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Abstract
Crop domestication has led to the development of distinct trait syndromes, a series 
of constrained plant trait trade-offs to maximize yield in high-input agricultural en-
vironments, and potentially constrained trait plasticity. Yet, with the ongoing transi-
tion to organic and diversified agroecosystems, which create more heterogeneous 
nutrient availability, this constrained plasticity, especially in root functional traits, may 
be undesirable for nutrient acquisition. Such agricultural systems require a nuanced 
understanding of the soil-crop continuum under organic amendments and with in-
tercropping, and the role crop genetic resources play in governing nutrient manage-
ment and design. In this study, we use a functional traits lens to determine if crops 
with a range of domestication histories express different functional trait plasticity 
and how this expression changes with soil amendments and intercropping. We utilize 
a common garden experiment including five wheat (Triticum aestivum) varietals with 
a range of domestication histories planted in a factorial combination with amend-
ment type (organic and inorganic) and cropping design (monoculture or intercropped 
with soybean). We use bivariate, multivariate and trait space analyses to quantify trait 
variation and plasticity in five leaf and five root functional traits. Almost all leaf and 
root traits varied among varieties. Yet, amendment type was nearly inconsequential 
for explaining trait expression across varieties. However, intercropping was linked to 
significant differences in root acquisitive strategies, regardless of the varietals' dis-
tinct history. Our findings show substantial leaf and root trait plasticity, with roots 
expressing greater trait space occupation with domestication, but also the strong role 
of management in crop trait expression. We underscore the utility of a functional 
trait-based approach to understand plant–soil dynamics with organic amendments, as 
well as the role of crop genetic histories in the successful transition to low-input and 
diversified agroecosystems.
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1  |  INTRODUC TION

Crop domestication has pursued a nearly singular focus on maxi-
mizing yield-related traits, with a focus on yields specifically within 
high-input agricultural environments since the Green Revolution. 
Such environments are centred on a surplus of available resources 
and a selection procedure for uniform aboveground phenotypic trait 
expression. Selection for crops that express certain reproductive 
and leaf traits has formed detectable domestication syndromes: 
suites of plant traits that differ between crops and their wild pro-
genitors (Meyer et  al.,  2012). Through domestication, crops tend 
to express traits associated with higher rates of resource capture 
compared to their wild progenitors (Milla et al., 2014). Intraspecific 
variation can be formed from inherited differences and plasticity 
(Matesanz et al., 2012) and plays an important role in a plants' abil-
ity to adapt to changes in environmental conditions (Aspinwall et al., 
2015). Broadly, trait plasticity can be defined across two scales at 
the plant level: within plant and among plant plasticity (Grossman 
& Rice, 2012), wherein plants of the same genotype exposed to dif-
ferent environments express different traits (Martin et  al.,  2018; 
Valverde-Barrantes et al., 2013).

Often overlooked in these studies is the root system (Meyer 
& Purugganan,  2013). Yet, given the strong relationship between 
root trait expression and soil agroecosystem processes (e.g. carbon: 
De Deyn et al., 2008; nutrient cycling: Bardgett et al., 2014), how 
domestication has altered root trait expression is highly relevant 
to success in low input agriculture. It is hypothesized that modern 
crops may be unable to adequately shift root traits (i.e. express phe-
notypic plasticity) to maintain their yield rates when grown under 
different, and often more spatially and temporally heterogeneous, 
management regimes (Isaac et  al.,  2021; Rolhauser et  al.,  2022; 
Schmidt et al., 2016).

