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Background/Aims: Crohn’s disease (CD) with recurrent inflammation can cause intestinal fi-
brostenosis due to dysregulated deposition of extracellular matrix. However, little is known about 
the pathogenesis of fibrostenosis. Here, we performed a differential proteomic analysis between 
normal, inflamed, and fibrostenotic specimens of patients with CD and investigated the roles of 
the candidate proteins in myofibroblast activation and fibrosis.
Methods: We performed two-dimensional difference gel electrophoresis and identified candi-
date proteins using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 
and orbitrap liquid chromatography-mass spectrometry. We also verified the levels of candidate 
proteins in clinical specimens and examined their effects on 18Co myofibroblasts and Caco-2 
intestinal epithelial cells.
Results: We identified five of 30 proteins (HSP72, HSPA5, KRT8, PEPCK-M, and FABP6) dif-
ferentially expressed in fibrostenotic CD. Among these proteins, the knockdown of heat shock 
protein 72 (HSP72) promoted the activation and wound healing of myofibroblasts. Moreover, 
knockdown of HSP72 induced the epithelial-mesenchymal transition of intestinal epithelial cells 
by reducing E-cadherin and inducing fibronectin and α-smooth muscle actin, which contribute to 
fibrosis.
Conclusions: HSP72 is an important mediator that regulates myofibroblasts and epithelial-mes-
enchymal transition in fibrosis of CD, suggesting that HSP72 can serve as a target for antifibrotic 
therapy. (Gut Liver 2023;17:905-915)

Key Words: Crohn disease; Epithelial-mesenchymal transition; Fibrostenosis; Myofibroblast; 
Heat-shock proteins

INTRODUCTION

Crohn’s disease (CD) is a relapsing and destructive 
disorder of the gastrointestinal tract characterized by re-
current episodes of chronic inflammation and injury,1-5 
followed by wound healing.6-8 These recurrent cycles of 
CD cause accumulation of submucosal extracellular matrix 
(ECM) and progress to structural fibrosis and eventually 
stenosis and intestinal failure.9 Because there is no treat-
ment other than surgery in such cases, patients with fibro-
stenotic CD have an increased risk of surgery.10,11 Although 

fibrosis is initiated by chronic inflammation, suppression 
of inflammation alone is not sufficient for reversing fibro-
sis.12 There is no currently approved fibrosis treatment ex-
cept for that of idiopathic pulmonary fibrosis.13 Therefore, 
there is an unmet need to explore targets for therapeutics 
and the diagnosis of intestinal fibrosis.14

Fibrostenotic CD is aggravated by increased inflamma-
tory cytokines, growth factors, and other mediators pro-
duced by inflammation.15,16 Fibrostenosis in the intestine 
has typical characteristics similar to those of fibrosis in 
other organs, displaying excess deposition of ECM compo-
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nents such as collagens and fibronectins and ECM remod-
eling by activated myofibroblasts, α-smooth muscle actin 
(α-SMA)-positive mesenchymal cells, and matrix metal-
loproteinases.17 Therefore, control of ECM deposition by 
suppression of profibrotic myofibroblasts or myofibroblast 
transition is a pivotal target for therapeutics and the di-
agnosis of fibrosis. Although the origin of myofibroblasts 
is unclear, fibroblasts and epithelial cells are considered 
the main sources. Myofibroblast activation enhances cell 
mobility through conformational changes of cytoskeletons 
and intermediates. Other than myofibroblasts, the epithe-
lial-to-mesenchymal transition (EMT), in which epithelial 
cells lose their polarized phenotype, has been suggested to 
contribute to ECM remodeling.18,19 The EMT is induced 
by downregulated epithelial proteins such as E-cadherin in 
concurrence with upregulated mesenchymal-related pro-
teins, such as vimentin and α-SMA, and master transcrip-
tion factors, such as TWIST and SLUG.20 There is evidence 
that EMT is essential for fibrosis in various organs includ-
ing the fibrostenosis in CD.18,21

Although fibrostenosis of CD significantly increases 
morbidity and mortality of patients, only a few proteins are 
known to affect the recurrent fibrostenotic phenotype in 
CD, and the molecular mechanisms of intestinal fibrosis 
need to be further investigated. Although there have been 
recent reports on the search for fibrostenosis genes using 
genomics,22 there are several challenges in exploring fibro-
sis targets, as they do not affect protein expression or post-
translational modification. Approaches using proteomics 
are an alternative tool to discover biomarkers that can 
overcome these limitations. Because targeted therapy can 
potentially reduce the risk of surgery, we aimed to find pro-
teins associated with fibrostenotic CD using a proteomics 
approach and to elucidate the protein markers involved in 
crosstalk between fibrosis and inflammation including the 
EMT process.

