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Abstract

The relaxin-3/RXFP3 system has been implicated in the modulation of depressive- and anxi-

ety-like behaviour in the animal literature; however, there is a lack of human studies investi-

gating this signalling system. We seek to bridge this gap by leveraging the large UK Biobank

study to retrospectively assess genetic risk variants linked with this neuropeptidergic sys-

tem. Specifically, we conducted a candidate gene study in the UK Biobank to test for poten-

tial associations between a set of functional, candidate single nucleotide polymorphisms

(SNPs) pertinent to relaxin-3 signalling, determined using in silico tools, and several out-

comes, including depression, atypical depression, anxiety and metabolic syndrome. For

each outcome, we used several rigorously defined phenotypes, culminating in subsample

sizes ranging from 85,881 to 386,769 participants. Across all outcomes, there were no asso-

ciations between any candidate SNP and any outcome phenotype, following corrections for

multiple testing burden. Regression models comprising several SNPs per relevant candi-

date gene as exploratory variables further exhibited no prediction of outcome. Our findings

corroborate conclusions from previous literature about the limitations of candidate gene

approaches, even when based on firm biological hypotheses, in the domain of genetic

research for neuropsychiatric disorders.
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Introduction

Genetics plays a major role in neuropsychiatric conditions, with twin-based heritability esti-

mates of major depressive disorder (MDD) between 40%-50% [1,2] and between 30%-40% [3]

for anxiety disorders. Recent single nucleotide polymorphism (SNP)-based heritability mea-

sures further corroborate a role for genetics, with MDD estimates ranging between 0.102–

0.162 [4]; however, the full extent of genetic involvement remains poorly defined. Much of the

initial focus in this domain was on candidate gene studies, which suggested that variation in

several genes was putatively implicated in MDD and anxiety disorders, like the short allele of

serotonin transporter gene-linked polymorphic region [5] and Catechol-O-methyltransferase

[6]. However, over the last decade, advances in computing power and sequencing technology,

together with substantially larger study sample sizes, have enabled a shift towards hypothesis-

free genome-wide association studies (GWAS), which have identified novel loci associated

with MDD [7–9] and anxiety disorders [10–12], further underscoring the contribution of

genetics to neuropsychiatric disorders. While GWAS have become the standard approach in

this field, there may still be scope for candidate gene approaches, particularly for studies rooted

in comprehensive understanding of biological processes.

To this end, neuropeptidergic modulation has emerged as a key contributory factor to the

aetiology of several mental health disorders; for instance, much evidence implicates corticotro-

pin-releasing factor and Substance P in affective disorders and stress-signaling [13–15].

Relaxin-3 is another such neuropeptide, identified in GABAergic neurons of the rodent

nucleus incertus approximately two decades ago [16,17]. This protein binds to several recep-

tors, including its cognate receptor RXFP3, RXFP4, and to some extent RXFP1, forming a sig-

nalling network that anatomical studies suggest is distributed across the hypothalamus,

hippocampus, amygdala and several other brain regions implicated in neuropsychiatric beha-

vioural alterations [18,19]. Moreover, several literature reviews of animal studies have

highlighted the role of this relaxin-3/RXFP3 arousal system in regulating behaviours akin to

neuropsychiatric conditions and their endophenotypes [19–23]; pharmacological and genetic

interventions in rodent models have resulted in altered performance on several testing para-

digms, as well as induced orexigenic and arousal behaviour, underlining a modulatory role for

relaxin-3 signalling.

Despite evidence for the role of relaxin-3/RXFP3 in affective disorders and associated

behaviours, there is a clear lack of human studies on this neuropeptidergic system. Our recent

systematic review identified only five studies [23], the majority of which performed relatively

poorly in methodological assessment. Limitations notwithstanding, this review identified a ret-

rospective candidate gene study in a cohort of antipsychotic-treated patients [24], which

reported several significant associations between candidate SNPs at the RLN3, RXFP3, and

RXP4 genes and metabolic phenotypes, including hypertension, dyslipidaemia, and hypercho-

lesterolaemia. Despite these preliminary findings, no follow-up work has been conducted to

explore these candidate polymorphisms in a large, more robust cohort, or for any other neuro-

psychiatric phenotypes linked to the relaxin-3/RXFP3 system.

