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Rapid single-cell physical phenotyping of 
mechanically dissociated tissue biopsies

Despina Soteriou1,8, Markéta Kubánková1,8, Christine Schweitzer1, 
Rocío López-Posadas2,3, Rashmita Pradhan2,3, Oana-Maria Thoma2,3,4, 
Andrea-Hermina Györfi3,5, Alexandru-Emil Matei3,5, Maximilian Waldner2,3,4, 
Jörg H. W. Distler3,5, Stefan Scheuermann    6, Jens Langejürgen    6, 
Markus Eckstein4,7, Regine Schneider-Stock    4,7, Raja Atreya2,3,4, 
Markus F. Neurath    2,3,4, Arndt Hartmann4,7 & Jochen Guck    1 

During surgery, rapid and accurate histopathological diagnosis is essential 
for clinical decision making. Yet the prevalent method of intra-operative 
consultation pathology is intensive in time, labour and costs, and requires 
the expertise of trained pathologists. Here we show that biopsy samples can 
be analysed within 30 min by sequentially assessing the physical phenotypes 
of singularized suspended cells dissociated from the tissues. The diagnostic 
method combines the enzyme-free mechanical dissociation of tissues, 
real-time deformability cytometry at rates of 100–1,000 cells s−1 and data 
analysis by unsupervised dimensionality reduction and logistic regression. 
Physical phenotype parameters extracted from brightfield images of single 
cells distinguished cell subpopulations in various tissues, enhancing or even 
substituting measurements of molecular markers. We used the method to 
quantify the degree of colon inflammation and to accurately discriminate 
healthy and tumorous tissue in biopsy samples of mouse and human colons. 
This fast and label-free approach may aid the intra-operative detection of 
pathological changes in solid biopsies.

Changes in physical properties of cells, such as cell size, shape or 
deformability, are pivotal to the pathology of some diseases and hold 
great potential as a diagnostic or prognostic marker1,2. In the past dec-
ades, a variety of tools have been developed to examine the mechanical 
properties of cells, including micropipette aspiration, atomic force 
microscopy, microbead rheometry and optical traps3,4. The field has 
seen an exponential increase in publications that suggest a strong cor-
relation between cell mechanical phenotype and disease state, includ-
ing sepsis5,6, malaria7, diabetes8, sickle cell anaemia9 and cancer10–12. 

Unfortunately, these conventional techniques suffer from low cell 
throughput and the requirement of deep specialist knowledge for 
operation, which limits their use as a diagnostic tool. Real-time fluo-
rescence and deformability cytometry (RT–FDC)13,14 is one of several 
new microfluidic techniques10,15–22 that have overcome these draw-
backs, allowing the assessment of physical properties of single cells 
in a label-free and high-throughput manner, opening a new avenue to 
clinical diagnostics. RT–FDC is not only fast (with up to 1,000 cells ana-
lysed per second), but in addition to cell deformability it also provides 
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extraction presumably helps to preserve biochemical and biophysical 
phenotypes in conditions close to those in situ.

Next, the extracted single cells were analysed using RT–FDC. In an 
RT–FDC measurement, hundreds of cells per second, suspended in a 
high-viscosity methyl cellulose buffer, are pushed through a microflu-
idic channel constriction, where they are deformed by shear stress and 
pressure gradients and an image of each cell is obtained. Several physi-
cal parameters were calculated from the images in real time, namely 
deformation, cell size, brightness, standard deviation of brightness, 
aspect ratio and area ratio (for details, see Supplementary Table 3). 
Additionally, the fluorescence module14 was used to detect the expres-
sion of cell surface markers.

Illustrative examples of the distribution of physical parameters 
of cells extracted from liver, colon and kidney are shown in Fig. 2. 
Each of these clusters was composed of cells with similar physical 
phenotype (gated according to the density plot) and surface marker 
expression (Extended Data Fig. 2). For example, a cluster of cells with 
similar physical properties (in this case defined by average brightness 
and cell size) was mainly composed of epithelial cell adhesion molecule 
(EpCAM)-positive cells (Fig. 2a), demonstrating that a clean population 
of epithelial cells can be distinguished in a label-free manner, purely 
using image-derived physical parameters.