MATERIALS AND METHODS

1. Patients and clinical specimens
This study for marker discovery included 14 patients 

with fibrostenotic CD and six healthy controls at Severance 
Hospital (Yonsei University). The clinical characteristics 
of the patients are summarized in Supplementary Table 
1. The fibrostenotic disease characteristics of the patients 
were analyzed based on colonoscopy and/or magnetic 
resonance enterography. All patients underwent surgical 
resection of the bowel owing to medically intractable clini-
cal complications from bowel stricture. Surgical specimens 
of the patients were grossly distinguished into normal 

sections and fibrostenotic lesions. Colonoscopic biopsy 
samples of inflamed terminal ileum or colon without stric-
ture were analyzed from four patients who had undergone 
colonoscopy before surgery. The isolated specimens were 
snap-frozen in liquid nitrogen and stored at –70°C. Writ-
ten informed consent was obtained from all participants 
enrolled in this study, and the study was approved by the 
Institutional Review Board of Severance Hospital, Yonsei 
University (IRB number: 4-2012-0302).

The detailed methods for two-dimensional differ-
ence gel electrophoresis, protein identification by matrix-
assisted laser desorption/ionization time-of-flight mass 
spectrometry, orbitrap liquid chromatography-mass spec-
trometry, and immunohistochemistry are described in the 
Supplementary Methods.

2. Cell culture, treatment, and knockdown by RNA 
interference 
For in vitro experiments, the 18Co-cell line, a human 

colonic subepithelial myofibroblast cell line, and Caco-
2, a colon cancer epithelial cell line, were used (ATCC, 
Manassas, VA, USA). Cells were grown in 10% fetal bovine 
serum-supplemented Dulbecco’s modified Eagle medium 
with 1% antibiotics, with or without transforming growth 
factor β (TGF-β; 5 ng/mL, R&D Systems, Minneapolis, 
MN, USA) or tumor necrosis factor-α (10 μg/mL, R&D 
Systems) for the indicated times. Cells were incubated at 
37°C in a humidified atmosphere of 5% CO2. The small in-
terfering RNAs (siRNAs) for HSPA1A, HSPA5, and a non-
targeting control were purchased from Bioneer (Daejeon, 
Korea). Cells were knocked down by transfection of siRNA 
using Lipofectamine 2000 (Life Technologies, Carlsbad, 
CA, USA).

The detailed methods for the wound healing assay, 
primer list and quantitative real-time polymerase chain 
reaction are described in the Supplementary Methods and 
Supplementary Table 2.

3. Immunofluorescence staining
Cells or tissue sections were fixed with 10% formalin 

(pH 7.4), permeabilized with 0.5% Triton X-100 in PBS 
(PBS-T), blocked with 1% BSA in PBS-T, and incubated 
with E-cadherin (1:500; Cell Signaling Technology, Boston, 
MA, USA), fibronectin (1:200; Santa Cruz Biotechnology, 
Inc., Santa Cruz, CA, USA), α-SMA (1:200; Santa Cruz 
Biotechnology Inc.), and heat shock protein 72 (HSP72; 
1:200, EnoGene Biotech, New York, NY, USA) primary 
antibodies or fluorescently conjugated antibodies over-
night at 4°C. After incubation with primary antibodies, the 
cell sections were incubated with Alexa Fluor-488-, Alexa 
Fluor-555-, or Alexa Fluor-633-conjugated secondary an-
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tibodies (Thermo Fisher Scientific, San Jose, CA, USA). 
Cell nuclei were counterstained with DAPI (blue) (Thermo 
Fisher Scientific). All images were obtained by light mi-
croscopy (Olympus BX41; Olympus Optical, Tokyo, Japan) 
or by confocal microscopy (Carl Zeiss LSM 700, Prenzlau-
er, Berlin, Germany).