The UK Biobank resource [25] offers an opportunity to build on prior work and investigate

these variants in a large-scale study. Participants in the UK Biobank have been deeply pheno-

typed, allowing for the derivation of several outcomes retrospectively. We therefore conducted

a candidate gene study in UK Biobank to explore functional SNPs, determined using in silico
prediction tools, at genes thought to be relevant to relaxin-3 signalling, including RLN3,

RXFP3, RXFP4, RXFP1, and RLN2. Our outcomes of interest in this association study include

depression, atypical depression, anxiety and metabolic syndrome, each of which has previously

been linked to the relaxin-3/RXFP3 across the pertinent literature of animal studies. Several
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definitions of outcomes were assessed, to ensure comprehensive evaluation of our candidate

variants.

Materials and methods

Study population

The data used in this study was collected by the UK Biobank, a study of approximately 500,000

participants across the United Kingdom [25]. Genotyping data was available for 488,171 indi-

viduals, with DNA extracted from whole blood samples then assayed using the Affymetrix UK

BiLEVE Axiom Array or the Affymetrix UK Biobank Axiom Array [26]; genotype imputation

was done using IMPUTE4 with Haplotype Reference Consortium (HRC) data as the main ref-

erence panel [26]. The UK Biobank has extensive phenotypic data, including self-report data

and various measures from the baseline assessment, electronic health records, and further

online data collection, including a mental health questionnaire [27]. Using these data, we cre-

ated several definitions of depression subtypes, anxiety, and metabolic parameters, as

described below.

Prior to analysis, exclusions were applied for each phenotype. Across all depression and

anxiety phenotypes, participants who reported taking antipsychotics during baseline assess-

ment interview, or with one of several confounding illnesses (mania, bipolar, schizophrenia, or

psychosis) based on ICD-10 diagnostic codes from hospital inpatient data and self-reported

professional diagnosis, were excluded. Controls for depression phenotypes were further

excluded if they were on antidepressant treatment or fulfilled case definition for the other

depression phenotypes, while controls for anxiety phenotypes were further excluded if on

anxiolytic treatment or fulfilling case definitions for the other anxiety phenotypes. For meta-

bolic phenotypes, controls were excluded when they had prescriptions of drugs corresponding

to any metabolic condition comprising the metabolic syndrome definition (for example statins

for hypertension).

With respect to the genetic quality control, individuals were excluded from this study when

they were outliers in the genetic data for heterozygosity, had a variant call rate of<98%, had a

mismatch between their reported sex and genetic sex, or were not recorded as White British

on initial assessment centre visit. Moreover, individuals were excluded based on genetic relat-

edness, whereby only one member in groups of related individuals was used in this study; this

was achieved by initial exclusion of individuals using kinship coefficients derived with the

KING software, then subsequent addition of one member per related group, selecting individ-

uals with a genetic relatedness of<0.025 with any other participant.

This study was conducted under the UK Biobank application number 16577.

Candidate SNP selection

The process used to select candidate SNPs is outlined in Fig 1. The National Center for Bio-

technology Information Single Nucleotide Polymorphism Database [28] was searched for all

unmerged SNPs in the genes RLN3, RXFP3, RXFP4, RLN2, and RXFP1 with a minor allele fre-

quency of>0.01, using Entrez [29] to interrogate SNP records mapped to these genes. All

SNPs were then passed through the Combined Annotation-Dependent Depletion (CADD)

and Genome Wide Annotation of Variants (GWAVA) in silico tools for identifying variants

with potentially functional effects, retaining SNPs above the recommended C-score cut-off of

>10 for CADD [30] and above the region, TSS, and unmatched scores cut-off of>0.5 for

GWAVA [31]. Finally, the remaining SNPs were assessed for linkage disequilibrium using the

LDlink web tool [32], with an r2 cut-off of>0.8 used to prune SNPs in strong linkage disequi-

librium based on European reference population data from the 1000 Genomes Project [33].