Figure 2b,c illustrates the advantage of using image-based physi-
cal phenotyping in addition to using conventional fluorescence-based 
flow cytometry alone. In conventional flow cytometry it is hardly pos-
sible to distinguish individual subpopulations of epithelial (EpCAM+) 
cells unless extra panels of fluorescent antibodies against known and 
pre-defined cell types are used. Distinction of various subpopulations 
was possible with RT–FDC owing to the additional information depth 
provided by physical phenotype parameters. Within the epithelial 
cells of colon, we identified seven clusters of cells purely based on 
brightness and size (Fig. 2b). Similarly, within the leukocyte (CD45+) 
population of the kidney, we found four different clusters based on the 
cell size and deformation parameters (Fig. 2c). We note that, using the 
sorting modality recently developed for RT–FDC36, any of these cell 
populations can be isolated according to the image-derived parameters 
and analysed for their molecular identity, for example, by subsequent 
RNA sequencing.

RT–FDC can also be used to capture cell interactions. Using the 
aspect ratio and cell size parameters, we identified cell doublets in 
thymus, spleen and kidney samples. Many doublets were composed of 
two different cell types, according to the cell surface markers (Extended 
Data Fig. 3). The position of the cell within the channel in combination 
with the position of the fluorescence peak allowed us to identify, for 
instance, that a doublet was composed of a leukocyte (CD45+) and an 
endothelial cell (CD31+) (Extended Data Fig. 3b,d,f). Using the RT–FDC 
sorting module36, cell doublets can be isolated label free for further 
molecular analysis and downstream applications, including studies 
of physically interacting immune cells in tissue37.

An important question to consider when using mechanical dis-
sociation of tissues and label-free analysis by physical phenotype 
is whether this approach faithfully represents the distribution of 
cell types present in the tissue. While this is impossible to assess 
for all tissues and applications in general, it is instructive to have 
a closer look at liver as a specific tissue (Extended Data Fig. 4a–c). 
Mechanical dissociation seems less disruptive to sensitive cells such 
as hepatocytes, which are prone to cell death and often lost during 
standard isolation procedures38. Upon dissociation of murine liver 
tissue, cells above 150 μm2 in cross-sectional cell area (~7 μm radius) 
were determined as hepatocytes according to their morphology and 
size39. As the major parenchymal cell type of the liver, hepatocytes 
account for 70% of the liver cell population and take up nearly 80% 
of liver volume40. In the cell suspension obtained using TG, the pro-
portion of hepatocytes to total cells was on average 52.5%, much 
closer to the real representation in tissue compared with the 7.7% for 

multi-dimensional information obtained directly from cell images. 
The diagnostic potential of RT–FDC has been demonstrated in many 
human disease conditions ranging from leukaemia to bacterial and viral 
infections including coronavirus disease 2019 (refs.23–27). However, 
until now, the applicability of the technique was limited to analysing 
cultured cells or liquid biopsies from blood or bone marrow.

Solid tissue biopsy is the most common method for character-
izing malignancy and is fundamental in guiding surgeons during 
intra-operative and peri-operative management of cancer patients. 
Diagnostic assessment of solid tissue biopsies is commonly delivered 
through intra-operative consultation pathology, which relies on his-
topathological analysis of frozen biopsy sections28. The conventional 
workflow of intra-operative diagnosis involves numerous process-
ing steps, staining reagents and the microscopic inspection of tis-
sue slices by experienced pathologists for expert analysis. Moreover, 
sample preparation is time-, resource- and labour-intensive. Alterna-
tive workflows have been proposed28, including stimulated Raman 
spectroscopy29,30, optical coherence tomography31 and fluorescence 
microscopy32,33, but have not yet been implemented. The need for an 
approach that reduces sample preparation and time to diagnosis is 
therefore imminent.