4. Statistical analysis
All results are expressed as mean±standard error of the 

mean. Prism 5.0 software (GraphPad Inc., San Diego, CA, 
USA) was used for statistical analysis. The significance of 
differences between conditions was assessed using the Stu-
dent t-test, one-way analysis of variance, or Kruskal-Wallis 
test. A p-value less than 0.05 was considered statistically 
significant.

RESULTS

1. Proteomic analysis uncovers distinct protein 
profiles among normal, inflamed, and fibrostenotic 
specimens of patients with CD 
To identify proteins with differing expression levels 

between normal, inflammation, and fibrosis specimens, 

we performed two-dimensional difference gel electropho-
resis analyses of the pooled colon specimens of the normal 
(n=7), inflamed-only (n=4), and fibrotic (n=7) regions 
of the same patient (Supplementary Fig. 1). Then, we 
screened the differentially expressed proteins in the colon 
tissues among tissues normal control, inflamed, and fibrot-
ic lesion samples of CD patients. The analysis flow of this 
study is shown in Fig. 1, and characteristics of the patients 
are shown in Supplementary Table 1. We identified 56 pro-
tein spots with 2-fold or higher changes between normal, 
inflamed, and fibrostenotic regions of the bowel from two-
dimensional difference gel electrophoresis analysis (Fig. 
2A, Supplementary Table 3). Among the spots, the 18 spots 
that were not selected had a problem that the signal inten-
sity deviation expressed in the two gels targeting the same 
tissue was relatively large. Thus, final 30 spots were selected 
from the preparation gels for matrix-assisted laser desorp-
tion/ionization time-of-flight mass spectrometry analysis. 
Of these, 12 spots with significant and meaningful human 
protein database results were confirmed by orbitrap liquid 
chromatography-mass spectrometry analysis. Finally, we 
identified and distinguished five spots from fibrostenotic 
specimens compared to normal or inflamed lesions. Of 
the five spots in fibrostenotic CD, three were increased in 

Discovery

Validation

Fibrostenotic CD
- Surgical specimens: 7 normal & fibrotic samples
- Colonoscopic biopsies: 4 inflamed samples

2D-DIGE analysis
- 56 Spots with 2-fold changes

MALDI-TOF/MS analysis
- 12 Spots with significant human protein database

Orbitrap LC/MS analysis
- Distinguished 5 spots

qRT-PCR
- 2 Target selection

2 Targets
- Knockdown & migration experiment in 18Co-cell

1 Target
- Knockdown & EMT experiment in HT-29 cell
- Immunostain: 6 healthy control, inflamed, & fibrotic samples

Pooling

Spot preparation

Confirmation

Replication

Fig. 1.Fig. 1. Workflow of this study.
CD, Crohn’s disease; 2D-DIGE, two-
dimensional difference gel electro-
phoresis; MALDI-TOF MS, matrix-
assisted laser desorption/ionization 
time-of-flight mass spectrometry; 
LC/MS, liquid chromatography-mass 
spectrometry; qRT-PCR, quantitative 
real-time polymerase chain reaction; 
EMT, epithelial-to-mesenchymal 
transition.



Gut and Liver, Vol. 17, No. 6, November 2023

908  www.gutnliver.org

inflamed CD, whereas two were decreased. The typical 
peptide mass fingerprinting results of the spots are shown 
in Fig. 2A. The spots were identified as heat shock 70 kDa 