PLOS ONE Investigating the role of the relaxin-3/RXFP3 system in neuropsychiatric disorders and metabolic phenotypes

PLOS ONE | https://doi.org/10.1371/journal.pone.0294045 November 15, 2023 3 / 19

Resistant Depression (P-TRD)”. UK Chief

Investigator for Novartis MDD study

MIJ821A12201. Grant funding (past and present):

NIMH (USA); CIHR (Canada); NARSAD (USA);

Stanley Medical Research Institute (USA); MRC

(UK); Wellcome Trust (UK); Royal College of

Physicians (Edin); BMA (UK); UBC-VGH

Foundation (Canada); WEDC (Canada); CCS

Depression Research Fund (Canada); MSFHR

(Canada); NIHR (UK). Janssen (UK). No

shareholdings in pharmaceutical companies.

Cathryn Lewis sits on the Scientific Advisory Board

for Myriad Neuroscience, and has received speaker

fees from SYNLAB. Win Lee Edwin Wong and

Ryan Arathimos have no conflicts of interest to

declare. This does not alter our adherence to PLOS

ONE policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0294045


This culminated in a final set of 12 SNPs across RLN3 (rs74400983, rs1982632, rs78161395,

rs6511905), RXFP3 (rs9292519, rs171631), RXFP1 (rs62351166, rs7695640, rs11100192), and

RLN2 (rs72703633, rs11793069, rs72499174). We supplemented this with an additional 3

SNPs from RXFP3 (rs42868, rs7702361) and RXFP4 (rs11264422), which were reported to be

associated with metabolic parameters in a previous case-control study [24].

Fig 1. Flowchart outlining the process used to select candidate single nucleotide polymorphisms in this study.

https://doi.org/10.1371/journal.pone.0294045.g001
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Phenotype definitions

Several phenotypes were defined for the outcomes of depression, atypical depression, anxiety,

metabolic syndrome, and the distinct metabolic conditions that comprise metabolic

syndrome.

Depression was defined with six different phenotypes: a “broad” phenotype, an “ICD10--

coded” phenotype, a “lifetime” phenotype, a CIDI phenotype, a “PHQ-9 definition” phenotype

and a “PHQ-9 cut-off” phenotype. The “broad” phenotype, “ICD10-coded” phenotype and

“lifetime” phenotype roughly correspond to definitions previously used in a UK Biobank

GWAS of depression [8]. In brief, the broad phenotype was defined using self-reported help-

seeking behaviour from participant touchscreen responses, while ICD10-coded phenotype was

defined using linked hospital admission records from the UK Biobank. The lifetime phenotype

was defined using a returned field from Smith et al. [34], which was derived using touchscreen

responses for both help-seeking behaviour and the presence of low mood or anhedonia. The

CIDI phenotype of depression [27] was derived using participant responses to the online fol-

low-up mental health questionnaire, based on depression-relevant questions from the World

Health Organisation’s (WHO) Composite International Diagnostic Interview Short Form

(CIDI-SF) [35], modified to consider lifetime history, where participants asked about their

worst ever depression episode had to report either anhedonia or depressed mood in their life-

time and meet at least four of eight lifetime depression symptoms for caseness. The two PHQ-

9 phenotypes were also derived using responses to the online follow-up mental health ques-

tionnaire, from the Patient Health Questionnaire 9-question version for current depression

symptoms [36]–the “PHQ-9 definition” was based on a major depression diagnosis on the

PHQ-9, while the “PHQ-9 cut-off” phenotype was based on a cut-off score of�10 [36,37].

The atypical depression subtype was defined with three different phenotypes, for partici-

pants who responded to the online follow-up mental health questionnaire. Caseness for atypi-

cal depression was defined as an indication of depression, based on our previously defined

CIDI phenotype, PHQ-9 definition phenotype, or PHQ-9 cut-off definition phenotype, as well

as indicating both hypersomnia and weight gain during their worst episode of depression on

the online follow-up mental health questionnaire [38]. Anxiety was defined with three differ-

ent phenotypes: an ICD10-coded phenotype, a “lifetime disorder” phenotype and a “GAD-7

cut-off” phenotype, the latter two of which mirror the definitions used in a previous GWAS of

anxiety [12]. The ICD10-coded phenotype of anxiety was defined using linked hospital admis-

sion records for the main five anxiety disorders. The lifetime disorder phenotype was derived

with a combination of self-reported lifetime professional diagnosis for the main five anxiety

disorders and responses to the online follow-up mental health questionnaire, based on anxi-

ety-relevant questions from the CIDI. The GAD-7 cut-off phenotype was defined using

responses to answers to questions based on the Generalised Anxiety Disorder Assessment

(GAD-7), using a cut-off score of�10 to define caseness [39].