In this Article, we present a rapid, label-free diagnostic method 
for solid tissue biopsies. The approach combines the enzyme-free, 
mechanical dissociation of tissues using a tissue grinder (TG) for the 
quick and simple isolation of viable single cells34,35 with the sequential 
assessment of cellular physical phenotypes of thousands of individual 
cells using RT–FDC. First, we screen a panel of different mouse tissues 
and assess the cell yield, viability and the feasibility of RT–FDC meas-
urement upon the mechanical dissociation of tissue. We illustrate the 
ability to distinguish subpopulations of tissue cells purely based on 
the image-derived physical parameters without prior knowledge or 
additional molecular labelling, which can enhance conventional flow 
cytometry, which relies on multi-colour panels of markers for identify-
ing cells. We also show that our approach can determine inflammatory 
changes in colon tissue, based on the measurement of cell deformabil-
ity in the microfluidic system. Moreover, we examine frozen and fresh 
biopsy samples from mouse and human colon and show that RT–FDC 
can distinguish healthy from cancerous tissues, by using principal com-
ponent analysis (PCA) and machine learning on the multi-dimensional 
data. The findings demonstrate that assessing the physical phenotype 
of tissue-derived single cells using RT–FDC is an alternative strategy to 
detect an inflammatory or malignant state. Our procedure, which can 
deliver results within 30 min, has potential as an intra-operative diag-
nostic pipeline to sensitively detect pathological changes in biopsies 
and, more generally, to identify and characterize cell populations in 
tissues in an unbiased and marker-free manner.

Results
Physical phenotyping of cells from mechanically dissociated 
tissues
Before assessing the physical phenotype of cells, the first challenge 
faced was the quick extraction of single cells from solid tissues on a 
timescale of minutes, while aiming for a maximally accurate represen-
tation of the heterogeneity of cell subpopulations. For this, we used a 
TG, a mechanical dissociation device based on counter-rotating rows 
of grinding teeth (Fig. 1) assembled into a Falcon tube35. The device 
automatically executes a predefined sequence of alternating cutting 
and grinding steps to isolate single cells from a solid tissue. In total, 
ten different murine tissues were processed using either TG or conven-
tional enzymatic protocols for comparison (Supplementary Tables 1 
and 2). Viability was 70–90% in most tissues; cell yield was similar to 
enzymatic dissociation and tissue dependent (Extended Data Fig. 1). 
The key advantage of mechanical dissociation was that the processing 
time took less than 5 min per sample, as opposed to tens of minutes 
or even several hours for the enzymatic protocols. The speed of the 
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enzymatic digestion. Moreover, distinct subpopulations of hepato-
cytes could be identified according to cell size. We hypothesize that 
these populations correspond to hepatocytes of differing ploidy, as 
DNA content is strongly correlated with cell volume41. If confirmed, 
for example, by correlation with a quantitative fluorescence analysis 
of DNA amount in each cell, our method could serve as a tool for 
the label-free monitoring of ageing and pathophysiological pro-
cesses in the liver, which are linked with the proportion of polyploid 
hepatocytes42. In other tissues, such as lung, the differences between 
mechanical and enzymatic dissociation were not as prominent and 
neither technique gave a bias towards a specific cell population 
(Extended Data Fig. 4d). However, for the general applicability of our 

approach to the diverse possibilities it opens up for tissue analysis, 
of course, further experimental work is needed.

There are specific—in particular diagnostic—applications of our 
approach where the faithful determination of cell numbers originally 
present in the tissue in situ is less important. After all, the physical 
phenotypes detected also reflect diverse cellular responses to the 
sample processing, the adhesion of cells to each other and to the extra-
cellular matrix, and the connectivity and mechanical strength within 
the tissue. All of these aspects can be altered in pathological condi-
tions and would be picked up by our approach. We demonstrate the 
diagnostic utility in two specific clinically relevant use cases related to  
the colon.
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Fig. 1 | Schematic of the physical phenotyping method. The tissue sample is 
dissected in small pieces and placed into the inner rotor of the TG unit containing 
culture medium35. Mechanical dissociation is performed by a pre-programmed, 
automatically executed sequence of clockwise and counter-clockwise rotations. 
Dissociated cells are centrifuged and resuspended in measuring buffer. The 

sample is loaded onto a microfluidic chip and analysed using RT–FDC. A 
brightfield image of every single one of typically 10,000 cells is captured. Various 
features are extracted from the images, which are used for multi-dimensional 
analysis. In total, the procedure from tissue to result takes less than 30 min.
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Tissue inflammation is detected by cell physical phenotyping
Inflammatory bowel diseases (IBD), such as Crohn’s disease and ulcera-
tive colitis, are chronic inflammatory disorders of the intestine associ-
ated with a compromised epithelial/mucosal barrier and activation/
recruitment of immune cells43. Although the aetiology of IBD is still 
not fully understood, much of our understanding about IBD comes 
from experimental animal models of intestinal inflammation. One 
such model is adoptive transfer of naïve T cells into Rag1-deficient 
mice to induce experimental colitis (T-cell transfer model of chronic 
colitis, from here on referred to as transfer colitis). The severity is then 
commonly quantified via a histopathological score generated from 
haematoxylin and eosin (H&E)-stained slides of the colon tissue.