Shifts in root trait expression with domestication may be greater 
investment in the structural components of individual roots (e.g. 
greater root diameter, denser roots; Isaac et al., 2021) as opposed 
to prioritizing traits consistent with greater soil exploration and nu-
trient foraging (e.g. greater specific root length and surface area). 
Yet, it is unclear whether the shift in root functional trait expres-
sion with a crop history of domestication has come at the cost of 
root trait plasticity, as plasticity may be a heritable trait (Fitz Gerald 
et al., 2006; Sandhu et al., 2016), though is thought to be adaptive 
as well (Correa et al., 2019; Hodge, 2004). The retaining of root trait 
plasticity is a vital condition for crops to be able to capitalize on fer-
tile pockets within heterogeneous soil environments (Borden et al., 
2020; Grossman & Rice, 2012).

The current momentum towards replacing fertilizers with organic 
inputs presents crops with a very different set of soil conditions. 
While organic amendments may contain similar levels of nutrients 

to traditional synthetic fertilizers, they differ in the availability and 
the release rate (Iqbal et al., 2019; Rees & Castle, 2002), potentially 
leading to decreased yields for plants grown under organic manage-
ment (Entz et al., 2018). Even over a short time, the use of organic 
amendments can alter the levels of soil organic carbon (C), nitro-
gen (N) and available phosphorous (P) (Herencia et al., 2008), while 
prolonged use is associated with changes to soil characteristics (e.g. 
soil aggregation and porosity; Domingo-Olivé et al., 2016). The slow 
release rates of organic amendments over inorganic fertilizers pro-
vide substrates for microbial communities (Bastida et al., 2008) and 
shape the bioavailablity of nutrients and nutrient uptake efficiency 
for crops (Chen et  al.,  2022). Arguably, this altered nutrient avail-
ability and soil conditions linked with a potential increase in spatial 
heterogeneity of soil resources in organic systems will preferentially 
benefit a crop with a high degree of root trait plasticity, such that 
mean trait values shift based on localized conditions, as is beneficial 
for soil resource acquisition in less homogeneous environments.

An additional means of decreasing nutrient stress within organ-
ically managed environments is to intercrop with N2-fixing legumes, 
drawing on atmospheric sources of N under limiting soil nutrient 
conditions, and contributing new N to soils via root exudation and, 
more significantly, via litter decomposition over subsequent growing 
seasons (Hauggaard-Nielsen et  al., 2008). Intercropping alters the 
available soil N by promoting the transfer of N from the roots of le-
gumes to non-legumes (Isaac et al., 2021; Jensen, 1996), which may 
also increase P availability due to soil acidification (Yan et al., 1996) 
and from root exudates of one intercropped species (Hinsinger 
et al., 2011). Similar to the use of organic amendments, intercropping 
may foster an increase in soil nutrient availability and microbial asso-
ciations due to the multiple root systems present, which can benefit 
both species (Hinsinger et  al., 2011). However, the benefits of in-
tercropping can only be maximized if there is interspecific comple-
mentary (Yang et al., 2022), otherwise, it is presumed to not result in 
as many benefits given the potential competition for soil resources 
(Baumann et al., 2001).

In this study, spring wheat (Triticum aestivum) is our model 
crop species given its long history of recorded cultivation and 
widespread economic importance (Tuberosa et  al.,  2014). The 
wheat domestication syndrome is known to include increased 
growth rates (Matesanz & Milla, 2018), paired with greater total 
plant (Wacker et  al.,  2002) and aboveground biomass (Milla & 
Matesanz, 2017), though aboveground trait expression has shifted 
as a result of the Green Revolution (Austin et al., 1980). We em-
ploy a functional traits approach to determine if wheat with dis-
similar domestication histories express different functional trait 
plasticity and how this expression changes under soil amendments 
and intercropping. We focus on both the degree of intraspecific 
variation exhibited by domesticated phenotypes and the direction 
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of shifts in trait syndromes in response to altered soil environ-
ments. Our primary questions are: what is the extent of trait plas-
ticity across varietals with different histories of domestication? 
How do soil amendments affect crop root trait expression? And is 
functional trait plasticity differentiated between species in inter-
cropping systems? We expect that more recently developed wheat 
varietals will display constrained variation in root functional traits 
as a result of greater selective breeding for uniformity. We further 
expect that organic versus inorganic inputs will have differential 
effects on crop functional trait and agronomic trait expression, 
and while the strength of the response may be different, we ex-
pect the direction of the shifts in traits to be consistent regardless 
of domestication history. Additionally, these effects should be 
muted by intercropping with N2-fixing crops as higher N availabil-
ity will minimize soil nutrient availability effects.