Metabolic syndrome was assessed using the National Heart, Lung and Blood Institute defi-

nition [40], where caseness was defined as having�3 of the following risk factors: a waist cir-

cumference of�102 cm for males or�88 cm for females, hypertension (or antihypertensive

drug treatment), hypertriglyceridaemia (or drug treatment for elevated triglycerides), hyper-

glycaemia (or drug treatment for elevated glucose) and low HDL cholesterol levels (or drug

treatment for reduced HDL cholesterol). Each of these risk factors, with the exception of waist

circumference, were also assessed as individual phenotypes.

The full criteria used to derive these phenotype variables in the UK Biobank, including all

relevant field codes used, are detailed in S1–S3 Tables.
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Statistical analyses

We performed logistic regression to test for association between each candidate gene and out-

come. These regression models were adjusted for age, age2, sex, genotyping batch, testing cen-

tre, and the first six European ancestry principal components (to control for population

structure). For each primary outcome of interest (i.e., MDD, anxiety, atypical depression and

metabolic syndrome), we corrected for multiple testing using false discovery rate (FDR) across

the various phenotype definitions– 6 definitions for MDD, 3 definitions for anxiery, 3 defini-

tions for atypical depression and 5 definitions for metabolic syndrome–and compared these q-

values against a threshold of 0.01, more stringent than the standard threshold of 0.05 to

account for the multiple SNPs tested. To ensure that there were no methodological errors in

phenotypic definitions or exclusions, similar regression testing was also conducted for three

independent, control SNPs at chromosome 7 from a previous GWAS analysis done for MDD

in the UK Biobank: rs3807865, rs1554505, and rs5011432. All three of these polymorphisms

were previously significantly associated with a specific MDD outcome phenotype, such that

these are solid control points of reference to verify that the correct quality control procedures

were implemented in the present study.

We also conducted a sensitivity analysis for each candidate gene, in which every candidate

SNP at a particular gene (for RLN3, RXFP3, RXFP1, and RLN2) was an explanatory variable in

a single multivariable regression model, adjusted for covariates as described above. This was

then compared to an analogous regression model with no candidate SNP variables present,

using a likelihood ratio test. This was conducted for all outcome phenotypes, with multiple

testing accounted for as in the individual SNP analyses, with an FDR correction across the

number of phenotype sub-definitions then comparison to an alpha level of 0.01.

Results

Study demographics

In total, there were six phenotypes for depression, three phenotypes for anxiety, three pheno-

types for atypical depression, and five phenotypes for metabolic indications. Study demo-

graphics for case and control groups in each phenotype definition are outlined in Table 1. The

number of cases and controls within each phenotype varied heavily, as each was derived using

a different set of responses in UK Biobank. Across all phenotype definitions, the mean age of

participants at baseline ranged from 51.6 years to 59.2 years.

SNP associations with depression and anxiety phenotypes

Each candidate SNP was individually investigated for all phenotypes, across all outcomes of

interest. When corrected for the number of tests conducted, there were no associations

between any individual candidate SNP and any of the six depression phenotypes (Fig 2).

Before correction for multiple testing, rs74400983 (unadjusted p = 0.0232) and rs78161395

(unadjusted p = 0.0428) at RLN3, as well as rs62351166 (unadjusted p = 0.0388) at RXFP1

were nominally linked with the broad phenotype of depression; however, these did not with-

stand FDR corrections. No candidate SNPs were associated with any of the three atypical

depression phenotypes following corrections for multiple test burden (Fig 3), with rs42868

from RXFP3 closest to demonstrating any significant association (unadjusted p = 0.0297).