protein 1A (HSPA1A, HSP72), heat shock 70 kDa protein 
5 (HSPA5, GRP78), keratin 8 (KRT8), phosphoenolpyru-
vate carboxykinase mitochondrial isoform (PEPCK-M), 
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Fig. 2.Fig. 2. Proteomic analysis reveals distinct protein profiles between normal, inflamed, and fibrostenotic specimens of patients with Crohn’s disease. 
(A) Representative images of candidate spots in gels of 2D-DIGE using pooled colon specimens of normal (n=7), inflamed-only (n=4), and fibroste-
notic (n=7) regions of the same patient. Thirty spots that were differentially expressed between inflamed and fibrostenotic regions (>2-fold) were 
identified using 2D-DIGE (red circles) and validated with TOF/MS. Spot number was assigned by an image analysis program, followed by 2D-DIGE. 
Purple arrows indicate five candidate spots for identification. (B) Identification of stenosis candidate proteins using peptide mass fingerprinting, 
MALDI-TOF MS, and orbitrap LC/MS. We observed a standardized abundance of spot #1202 (HSP72), spot #379 (GRP78), spot #755 (keratin 8), 
spot #486 (PEPCK-M), and spot #755 (FABP6). These spots were excised, identified by MALDI-TOF/MS, and confirmed by orbitrap LC/MS. The re-
sults are shown as the calculated standardized abundance from a human database (MASCOT).
N, normal region; Fib, fibrostenotic region; Inf, inflamed region; 2D-DIGE, two-dimensional difference gel electrophoresis; HSP72, heat shock protein 
72; GRP78, glucose regulatory protein 78; PEPCK-M, phosphoenolpyruvate carboxykinase mitochondrial isoform; FABP6, fatty acid-binding protein 6; 
MALDI-TOF/MS, matrix-assisted laser desorption/ionization-time of flight/mass spectrometry; LC/MS, liquid chromatography-mass spectrometry.
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and fatty acid-binding protein 6 (FABP6) (Supplementary 
Table 4). The decreased spots more highly downregulated 
in the transition to fibrosis were identified as PEPCK-
M, a mitochondrial isoform of a gluconeogenic enzyme 
that converts oxaloacetate to phosphoenolpyruvate,23 and 
FABP6, a fatty acid-binding protein known as a marker of 
tissue injury in the intestine (Fig. 2B).24,25

To further confirm the observed changes in transcrip-
tional levels as fibrostenotic markers, we isolated RNA 
from the colon tissues of independent clinical samples and 
performed quantitative real-time polymerase chain reac-
tion. Although the gene expression levels of all markers 
showed a trend consistent with that of the proteomic anal-
ysis, statistical analysis showed that only HSPA1A (HSP72) 
and HSPA5 (GRP78) among the genes of the five candi-
date proteins were significantly reduced in fibrostenotic 
samples compared to inflamed tissues; the other genes had 
no significant differences compared to normal control or 
inflamed CD groups (Fig. 3).

2. HSP72 downregulation activates myofibroblasts in 
a fibrotic condition 
Given the central role of myofibroblasts in fibrosteno-

sis of CD, we examined whether gene silencing of HSP72 
and HSPA5 affected myofibroblast activation. Thus, we 
knocked down those genes in 18Co-cells, a myofibroblast 
cell line, using siRNA against their genes, HSPA1A and 
HSPA5 (the genes for HSP72 and GRP78, respectively). 
Interestingly, HSPA1A or HSPA5 knockdown showed a 
compensatory increase of respective HSPA5A or HSPA1 

expression in each knockdown cell line (Fig. 4A). The 
HSPA1A knockdown cells exhibited markedly increased 
gene expression of interleukin 1-β (IL1B) compared to the 
control (Fig. 4B). In addition, HSPA1A or HSPA5 knock-
down cells showed increased expression of MMP2, a gene 
related to ECM remodeling, compared with control cells 
transfected with scramble (Fig. 4B).

Myofibroblast activation facilitates their active move-
ment by a highly structured scaffold of actin fibers and in-
termediate filaments and contributes to the development of 
fibrosis. Fibronectin is considered one of the most potent 
inducers of migration.26 Because the migration of myofi-
broblasts due to injury is essential for the fibrotic process, 
myofibroblast migration was assessed using cell migra-
tion assay, in which 18Co-cells were scratched after being 
transfected with siRNA. Cell migration was significantly 
increased in HSPA1A knockdown cells, but not in HSPA5 
knockdown cells compared to control cells (Fig. 4C and D), 
suggesting that defects in HSP72 promote myofibroblast 
activation.

