvascular endothelial injury, in situ hybridization re-
vealed upregulation of IP-10/CXCL10 in endothelial cells within the tubulointerstitial area.
Treatment with a neutralizing anti-CXCL10 antibody resulted in decreased infiltration of
tubulointerstitial T cells expressing the CXCR3 receptor and improved renal function [273]
(Table 2). The study also unveiled a differential chemokine expression profile by endothe-
lial cells in various renal compartments, underscoring the diverse roles of chemokines in
pathological processes.

4.3. Chemokines and Receptors in the Pathophysiology of CRS Type 4

Chemokines can also exert inotropic effects, induce cardiomyocyte apoptosis, and
contribute to the degradation of the extracellular matrix [51,54]. Notably, the trafficking
of leukocytes from the peripheral circulation into the heart involves intricate interactions
between soluble mediators, surface molecules on endothelial cells and leukocytes, and the
extracellular matrix [260]. Importantly, molecules like mtDAMPs and proinflammatory
cytokines such as TNF-α, IL-1β, and IFN-γ can trigger the overexpression of chemokines.
This, in turn, induces the production of fibrogenic growth factors and the deposition
of extracellular matrix proteins in the cardiac interstitium, leading to an inflammatory
response in the heart [162,285].

As a consequence of CKD, inflammatory processes can also manifest in the heart,
resulting in significant alterations, including heart failure, coronary artery disease, arrhyth-
mias, and sudden cardiac death. This can ultimately lead to the development of CRS
type 4.

4.3.1. Monocyte Chemoattractant Protein-1 (MCP-1)/CCL2 and CCR2 in CRS Type 4

CCL2 is a chemokine that regulates the migration and infiltration of monocytes,
macrophages, memory T lymphocytes, and NK cells. In cases of uremia, CCL2 ac-
tivates chemokine responses through the NF-κB inflammatory signaling in cardiomy-
ocytes [127,286] (Figure 5). Additionally, various uremic toxins elevate CCL2 expression via
ROS-induced NF-κB activation in vascular endothelial cells, contributing to cardiovascular
changes [287]. While CCL2 is expressed in macrophages, vascular cells, and interstitial
fibroblasts, it is also found in cardiomyocytes in rat models of volume-overload congestive
heart failure [288].

Increased CCL2 expression is commonly associated with renal and cardiovascular
diseases, including heart failure, coronary atherosclerotic heart disease, hypertension, car-
diomyopathy, and fibrosis [289]. The latter has been linked to myocardial TGF-β expression,
triggering fibrosis [290].



Int. J. Mol. Sci. 2023, 24, 15875 20 of 35

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 20 of 36 
 

 

As a consequence of CKD, inflammatory processes can also manifest in the heart, re-
sulting in significant alterations, including heart failure, coronary artery disease, arrhyth-
mias, and sudden cardiac death. This can ultimately lead to the development of CRS type 4. 

4.3.1. Monocyte Chemoattractant Protein-1 (MCP-1)/CCL2 and CCR2 in CRS Type 4 
CCL2 is a chemokine that regulates the migration and infiltration of monocytes, mac-

rophages, memory T lymphocytes, and NK cells. In cases of uremia, CCL2 activates chem-
okine responses through the NF-κB inflammatory signaling in cardiomyocytes [127,286] 
(Figure 5). Additionally, various uremic toxins elevate CCL2 expression via ROS-induced 
NF-κB activation in vascular endothelial cells, contributing to cardiovascular changes [287]. 
While CCL2 is expressed in macrophages, vascular cells, and interstitial fibroblasts, it is also 
found in cardiomyocytes in rat models of volume-overload congestive heart failure [288]. 

 
Figure 5. Inflammatory signaling pathways that produce chemokines during cardiorenal syndrome 
type 4 (CRS type 4). Factors and molecules the kidney releases during chronic kidney disease (CKD) 
activate inflammation-related signaling pathways. These pathways comprise Toll-like receptors 
(TLRs) 2, 4, and 9, the stimulator of interferon genes (STING), and NOD-like receptor (NLR) family 
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Figure 5. Inflammatory signaling pathways that produce chemokines during cardiorenal syndrome
type 4 (CRS type 4). Factors and molecules the kidney releases during chronic kidney disease (CKD)
activate inflammation-related signaling pathways. These pathways comprise Toll-like receptors
(TLRs) 2, 4, and 9, the stimulator of interferon genes (STING), and NOD-like receptor (NLR) family
pyrin domain containing 3 (NLRP3), which mediate the activation of p65/c-Rel, inducing the activa-
tion of nuclear factor kappa B (NF-κB) into the nucleus. Moreover, mitochondrial reactive oxygen
species (mtROS) stimulates this transcription factor. NF-κB activation induces the production of
inflammatory genes like tumor necrosis factor α (TNF-α), proinflammatory interleukins (IL): IL-1β,
IL-18, IL-6, and chemokines (CCL2, CCL8, and CXCL10). These chemokines attract inflammatory cells
(macrophages, neutrophils, and T cells) to the tissue, aggravating inflammation. Using chemokine
inhibitors during CKD might be an excellent strategy to prevent CRS type 4. cGAS: cyclic guano-
sine monophosphate (cGMP)–adenosine monophosphate (AMP) synthase, mtDNA: mitochondrial
deoxyribonucleic acid, HSPs = heat shock proteins, ATP = adenosine triphosphate, TNFR: tumor
necrosis factor receptor, P2YRs and P2XRs: purinergic receptor. Symbols: red and blue ↑mean an
increase. Figure created using BioRender.com.