In addition to evaluating these candidate SNPs, we also tested the SNPs rs3807865,

rs1554505, and rs5011432 at chromosome 7, which have previously been associated with single

depression phenotype definitions (that mirror our definitions) in a 2018 GWAS of MDD in

the UK Biobank [8]. The associations from this GWAS were largely reproduced in this study,
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with rs3807865 still significantly associated with the broad phenotype depression (β = 0.033,

SE = 0.005, p = 4.74 × 10−11), rs5011432 significantly associated with the lifetime phenotype

depression (β = 0.048, SE = 0.011, p = 1.96 × 10−5), and rs1554505 significantly associated with

the ICD10-coded depression phenotype (β = -0.047, SE = 0.013, p = 2.04 × 10−4).

There were also no associations between any individual candidate SNP and any of the three

anxiety phenotypes (Fig 4). Before applying our relatively liberal multiple test correction pro-

cedure, rs11264422 from RXFP4 was preliminarily associated with both our probable (unad-

justed p = 0.00318) and ICD10-coded (unadjusted p = 0.0106) phenotype for anxiety;

however, following FDR corrections, these associations were not significant against our

threshold of 0.01.

Detailed information for all relevant regression analyses pertinent to depression, atypical

depression, and anxiety phenotypes are summarised in S4–S6 Tables.

SNP associations with metabolic phenotypes

Candidate SNPs were also tested for associations with metabolic syndrome and four of its con-

stituent phenotypes: hypertension, low HDL cholesterol levels (dyslipidaemia), hypertriglycer-

idaemia, and hyperglycaemia. After FDR adjustment for the number of sub-phenotypes tested,

there were no associations between any of the candidate SNPs and any of the metabolic pheno-

types (Fig 5). Associations between rs72499174 from RLN2 and two phenotypes–hypertension

(q = 0.0355) and hypertriglyceridaemia (q = 0.0704)–were the two closest to the significance

cut-offs used. The candidate SNPs rs42868 (unadjusted p = 0.0289) and rs11793069 (unad-

justed p = 0.0353) were also provisionally linked with low HDL cholesterol levels (dyslipidae-

mia) and hypertension, respectively. However, these associations were not statistically

significant after corrections for multiple testing. Detailed information for all pertinent regres-

sion analyses involving metabolic phenotypes is summarised in S7 Table.

Table 1. Summary of study demographics for case and control groups in each of the phenotypic definitions, across all outcomes.

Phenotype Total Number of cases Number of controls %Male Mean age (standard deviation)

Broad depression 367445 131219 236226 53.9% 56.8 (8.01)

ICD10-coded depression 288937 19307 269630 53.0% 57.3 (7.98)

Lifetime depression 85881 23271 62610 52.8% 57.2 (8.01)

CIDI depression 111786 33449 78337 56.1% 56.1 (7.67)

PHQ-9 definition depression 103236 5470 97766 54.5% 56.2 (7.69)

PHQ-9 cutoff depression 105170 5720 99450 54.9% 56.1 (7.7)

CIDI atypical depression 79999 1662 78337 51.3% 56.6 (7.67)

PHQ-9 definition atypical depression 98192 426 97766 54.4% 56.3 (7.66)

PHQ-9 cutoff atypical depression 100011 561 99450 54.4% 56.3 (7.67)

ICD10-coded anxiety 321083 16151 304932 54.3% 57.2 (7.97)

Lifetime disorder anxiety 101836 21045 80791 56.1% 56.2 (7.68)

GAD-7 cutoff anxiety 114667 4472 110195 56.1% 56.1 (7.67)

Metabolic syndrome 305742 104629 201113 53.4% 56.7 (8.02)

Hypertension 335730 235005 100725 54.0% 56.6 (8.05)

Low HDL cholesterol 336469 65720 270749 53.5% 56.7 (8.02)

Hyperglycaemia 331715 25573 306142 53.7% 56.7 (8.03)

Hypertriglyceridaemia 326585 147594 178991 54.7% 56.2 (8.05)

https://doi.org/10.1371/journal.pone.0294045.t001
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Sensitivity analyses by gene

Association analyses for each gene were also conducted to additionally investigate our candi-

date SNPs of interest. All SNPs at a particular gene were entered as explanatory variables in a

single multivariate logistic regression model, for each outcome phenotype, which was then

compared to a null model with no SNPs and only covariates as predictors. Combined SNPs at