3. HSP72 induces epithelial-mesenchymal transition 
of intestinal epithelial cells in fibrotic conditions
Among the fibrogenic components, subepithelial myo-

fibroblasts play a key role, as the primary source of ECM 
components and the main mediators between intestinal in-
flammation and fibrosis. TGF-β1, which is overexpressed 
in the intestinal tissues in CD patients with fibrostenosis, is 
important in the migration of fibroblasts, transdifferentia-
tion into myofibroblasts, and ECM formation,11 although 
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time polymerase chain reaction. (B) Gene expression levels of HSPA1A 
and HSPA5 normalized to that of a normal control. Data represent 
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ments from samples of nine patients.
N, normal region; Fib, fibrostenotic region; Inf, inflamed region. 
*p<0.05, †p<0.005.
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other growth factors and cytokines are also involved in 
the fibrosis.13 TGF-β1 is also a major mediator in EMT as 
well as in the recruitment of fibroblasts, their transdiffer-
entiation to myofibroblasts, and the stimulation of ECM 
secretion.27 To examine whether loss of HSP72 induces 
EMT in epithelial cells, we knocked down HSPA1A in 
Caco-2 cells, an intestinal epithelial cell (IEC) line, and 
stimulated them with TGF-β1. HSPA1A-knockdown cells 
showed fibroblast-like morphology regardless of treat-
ment with TGF-β1 (Fig. 5A). To find changes in EMT-
related markers, we performed immunostaining analysis. 
Immunofluorescence staining revealed that E-cadherin, 
an epithelial cell marker, was intact in the control cells. In 
contrast, HSPA1A-knockdown cells showed drastically re-

duced E-cadherin expression (Fig. 5B). Of note, HSPA1A-
knockdown cells untreated with TGF-β1 showed increased 
levels of mesenchymal cell markers such as fibronectin, as 
did α-SMA-positive cells like TGF-β1-treated cells (Fig. 5C 
and D), indicating EMT induction by HSPA1A downregu-
lation in IECs.

One of the two types of myofibroblasts, the Cajal cell, is 
located in the intramuscular space between the submucosa 
and the muscular propria, and the other myofibroblasts 
are located below the epithelial cell layer of the villi and 
crypts.28 Myofibroblasts are identified by the increased 
expression of α-SMA and intermediate filaments such as 
vimentin. Consistently, we found increased quantities of 
α-SMA-positive cells in the mucosa and submucosa of 
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CD patients compared to healthy controls (Fig. 6A). Next, 
we investigated HSP72 and α-SMA expression in normal 
control, inflamed, and fibrotic colons of CD patients using 
immunofluorescence staining. Both HSP72 and α-SMA 
were weakly expressed in IECs but were strongly expressed 
in stroma cells (Fig. 6B and C). Consistent with previous 
results, HSP72 was upregulated in the inflamed lesions but 
downregulated in the fibrotic lesions, whereas α-SMA was 
increased in the fibrostenotic lesions (Fig. 6B-D). Of note, 
a weak HSP72 signal was observed in the fibrostenotic 
specimens, and the signals of HSP72 and α-SMA were not 
overlapping, suggesting that loss of HSP72 increases myo-
fibroblasts in fibrostenosis, as in a previous study for renal 
fibrosis.29

DISCUSSION

Because there is no reliable biomarker for fibrostenotic 
CD, the longer the delay of diagnosis in CD, the greater the 
risk of intestinal stenosis. Since the process and mechanism 
of fibrosis are intricate, effective targeted treatments for 

fibrostenotic CD have not yet been developed. Therefore, 
it is important to predict stenosis at an early time point.22,30 
In this context, although there have been recent reports on 
the search for fibrostenosis genes using genomics,22 there 
has been no study investigating colonic protein profiles us-
ing a proteomics approach. Proteomic analysis can analyze 
all the proteins present in a sample and their differences 
between normal and disease groups, in particular, the role 
of proteins and posttranslational modification regulated 
by cytokines and immune responses. Due to the complex-
ity of fibrostenotic CD and the technical interference by 
serological proteins,31,32 proteomic studies for serological 
biomarkers including serological proteins showed conflict-
ing research results, low-quality evidence, and no reliable 
biomarkers.33 In this study, therefore, we tried to identify 
proteins involved in the link between inflammation and 
fibrosis using intestinal tissue-specific proteomics.