2  |  METHODS

2.1  |  Study site

The field experiment was carried out at the University of Toronto 
Scarborough Campus Farm in Toronto, Ontario, Canada. Average 
air temperature, relative humidity and daily incoming PAR over 
the growing season were 19°C, 39% and 655 μmol m−2 s−1. The ex-
perimental area (~200 m2 of a multi-acre site) was divided into 
4.5 m × 4.5 m blocks, with each block containing a single amend-
ment type. Two different soil amendment treatments were applied, 
an organic amendment (worm castings) and an inorganic fertilizer, 
both added at a rate of 10 t ha−1 (60 mg N per plant). Amendments 
were added 2 days prior to planting and mixed into the top 5 cm of 
soil. Each block was then divided into four 2 m × 2 m plots, where 
the intercropping treatment was applied. Each plot contained ei-
ther monocropped wheat or wheat intercropped with soybean 
(Glycine max). Sub-plots of 75 cm × 75 cm were demarked within a 
plot, each containing a different wheat varietal. The five varietals 
planted were Red Fife, Marquis, Neepawa, AAC Brandon and AAC 
Tradition (Table 1). Due to site constraints, most Brandon intercrops 
were planted in one block and the soil amendment treatment varied 
at the plot level. Wheat was planted in two 75 cm long rows within 

each sub-plot, with 20 cm of space between rows, at a density of 35 
seeds/row (124 plants m−2). Soybean planting followed 2 weeks after 
wheat planting. High nodulating soybeans were included and inocu-
lated with Cell-Tech Peat Soybean Inoculant prior to planting. Three 
75 cm rows of soybeans were planted in intercropped sub-plots, one 
in between and one on either side of the wheat rows with 20 cm 
between each soybean row.

Soil samples were taken for nutrient analysis. Soil for N and 
C analysis was oven-dried at 105°C for 48 h, ground with a ball 
mill (Retsch Ltd., Haan, Germany) and analyzed in the LECO ele-
mental analyzer (LECO Instruments, Mississauga, ON, Canada). 
Plots amended with inorganic fertilizer (C = 6.57% ± 1.47, 
N = 0.35% ± 0.11, C:N = 19.21 ± 3.06) had similar mean soil C and N 
values as those amended with organic amendment (C = 8.76% ± 1.88, 
N = 0.52% ± 0.12, C:N = 17.01% ± 1.21) at the beginning of the 
experiment.

2.2  |  Plant sampling and analysis

Sampling was conducted when 50% of each wheat variety had 
fully ripened spikes, at the beginning of October 2020. Within 
each sub-plot (n = 60), all wheat and soybean plant roots were fully 
excavated so the whole root systems were extracted. The number 
of wheat and soybean plants was counted and recorded. Two rep-
resentative wheat plants and three soybean plants were separated 
for further sampling. From each of the two samples of wheat, a 
young fully emerged leaf was cut from the stem, thickness was 
measured (mm) and the leaf was photographed to assess leaf 
area (LA, cm2) using ImageJ prior to being dried for 48 h at 65°C 
and weighed to obtain leaf dry mass, used to calculate specific 
leaf area (SLA, cm2 g−1). An intact lateral root was removed from 
these two wheat samples and one soybean plant from each sub-
plot and placed in separate plastic bags. Samples were stored in a 
refrigerator before being rinsed in deionized water and scanned 
using a flatbed scanner at 600 dpi. Root scans were analyzed for 
morphological metrics using WinRhizo (Regents Instruments, 
Montreal, QC, Canada). The lateral roots were then dried for 48 h 
at 65°C, and weighed for dry mass and used in conjunction with 
the root length to calculate specific root length (SRL, m g−1) and 

TA B L E  1 Histories of domestication for five wheat varietals.