Interestingly, inhibiting CCL2 and its receptor CCR2 has been proposed as a poten-
tial therapy in myocardial injury and adverse remodeling [291]. For instance, Kuwahara
et al. [292] discovered that CCL2-mediated macrophage aggregation promoted myocardial
fibrosis through the TGF-β pathway in a left ventricular pressure overload model. This
effect was mitigated by neutralizing CCL2, which reduced macrophage aggregation, inhib-
ited TGF-β induction, curtailed fibroblast proliferation, alleviated diastolic dysfunction,
and reduced myocardial fibrosis.

In a myocardial infarction model induced by apolipoprotein E-deficient mice, CCR2
binding to CCL2 led to the trafficking of Ly6Chigh monocyte subsets, resulting in cardiac
remodeling. Silencing CCR2 reduced infarct size, inflammation, and ventricular remodeling.
The specific response of CCR2 in the heart was attributed to a reduction in Ly-6Chigh

monocytes [293]. It is important to note that while the association of CCL2 upregulation
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in CRS type 4 models has not been addressed to date, its role in cardiovascular diseases
suggests that it may represent a potential risk factor for developing CRS type 4.

4.3.2. The Role of C-C Motif Chemokine 8 (CCL8/MCP-2) in CRS Type 4

In a previous study, we observed an early transcriptional upregulation of CCL8 during
the early stages of CKD in mice, which induced monocyte chemotaxis in the heart [52]. This
upregulation correlated with increased infiltration of CD4+T lymphocytes, myeloid cells,
and macrophages into the heart. Notably, transient and acute CCL8 inhibition provided
protection against several cardiac alterations induced by CKD (Table 3). However, the
precise mechanisms underlying the increased levels of inflammatory cytokines and CCL8
in the heart remained unidentified.

Table 3. Identified chemokines upregulated in the heart during CKD and the benefits of using
inhibitory strategies.

Chemokine/
Chemokine

Receptor

Inhibitory
Strategy

Species
(Mice or

Rats)
Model Beneficial Effects References

CCL8 Anti-CCL8 in early
CKD Mice

Uremic
cardiomyopathy
induced by 5/6
nephrectomy.

↓ Attenuated infiltration of TCD4+,
lymphocytes and macrophages.

↓ Cardiac remodeling.
↓ Inflammation.

↓ Cardiac dysfunction.

[52]

CXCL10
CCR2-/- mice or

Anti-CXCL10
antibody

Mice

Uremic
cardiomyopathy
induced by 5/6
nephrectomy or
intraperitoneal

folate (240 mg/kg
body weight).

↓Monocyte infiltration in the heart.
↓ Cardiac alterations.

↓Macrophage local proliferation.
↓ Cardiac hypertrophy.
↓ Cardiac dysfunction.

[53]

Abbreviations: CKD: chronic kidney disease, CCL8: C-C motif chemokine 8, CXCL10: chemokine (C-X-C motif)
ligand (CXCL)10. Symbols: ↓ decrease.

It is important to note that the interplay of various factors, including early vascular
aging mechanisms, comorbidities, and atherosclerotic processes, influence inflammation
during CRS type 4 [294–296]. Thus, it is crucial to consider these factors during the initial
stages of the disease and its progression, which would be valuable both in experimental
models and clinical research.