Direct targeting of fibrosis has not yet been approached 
as a therapy in CD because fibrosis is a dynamic process 
involving various types of cells and immune responses. 
Moreover, the failure of anti-inflammatory therapies in 
preventing fibrosis indicates that there are other specific 
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pathways involved in intestinal fibrosis.13 This likely results 
in the multifactorial and complex processes of fibrosis after 
inflammation. Given that inflammation underlies fibrosis, 
there are critical changes in transition from inflammation 
and fibrosis. In addition, inflammation-induced factors 
such as TGF-β and matrix stiffness induce this transition. 

Thus, we focused on the proteins that changed between 
inflammation and fibrosis and compared paired samples 
from the same CD patients. We identified distinct protein 
profiles between inflamed and fibrotic legions which the 
association of these proteins with intestinal fibrosis re-
mains unknown.
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Heat shock proteins that respond to environmental 
stress are abundantly expressed in the intestine and highly 
increased in patients with inflammatory bowel disease34 
and in mouse colitis models.35 Among them, the HSP70 
subfamily is one of the most studied. GRP78, a molecular 
chaperone, is commonly used as an endoplasmic reticulum 
stress marker and is involved in a variety of inflammatory 
diseases including fibrosis36 and inflammatory bowel dis-
ease.37 GRP78 also mediates macrophage apoptosis in pul-
monary fibrosis. Although it did not appear to be involved 
in myofibroblast activation in our study, some studies have 
suggested that reduced expression of GRP78 resulted in 
increased myofibroblast activation. Of note, HSP72 from 
the HSP70 subfamily is also induced by various stresses 
such as reactive oxygen species38 and parasite infestation39 
in IECs. HSP72 is a multifunctional inducible molecular 
chaperone that is expressed in many cell types and plays a 
protective role in a variety of disease models.40 It has been 
demonstrated that HSP72 plays a protective role in renal 
fibrosis by inhibiting fibroblast accumulation and TGF sig-
naling.29,41 It has also been reported that HSPA1A polymor-
phism and the autoantibody production of HSP72 are as-
sociated with idiopathic pulmonary fibrosis and improved 
outcomes, respectively.42,43 In addition, HSP72 inhibits 
renal fibroblast activation by suppressing the expression 
of fibrotic markers such as α-SMA and fibronectin.29,41 In 
agreement with these studies, we demonstrated that HSP72 
is downregulated in the transition from inflammation to 
fibrosis. We also showed that HSP72 knockdown further 
promotes wound healing in 18Co-cells, suggesting that it 
is an important marker in the progression of fibrostenotic 
CD. Given that tumor necrosis factor-α level is increased 
in CD patients with fibrosis, HSP72 might be an important 
regulator of myofibroblasts in the entry phase of fibrosis 
and might provide protective signaling against persistent 
inflammatory signals.

In this study, the knockdown of HSP72 induced the 
EMT of IEC, increasing mobility and ECM production. 
Several studies have documented the EMT as the source 
of fibroblast production in many organs, and this has been 
confirmed in CD-associated intestinal fibrosis and animal 
models.18,44 However, the mechanism of this process re-
main unclear. Supporting our results, recent studies have 
reported that HSP72 suppresses EMT.45,46 We demonstrat-
ed a marked increase of α-SMA, which is a marker of myo-
fibroblasts and functions in wound healing, in HSPA1A-
knockdown cells as well as loss of E-cadherin. These 
results suggest that the EMT process of IEC caused by 
downregulation of HSP72 can contribute to fibrosis in CD. 
To identify further mechanisms, mutations in fibrostenotic 
CD should be analyzed using whole-genome sequencing. 

Moreover, further studies using large-scale samples using 
external cohorts and knockout mouse models for mecha-
nism evaluation are needed to confirm our results.

In conclusion, we found that HSP72 plays an important 
role as a mediator by regulating myofibroblasts and EMT 
in fibrosis of CD, suggesting that HSP72 can serve as a tar-
get for antifibrotic therapy.
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