Varietal Year registered Development goals References

Red fife 1845 Ability to grow in Canadian soils, increased yields Entz et al. (2018) and Symko (1999)

Marquis 1909 Decreased time to maturity, improved local adaptations, 
increased yield

Fu et al. (2005) and Morrison (1960)

Neepawa 1969 Increased fusarium head blight and stem rust resistance Campbell (1970), Fu et al. (2005) and 
Zhu et al. (2019)

AAC Brandon 2013 Increased fusarium head blight and leaf rust resistance, 
increased yields, larger seed size

Entz et al. (2018) and Zhu et al. (2019)

AAC Tradition 2016 Developed under organic management for yield, height, 
maturity and disease resistance

Entz et al. (2018) and Government of 
Canada (n.d.)
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specific root area (SRA, m2 g−1). The two wheat plants from each 
sub-plot were then separated into three agronomic trait compo-
nents [roots, aboveground biomass (stems and leaves) and spikes]. 
For soybeans, beans, shoots, roots and nodules were removed and 
dried for 48 h at 65°C prior to weighing. Leaf and root C and N 
concentrations (mass %) were determined with a LECO elemental 
analyzer after being dried and ground with a ball mill. All remain-
ing shoot, root and spike components were dried for 48 h at 65°C 
and weighed. The remaining wheat plants from each sub-plot were 
grouped together and then separated into roots, aboveground bi-
omass, and spikes and dried and weighed.

2.3  |  Statistical analyses

All statistical analyses were performed in R v. 4.2.0 (R Foundation 
for Statistical Computing, Vienna, Austria). Significance levels were 
set at p < .05. Descriptive statistics were calculated for trait and yield 
data for wheat and soybeans across intercropping treatments and 
soil amendment treatments and were tested for normality using a 
maximum likelihood approach, comparing models based on log-
likelihood ratios. Traits were log-transformed if best described by 
log-normal distributions. Initial analysis on the differences in mean 
functional trait expression due to wheat varietal, amendment and 
intercropping treatment effects were analyzed using three-way 
ANOVAs, with plots as a random effect to account for pre-existing 

soil variability potentially present at the site. We coupled these mod-
els with a Tukey post hoc test using the ‘emmeans’ package assess 
differences in functional traits across the soil amendment*intercrop
ping*varietal design.

We performed a permutation analysis of variance 
(PerMANOVA) on wheat leaf and root functional traits based on 
999 permutations, to test differences in multivariate trait relation-
ships between wheat varietals, soil amendment and intercropping 
treatments. Functional trait hypervolumes were constructed using 
the ‘hypervolume’ R package and a Gaussian kernel density esti-
mate (Blonder et  al.,  2018). We created five-dimensional hyper-
volumes for each wheat varietal planted in monocrop, combining 
both soil amendment treatments. Before analyses, all measured 
data was standardized by z-transformation (i.e. to zero mean and 
unit variance) to compare axes with different units. Leaf trait hy-
pervolumes included the five functional traits (LA, SLA, leaf thick-
ness, leaf N, leaf CN) and root trait hypervolumes included the 
five root functional traits collected (SRL, SRA, average root diam-
eter, root N, root CN). The data collected during the experiment 
only allowed for the creation of one robust hypervolume each for 
leaf and root systems, and therefore, repeated simulations of trait 
data were created. Using the ‘replicate’ R function, five replicate 
datasets were created using the mean and standard deviation for 
each varietal's traits so that statistical tests could be performed. 
Volumes were built from the modelled data. The visual analysis 
of the hypervolumes was based on the observed, not modelled, 