Fig 2. Unadjusted p-values for association tests between all SNPs and the 6 phenotypic definitions of depression. Regression models were adjusted for age, age2,

sex, genotyping batch, testing centre, and the first six European ancestry principal components. SNPs that were nominally associated with a phenotype are annotated

with their corresponding q-value following FDR correction–there were no statistically significant associations.

https://doi.org/10.1371/journal.pone.0294045.g002
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RLN3, RXFP3, RLN2, and RXFP1 were tested, with RXFP4 not included as there was only one

pertinent candidate SNP at this gene. Across all depression, anxiety, atypical depression and

metabolic phenotypes, none of the regression models comprising multiple SNP predictors sig-

nificantly improved fit on the likelihood ratio test, compared to the null models, following

Fig 3. Unadjusted p-values for association tests between all SNPs and the 3 phenotypic definitions of atypical depression. Regression models were adjusted for

age, age2, sex, genotyping batch, testing centre, and the first six European ancestry principal components. SNPs that were nominally associated with a phenotype are

annotated with their corresponding q-value following FDR correction–there were no statistically significant associations.

https://doi.org/10.1371/journal.pone.0294045.g003
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correction for multiple testing burden (S8–S10 Tables). This further underscores the lack of

observed associations between our candidate SNPs and the outcomes of interest in the UK

Biobank.

Fig 4. Unadjusted p-values for association tests between all SNPs and the 3 phenotypic definitions of anxiety disorders. Regression models were adjusted for age,

age2, sex, genotyping batch, testing centre, and the first six European ancestry principal components. SNPs that were nominally associated with a phenotype are

annotated with their corresponding q-value following FDR correction–there were no statistically significant associations.

https://doi.org/10.1371/journal.pone.0294045.g004
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Discussion

In this analysis of a large population-based cohort, a set of functional SNPs from several candi-

date genes relevant to relaxin-3 signalling were investigated for associations with depression,

anxiety, atypical depression, and metabolic syndrome, corresponding to a putative link

reported in the animal literature. However, across all outcomes, there were no significant asso-

ciations between any individual candidate SNP and any of the outcome phenotypes, suggesting

that common genetic variation in the relaxin-3/RXFP3 system makes little contribution to

Fig 5. Unadjusted p-values for association tests between all SNPs and metabolic syndrome, as well as 4 sub-outcomes that comprise metabolic syndrome. Regression

models were adjusted for age, age2, sex, genotyping batch, testing centre, and the first six European ancestry principal components. SNPs that were nominally associated

with a phenotype are annotated with their corresponding q-value following FDR correction–there were no statistically significant associations.

https://doi.org/10.1371/journal.pone.0294045.g005

PLOS ONE Investigating the role of the relaxin-3/RXFP3 system in neuropsychiatric disorders and metabolic phenotypes

PLOS ONE | https://doi.org/10.1371/journal.pone.0294045 November 15, 2023 11 / 19

https://doi.org/10.1371/journal.pone.0294045.g005
https://doi.org/10.1371/journal.pone.0294045


liability for any of our outcomes of interest. This lack of associations arose in spite of the rela-

tively lenient procedure undertaken to correct for multiple testing, in which an FDR correc-

tion was applied across the several phenotype definitions per outcome and compared against a

threshold of 0.01, without detailed consideration for the number of SNPs tested. An FDR

approach was adopted to enable the detection of any possible signals in this study, yet no sig-

nificant associations were identified. Furthermore, the present results cannot be attributed to

errors in the data preparation and analysis pipeline undertaken in this study, as previously

identified GWAS hits in the UK Biobank were reproduced in a sensitivity analysis. A lack of

statistical power cannot be ruled out as a potential factor explaining the absence of any signifi-

cant associations, particularly for certain phenotypes, like the PHQ-9 cut-off phenotype of

depression, for which there were only 5,720 cases; however, sample sizes across the different

phenotypic subsamples ranged between 85,881 and 386,769, rendering this analysis relatively

well powered, especially when compared to the traditional candidate gene literature in this

domain. Moreover, we used between three to six phenotypic definitions under each umbrella

outcome, a very comprehensive approach to ensure that any findings were not specific to a

restricted outcome sub-definition; for instance, the six phenotypes of depression help to cir-

cumvent some of the diagnostic heterogeneity [41,42] of the disorder. The consistent lack of

associations across the different phenotypes for each definition, along with the reasonably high

power of this UK Biobank analysis, further reinforce the notion that our results are attributable

to the absence of any direct link between genetic variations at the relaxin-3/RXFP3 system and

the presence of neuropsychiatric and metabolic outcomes.