It is possible that the elevated levels of inflammatory cytokines are initiated by in-
creased TNF-α expression in the heart, which subsequently upregulates CCL8 through
TLR4 signaling, recognizing mtDAMPs and inducing NF-κB via the MyD88-dependent
pathway [250]. CCL8 has also been implicated in coronary artery diseases, atherosclerosis,
and cardiac fibrosis [297–299]. Furthermore, its upregulation induces proliferation, mi-
gration, cell cycle, changes, and phenotypic alterations in human aortic smooth muscle
cells exposed to platelet-derived growth factor BB, serving as a model for atherosclerosis.
Silencing CCL8 prevented these changes [300]. Despite these findings, there is limited
information in the current literature regarding the role of CCL8 in other forms of CRS.
Therefore, further research is required to elucidate the mechanisms associated with CCL8
in CRS. A summary of the therapeutic results promoted by the inhibition of PRRs in CRs
type 4 and the associated cytokines and chemokines is presented in Table 4.
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Table 4. Therapeutic effect of pattern-recognition receptors inhibition and their inflammatory modu-
lation in CRS type 4.

PRR Type DAMPs or tDAMPs
That Activate PRRs

Associated
Cytokines/

Chemokines

Therapeutic Effect
of the PPR

Inhibition in the
CRS Type 4

References

NLRP3

↑ ROS
Extracellular ATP
Cardiolipin
EVs
Apoptotic bodies

IL-1β, IL-18,
TGF-β, TNF-α
CCL8, CXCL10

↓ Cardiac
dysfunction
↓ Cardiac fibrosis
↓ Cardiac
hypertrophy

[121,135,136,142,144–146,149,158,192].

TLR2/
TLR4

Cell debris
Nucleic acid fragments
↑ Oxidative products
↑ Uremic toxins
HSPs

IL-1β, IL-18,
IFN-γ, IL-6,
TNF-α
CCL2, CCL8

↓ Cardiac
hypertrophy
↓ BNP levels
↓ α-actin levels

[45,71,131,145,167–176].

TLR9 mtDNA
EVs

IL-1β, IL-18,
IL-6
Chemokines?

? [180–182,187,189,193].

cGAS-STING

dsDNA
Neutrophil DNA-protein
complexes
mtDNA

IL-18, IL-1β
CCL8, CXCL10

↓ Cardiac
hypertrophy [44,217,218,226,233].

Abbreviations: BNP: brain natriuretic peptide; dsDNA: double-stranded DNA; EVs: extracellular vesicles; HSPs:
heat shock proteins; mtDNA: mitochondrial DNA; PRR: pattern-recognition receptor; ROS: reactive oxygen
species. Symbols: ↑ increase, ↓ decrease, ? unknown effect.

4.3.3. IP-10/CXCL10 in CRS Type 4

In a recent study involving two experimental CKD models, CXCL10 chemokine was
found to be highly expressed in the heart and associated with monocyte infiltration and
local macrophage proliferation [53]. Interestingly, the study identified cardiomyocytes and
ventricular fibroblasts as the primary cells responsible for increased CXCL10 expression
in the heart. Deletion of the CXCL10 prevented the rise in cardiac F4/80+ macrophages
and cardiovascular alterations (Table 3). However, the specific inflammatory pathway
associated with CXCL10 upregulation was not investigated.

The activation of NLRP3 inflammasome or cGAS-STING could potentially be linked
because the study showed that cardiac fibroblasts, cardiomyocytes, and cardiac endothelial
cells responded by expressing profibrotic and pro-inflammatory related genes, such as
TGF-β1, IL-1β, and IL-6, which are associated with NF-κB activation (as mentioned above).

Additionally, CXCL10 serves as a chemoattractant for T-lymphocytes in cardiac tissue,
endothelial cells, and vascular smooth muscle cells [301]. Elevated CXCL10 levels in CVD
contribute to increased cardiac infiltration of proinflammatory Th1 and cytotoxic T cells,
resulting in proinflammatory phenotypes [302]. In summary, CXCL10 appears to play a
crucial role in CRS development, inhibiting it could be a potential therapeutic target to
mitigate this disease.

5. Concluding Remarks and Future Perspectives

CKD induces hemodynamic and metabolic changes that lead to mitochondrial dam-
age, causing the release of various components into the peripheral circulation. These
mitochondrial components activate inflammatory signaling pathways in organs like the
heart, resulting in the upregulation of inflammatory genes, including chemokines and
cytokines, further exacerbating damage. Chemokines play a pivotal role in attracting in-
flammatory cells, thereby intensifying inflammation, and contributing to the development
of CRS type 4 development.
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While experimental evidence suggests the potential therapeutic benefit of targeting
chemokines in CRS type 4, clinical translation may pose challenges due to an incomplete
understanding of the mechanisms underlying heart pathophysiology. Therefore, future
research should focus on precisely identifying the immunopathogenic mechanisms respon-
sible for cardiac damage and assessing the outcomes of inhibiting specific chemokines.
Such studies are essential for the development of novel strategies that target inflammatory
and immunopathogenic mechanisms in CRS type 4.
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