F I G U R E  1 Yield and leaf trait values (a: Log spike weight per plant, b: Log average spike weight, c: Log SLA and d: Log leaf thickness) for 
five wheat varietals planted with inorganic and organic amendments, under intercropping or monocropping planting designs.



    |  5 of 13NIMMO et al.

data. We tested for differences in total volume using a one-way 
ANOVA. To determine whether niche partitioning occurred in 
trait space between wheat and intercropped soybean, we further 
created root trait hypervolumes which included all intercropped 
wheat and soybean using the same root traits as previously. We 
similarly tested differences between species for volume using 
the same replicate function. We reported Jaccard similarity and 
centroid distances between the species and unique hypervolume 
percentages.

3  |  RESULTS

3.1  |  Crop trait variation

Across the entire data set, leaf and root morphological traits had 
higher variability than leaf and root chemical traits, with coeffi-
cients of variation ranging from 18.55 (leaf thickness) to 67.10 (root 
weight), while leaf N and root N were cv < 20 (Table S1). Yet, the 
most highly variable wheat traits were yield metrics (spike weight 
per plant: cv = 69.85, average single spike weight: cv = 39.32) and 
shoot (cv = 50.81) and root weights (cv = 67.10), whereas soybean 
variability was greatest for functional traits SRL (cv = 67.26) and 
SRA (cv = 76.38), followed by nodule (cv = 69.30) and bean weight 
(cv = 53.87).

3.2  |  Treatment effects on crop functional traits

Two-way ANOVA results for the five leaf functional traits showed 
that SLA (Figure  1c, p < .001) and leaf thickness (Figure  1d, 
p = .002) varied with varietal, while leaf N and CN did not (Table 2). 
Intercropping with soybean led to significantly greater values of 
wheat SLA (p = .007 Figure 1c). Yield traits (spike weight per plant: 
p = .001, average single spike weight: p < .001, Table 2, Figure 1a,b) 
varied significantly with varietal, while the soil amendment*varietal 
interaction was significant for spike weight per plant (p = .023). Shoot 
weight was not significantly variable with any of the model terms. Of 
the five root traits, all but SRL and SRA varied significantly with va-
rietal (average diameter: p < .001; root N: p < .001; root CN: p = .042, 
Figure 2a–c, Table  3). SRL (p = .002) and SRA (p = .004) were both 
significantly greater under intercropping (Figure 2d,e, Table 3). The 
soil amendment treatment had no effect on root trait expression.

We used PerMANOVAs to assess the effects of varietal, soil 
amendment and intercropping treatments on multivariate trait 
space. We found that for leaf traits, plot (R2 = .04, p = .02) and soil 
amendment (R2 = .04, p = .009) were significant model terms, while 
varietal (R2 = .06, p = .08) and intercropping were not (R2 = −.01, 
p = .98). A subsequent pairwise test found that Red Fife had signifi-
cantly different multivariate trait relationships than AAC Tradition 
(F = 5.60, p = .01). Root multivariate traits were significantly affected 
by plot (R2 = .04, p = .02) and intercropping (R2 = .05, p = .01), while 
varietal (R2 = .06, p = .06) and soil amendment were not (R2 = .01, TA
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p = .53). A subsequent pairwise test found differences between both 
newer varietals and Red Fife (Brandon: F = 3.66, p = .04; Tradition: 
F = 5.98, p = .01).

3.3  |  Trait hypervolume variation

We used five-dimensional trait hypervolume analysis to visual-
ize crop trait space for wheat roots (Figure 3) and leaves (Figure 4) 
in monoculture as well as for intercropped wheat and soybean 
(Figure  5), using the additional modelled data for statistical pur-
poses (Table 4). Modelled trait hypervolumes for wheat in monocul-
ture showed significantly different volumes for root traits between 