These findings conflict with the only prior candidate gene study in the relaxin-3/RXFP3

field, which reported associations between several candidate SNPs and miscellaneous meta-

bolic parameters [24]. The only variant peripherally pertinent in both studies was rs42868 at

RXFP3, which was associated with diabetes and hypercholesterolaemia in the prior study and

nominally associated with low HDL cholesterol levels (dyslipidaemia) in this analysis. There

are several potential explanations for the discrepancies between these two studies. Firstly, the

previous study was conducted using a cohort of 419 antipsychotic-treated patients, a niche

sample with fewer participants than our present investigation of the UK Biobank. Secondly,

the metabolic outcome definitions differed between studies: the prior study used BMI, clinical

records of diabetes and hypercholesterolaemia, as opposed to the present study, which used

waist circumference, fasting glucose levels, and HDL cholesterol levels; our definitions were

derived based on definitions previously used for other analyses of metabolic syndrome in the

UK Biobank [43,44], and are in line with the standardised definition from the National Heart,

Lung, and Blood Institute [40]. Thirdly, the candidate polymorphisms investigated in the two

studies did not overlap completely: the prior study made use of the HapMap programme [45],

whereas we leveraged several in silico prediction tools that were developed only after the initial

2011 study, and explored the additional relaxin family genes RLN2 and RXFP1 [46]. Nonethe-

less, we supplemented our set of SNPs with the prior study’s putatively reported significant

candidate SNPs, to ensure our investigation encompassed all prior reported associations. Per-

haps the biggest contributor to the difference in results was the statistical methodology

adopted. While both studies employed multivariable regressions, there were differences in the

external variables controlled for; our study controlled for potential genotyping differences, as

well as population structure (using principal components), but did not take into account dura-

tion of antipsychotic medication, which was pertinent in the prior study given the nature of its

cohort. Furthermore, our study corrected for multiple testing burden using FDR, whereas the

prior study did not use any multiple test corrections. It is important to note that had the prior

study corrected for multiple testing, using for instance a lenient Bonferroni approach across

phenotypes or SNPs, no SNP would have been significantly associated. While there is no clear
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consensus on the appropriate approaches to correcting for numerous tests [47,48], a complete

lack of correction is not robust considering the number of polymorphisms and outcomes

tested. As such, the prior findings are likely to have been false positives generated by chance,

and our present results are more reflective of the relationship (or lack thereof) between genetic

variation relevant to relaxin-3 signalling and metabolic outcomes.

More broadly, these results provide additional support for a shift away from candidate gene

studies in psychiatric research. An extensive and well-powered investigation from Border et al.

[49] evaluated 18 commonly studied candidate genes from the last three decades for associa-

tions with several depressive phenotypes, finding that there was little evidence of any relation-

ship between the candidate polymorphisms and depression liability. This mirrors conclusions

from other rigorous studies and reviews; for example, van de Weijer et al. [50] highlighted a

lack of support for candidate gene associations with well-being, a construct heavily related to

neuropsychiatric disorders. Our focused candidate gene study on the relaxin-3 neuropeptider-

gic system corroborate these conclusions, underlining the importance of proceeding cautiously

before undertaking a candidate gene approach. Genetic contributions towards multifactorial

disorders, like depression, anxiety, or metabolic syndrome, are extremely complex and poly-

genic in nature, with our study further demonstrating the minuscule effect sizes that individual

genes have on these phenotypes. While candidate gene approaches may still be relevant in par-

ticular scenarios, our findings underscore why there has been a shift towards GWAS

approaches in understanding the genetic underpinnings of complex diseases.