wheat varietals (F = 9.48, p < .001, Figure  3). Specifically, Red Fife 
had a smaller hypervolume than AAC Tradition (p = .05), while 
AAC Brandon had a significantly larger hypervolume than Marquis 
(p < .001), Neepawa (p < .01) and Red Fife (p < .001). Leaf trait hy-
pervolume sizes in wheat were significantly different between vari-
etals (Figure 4, F = 4.89, p < .001). Specifically, Marquis had a larger 
hypervolume than AAC Brandon (p = .05), Neepawa (p = .01) and 
AAC Tradition (p = .01). When all varietals of intercropped wheat 
were analyzed with soybean, we found that the trait volume did not 
differ significantly between the species (F = 5.32, p = .08, Figure 5, 
Table 4). However, we found that the hypervolume space occupied 
within the 5D volume was very different between the two species. 
We found average Jaccard and Sorensen scores of <0.001 ± <0.001, 

F I G U R E  2 Root trait values (a: root N, b: root diameter, c: root CN, d: SRL, e: Log SRA) for five wheat varietals planted with inorganic and 
organic amendments, under intercropping or monocropping planting designs.
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both denoting very little overlap between the trait hypervolumes 
for wheat and soybean when intercropped. The average unique hy-
pervolume fractions for both species were almost the entirety of 
the hypervolume space (wheat: 99.9% ± 0.1; soybean: 99.9% ± 0.01).

4  |  DISCUSSION

4.1  |  Trait plasticity in crops with different histories 
of domestication

Direct selection pressures which formed the domestication syn-
drome of wheat and other grasses have focused on aboveground trait 
expression, suggesting trait syndromes of larger leaves and greater 
growth rates (Gómez-Fernández et al., 2022; Milla et al., 2014; Milla 
& Matesanz, 2017), while little direct pressure was applied to root 
systems (Meyer et al., 2012). Previous studies on wheat root trait ex-
pression typically rely on fewer traits (eg. Duncan et al., 2018), exclu-
sively modern varietals (eg. Djanaguiraman et al., 2019), or growth 
chamber grown specimens for extensive root analysis (eg. Friedli 
et al., 2019; Junaidi et al., 2018). In our field study with a suite of 
varieties, the overall wheat trait variation was quite large, especially 
for morphological traits, complementing the results of others for 
wheat (leaf: Martin et al., 2018, and root: Friedli et al., 2019; Iannucci 
et al., 2021). However, we did find greater differences in chemical 
traits than Cantarel et al. (2021), who report a root N % cv of ~0.4 
compared to our cv of 17 across wheat varietals.

For agronomic and leaf traits, modern varietals, AAC Brandon 
and AAC Tradition, expressed greater yield and specific leaf area 
values regardless of soil amendment treatment or whether they 
were under intercropping, results that are in line with their expected 
domestication syndromes. Breeding for higher yield and fitness in 
optimum conditions may be associated with higher performance 
in more stressful conditions (Mercer & Perales,  2010; Sadras & 
Denison,  2016), and our findings support this pattern. However, 
wheat roots generally expressed more conservative traits with do-
mestication; modern varieties had greater average root diameter 
and higher root CN values. These opposing shifts along an economic 
spectrum in leaf and root traits with domestication were also re-
cently found in a data review (Isaac et al., 2021). This decoupling of 
resource acquisition patterns in crop leaves and roots is not uncom-
mon (Isaac et al., 2017) and could be a result of relaxed trait relation-
ships in crops (Martin & Isaac, 2015), especially with domestication 
(Milla et al., 2014; Roucou et al., 2018).

While currently debated (see: Gaudin et  al., 2011; Grossman 
& Rice, 2012; Jaradat, 2018; Matesanz & Milla, 2018), it has been 
proposed that domestication could lead to decreased phenotypic 
plasticity as a result of breeding for uniformity. Using an analysis of 
trait space as a proxy of trait plasticity with domestication history, 
we found contrasting evidence in regard to this hypothesis. At the 
leaf level, more recently domesticated varieties AAC Brandon and 
AAC Tradition, both developed only in the past decade (Table 1), 
occupied smaller leaf trait spaces (Figure 4), but at the root level, TA
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F I G U R E  3 Root trait hypervolumes for multiple bivariate functional trait axes (SRL: specific root length, LogSRA: log-specific root area, 
RootN: root N %, RootCN: root C:N, AvgDiam: average root diameter) in five wheat varietals planted alone across different amendments 
(inorganic fertilizer and organic amendment).

F I G U R E  4 Leaf trait hypervolumes for multiple bivariate functional trait axes in five wheat varietals planted alone in two different 
amendments (inorganic fertilizer and organic amendment).
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they occupied larger root trait spaces (Figure  3), which suggests 
that root trait plasticity is retained and indeed potentially larger for 
modern wheat varietals (contrary to expectations, eg. Matesanz & 
Milla, 2018). These findings suggest that breeding for aboveground 
uniformity (which is confirmed by our leaf trait plasticity results) 
has not led to a concurrent decrease in the ability of a plant to 
vary trait expression in roots in response to altered environmental 

pressures. This increased plasticity with domestication could be 
due to greater genomic plasticity resultant from increased hy-
bridization or gene introduction events in more modern varietals 
(Rajpal et  al., 2016). But overall the findings largely suggest that 
while wheat roots tend to shift toward conservative traits in mod-
ern varieties, their potential to adapt to environmental conditions 
is greater than wheat leaves.

4.2  |  Trait complementarity between 
intercropped species

We show that wheat root trait space has minimal overlap with soy-
bean root trait space when intercropped and grown under various 
soil amendment regimes, supporting previous findings on trait co-
ordination (Ajal et  al.,  2021). Interestingly, there was little differ-
ence between conservative root trait expression of wheat grown 
in monoculture and wheat grown in intercropping; root diameter, 
root N and root CN were not significantly different under intercrop-
ping and monocropping treatments. This suggests that wheat in 
our experiment exhibits natural trait complementarity, where spe-
cies occupy different trait niches naturally, and exhibit little actual 
shift in trait expression in order to minimize competition in resource 
use (Hauggaard-Nielsen et  al., 2008; Isaac et  al., 2021). However, 
these traits were strongly influenced by domestication history, thus 

F I G U R E  5 Root trait hypervolumes for multiple bivariate functional trait axes (SRL: specific root length, LogSRA: log specific root area, 
RootN: root N %, RootCN: root C:N, AvgDiam: average root diameter) for wheat (green) and soybean (red) intercropped with different 
amendment treatments (inorganic fertilizer and organic amendment).

TA B L E  4 Hypervolume size (±SD) for five roots (SRL, SRA, root 
N, root CN, root weight) and five leaf traits (LA, SLA, leaf thickness, 
leaf N, leaf CN) for monocropped wheat varietal hypervolumes, and 
root trait hypervolume size (±SD) for intercropped soybean and 
wheat.

Root hypervolume Leaf hypervolume

Varietal

Red Fife 344.64 (183.82) 371.47 (224.19)

Marquis 460.97 (243.50) 621.04 (377.26)

Neepawa 694.08 (372.29) 125.66 (75.95)

AACBrandon 3929.87 (2130.52) 222.13 (134.34)

AAC Tradition 2488.01 (1328.65) 127.75 (76.85)

Species

Soybean 112.00 (69.11)

Wheat 44.68 (33.08)
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providing evidence that conservative traits are more controlled by 
domestication rather than the local environment.

The intercropping treatment was however found to be a signifi-
cant source of variation in wheat for leaf (SLA) and root (SRA, SRL) 
acquisitive traits. In fact, wheat intercropped with soybean consis-
tently expressed greater resource acquisition strategies (higher SLA, 
SRA, and SRL) than wheat in monoculture, regardless of variety. 
Greater root length and root surface area in wheat intercropped with 
soybean was previously found, and the authors also highlight the im-
portance of root depth when assessing root trait complementarity 
in intercropped systems (Bargaz et al., 2017). Furthermore, higher 
soil volume exploration under intercropping with soybean was also 
detected for maize under N limited conditions (Yang et  al., 2022). 
Presumably, greater soil exploration, via expression of acquisitive 
root traits, is a common signature of intercropped non-leguminous 
species. In our study, we found that these root functional traits only 
varied with intercropping and did not change with domestication 
history nor with type of soil amendment.