It is important to recognise that a lack of significant associations in this candidate gene

study does not rule out a role for the relaxin-3/RXFP3 system in MDD, atypical depression,

anxiety or metabolic syndrome. The Border et al. study [49] explored several key neurotrans-

mitters and peptides that are generally accepted to be involved in the aetiology of MDD,

yet also revealed a lack of associations between polymorphisms at the pertinent genes and pres-

ence of MDD. For example, SNPs from the HTR2A gene, which codes for the serotonin

5-HT2A receptor, were not significantly associated with MDD. This finding does not, how-

ever, invalidate prior evidence outlining 5-HT2A receptor involvement in MDD, with good

evidence for the distribution of this protein across brain areas related to MDD and several pre-

clinical studies linking this receptor with depressive-like phenotypes [51,52]. The apparent

inconsistency between null genetic associations and putative pathophysiological involvement

is not altogether surprising as these complex, polygenic diseases are the culmination of

dynamic interactions between several peptidergic systems, such that variation at only a small

subset of genes may not be particularly informative, highlighted by the small effect sizes. More-

over, these candidate gene approaches only explore genetic differences at the DNA level, and

do not consider epigenetic factors, which could very feasibly, in this context, alter the expres-

sion levels of the various relaxin-3/RXFP3-relevant proteins.

The present investigation possesses several strengths. This is the first study to evaluate can-

didate SNPs pertinent to the relaxin-3/RXFP3 system in the context of depression, anxiety and

atypical depression, and the first to assess a relationship with metabolic parameters using a rig-

orous statistical approach. The relatively large sample size for the analyses is a particular

strength relative to the traditional candidate gene literature in this domain. Furthermore, we

were cognisant to define several phenotypes for each of our outcomes of interest; the consis-

tency in our null results across the various phenotypic definitions provides some assurance

that our findings are reflective of a holistic definition for MDD, atypical depression, anxiety,

and metabolic syndrome.

There were also several important limitations of note in this study. Firstly, our candidate

gene selection methodology is rooted in the use of in silico tools, which have certain limitations

in predicting variant deleteriousness. We employed two different tools, each based on different
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statistical methodology and principles, to help overcome the lack of absolute certainty in pre-

dicting the effects of variants. The cut-offs used in this study were recommended by the crea-

tors of each tool and helped ensure we attained a reasonable number of candidate SNPs to

evaluate. There are also several limitations to our outcome phenotype definitions, though the

use of proxies to define our disease states of interest was unavoidable. Several of the phenotype

definitions for depression and anxiety are based on participant self-reported information,

which can be prone to biases that may arise from elements of recall and social desirability [53].

The broad definition of depression in particular may additionally capture an overly general

phenotype, given the frequency of comorbidity between depression and anxiety disorders. Our

CIDI phenotype of definition also did not stringently mirror the diagnostic criteria from the

WHO CIDI assessment, as one of the nine pertinent depression symptoms (psychomotor agi-

tation or retardation) was not available in the online mental health follow-up questionnaire.

Consequently, our CIDI phenotype altered the standard definition of� 5 of 9 symptoms

to� 4 of 8 symptoms. While our definitions for atypical depression have been used in previous

analyses of the UK Biobank [38], they are also of ambiguous reliability, as they were based on

answers to questions about hypersomnia and weight gain, which do not comprise the full spec-

trum of atypical symptoms that characterise this disorder [54–56]. The limitations inherent in

each of these definitions provides further rationale for the wide range of outcome phenotype

definitions used in this analysis, including definitions that mirror the validated PHQ-9 and

GAD-7 questionnaires [36,39]. Finally, it is important to acknowledge that the UK Biobank is

not a robust representation of the general UK population, with higher participation rates

across certain demographics [57]; this may limit the generalisability of these findings.

In summary, this candidate gene study revealed that candidate functional polymorphisms

at RLN3, RXFP3, RXFP4, RLN2, and RXFP1 had no significant effects on the outcomes of

MDD, atypical depression, anxiety, and metabolic syndrome. This lack of associations was

consistent across the many phenotypic definitions investigated, ensuring comprehensive anal-

ysis, and further confirmed in sensitivity analyses exploring several candidate polymorphisms

simultaneously. While the relaxin-3/RXFP3 system may still be involved in the pathophysiol-

ogy of these diseases, this is unlikely to be reflected in common genetic variation at the DNA

level. At a broader level, our findings support prior conclusions for prudent consideration and

interepretation of candidate gene studies for neuropsychiatric or metabolic conditions, espe-

cially given their complex underpinnings,.
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