For agronomic traits, we found that both the average spike 
weight and total spike weight per plant were unchanged across 
intercropping treatments. Given the additive design of our inter-
cropping study, the unchanged yield per plant in intercropped 
treatments vs monocrops suggests that there is a net benefit (ie. 
a land equivalent ratio of over 1, Willey & Osiru, 1972) for these 
wheat varietals to intercropping. This is somewhat contrasted by 
the results of Ajal et al. (2021), who used inorganic fertilizers and 
wheat-faba bean intercrops and found wheat yield was in fact 
greater in intercropped plots, or by the results of Pridham and 
Entz  (2008) who found that under organic management wheat 
yields decreased when intercropped with a range of leguminous 
species.

4.3  |  Root functional trait expression in response 
to organic amendments

While we hypothesized that soil amendments would be a primary 
driver of differences in wheat root trait expression, we found a 
relatively small degree of difference in root trait expression in re-
sponse to soil amendment type. Specifically, we expected to see 
differences in trait expression of chemical traits, as roots may 
uptake the elevated bioavailable N from inorganic fertilizer, and 
translocate to leaves. The lack of chemical trait response to the 
amendment treatments could be due in part to the very small 
differences in soil N at the end of the growing season (organic 
amendment: soil total N = 0.52% ± 0.12, inorganic fertilizer: soil 
total N = 0.35% ± 0.11), thus minimizing differences between the 
two amendments. Additionally, there is evidence of differential 
rates of N translocation to grain yields between wheat varieties 
(Arduini et al., 2006; Osman et al., 2012), which may be masking 
any N content differences present due exclusively to soil amend-
ment type.

Similarly, while soybean root trait expression was not signifi-
cantly different between soil amendment types, we did detect 
higher average nodule mass in soybeans amended with inorganic 
fertilizer (Table S2). This suggests that wheat may be competitively 
acquiring soil N under inorganic fertilization (Gagnon et al., 1997), 
thus reducing available N sources for neighbouring soybean and 
stimulating soybean to shift to energy sources to nodule for-
mation and N2 fixation in this limited N environment (Schipanski 
et  al.,  2010), earlier in the growing season. In organic conditions, 
both wheat and soybean may have similar competitive advantages 
given the organic forms of N and the need for mineralization, how-
ever, wheat may be more competitive than soybean at taking up 
inorganic N sources (Li et al., 2001).

5  |  CONCLUSIONS

In this study, using a suite of wheat varietals with different histories 
of domestication, we tested for variation in leaf and root functional 
traits (i) in relation to domestication history and (ii) as moderated 
by organic amendments and intercropping with soybean. We found 
that the year of wheat varietal release, a proxy for their history of 
domestication explains functional trait variation, and, importantly, 
that intercropping rather than soil amendments result in larger shifts 
in wheat root functional trait expression. In fact, while wheat roots 
expressed conservative traits and a larger trait space with domesti-
cation, all wheat varieties tended to express more acquisitive root 
traits when intercropped. The strong relationship between intraspe-
cific trait variation and variety underscores the need to consider 
phenotypic suitability in different growing systems in order to en-
hance growth potential. Yield variation resulting from intercropping 
with soybean suggests that some varietals may be better suited and 
able to express beneficial trait trade-offs in competitive environ-
ments. Understanding root trait variability from a functional ecology 
and evolutionary perspective will contribute to breeding programs 
to develop seeds optimized for transitions to diversified and organic 
agriculture.
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