Our goal was to investigate changes in the physical phenotype 
of colon cells during transfer colitis. Scatter plots of deformation 

versus cell size suggest a difference between disease and healthy tis-
sue (Fig. 3a), where cells from disease tissue appear less deformed 
than cells from healthy tissue. Upon examination of the CD45+ cells 
(Fig. 3b,c), it became evident that the transfer colitis samples were 
characterized by a high abundance of leukocytes with low deforma-
tion, probably lymphocytes. Overall, we found a significant decrease 
of median deformation with strong effect size in the transfer colitis 
samples, accompanied by a significant increase in the percentage of 
leukocytes, in accordance with infiltration of adoptively transferred 
lymphocytes (N = 14; Fig. 3d). The median deformation of cells was 
strongly negatively correlated with the percentage of leukocytes, 
with a Pearson’s correlation coefficient of r(12) = −0.69 (P = 0.0065; 
Fig. 3e). Furthermore, the median values of cell size and deformation 
were linked with expert H&E scoring (Supplementary Fig. 1); although 
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Fig. 2 | Illustrative scatter plots of physical parameters of cells from murine 
liver, colon and kidney samples. a, Illustrative scatter plot of brightness average 
versus cell size for cells isolated from the liver showing numerous clusters of 
cells. The marked population of cells (forming a cluster of cell size 25–50 μm2 and 
brightness average 100–115) is enriched for EpCAM-positive (epithelial) cells but 
devoid of CD31-positive (endothelial) cells or CD45-positive cells (leukocytes). 
FITC, fluorescein isothiocyanate; PE, phycoerythrin; APC, allophycocyanin.  

b, Illustrative scatter plots of colon cells stained for EpCAM and CD45 cell surface 
markers. Within the EpCAM-positive population, seven subpopulations of 
cells can be identified on the basis of density plots of physical parameters, such 
as brightness and cell size. c, Illustrative scatter plots of kidney cells stained 
for EpCAM and CD45. Within the CD45 population, four subpopulations are 
identified based on similarities in cell size and deformation. The colour map in 
the scatter plots represents the event density.
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correlation via linear fitting was not possible. Transfer colitis samples 
with high H&E score exhibited bigger cell size and lower deformation 
compared with healthy tissue. A noteworthy observation was that the 
healthy tissue was more difficult to mechanically break apart into single 
cells than the diseased tissue, which yielded more events for analysis.

Our observations that the physical phenotype of cells changes 
upon inflammation, together with the growing evidence that chronic 
inflammation is associated with malignancy44,45, led us to speculate that 
our approach might detect changes in biopsy samples from tumours. 
We confirm this possibility for both mouse and human samples.

Distinction of tumour and healthy tissue in mouse colon
Previous studies have found differences between the mechanical prop-
erties of cancer cells and their healthy counterparts11,12,46–49. A major 
drawback of these studies is laborious sample preparation and low 

measurement throughput that limits the conversion of these studies 
to actual diagnostic approaches. Given the rapidity of our approach to 
obtain and assay the mechanical phenotype of single cells from solid 
tissues, we explored its potential to detect colorectal cancer. We used 
mice deficient in an intestinal epithelial cell-specific protein with a 
key role in epithelial integrity. These animals spontaneously develop 
colon tumours. We examined a total of 16 mice and compared cells 
isolated from tumours with cells from a healthy part from the colon of 
the same animal. We analysed cells greater than 60 µm2 (determined 
by cross-sectional area), as below this threshold the sample was com-
prised mainly of immune cells and small debris (Supplementary Fig. 2).

Our results showed that the physical phenotype of cells from 
tumour tissue significantly differed from the control samples. Rep-
resentative plots from a single mouse in Fig. 4a–c demonstrate that 
cells from the tumour had larger cell size and higher deformation than 
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Fig. 3 | Physical phenotyping of cells via RT–FDC reflects tissue inflammation. 
a, Cell size versus deformation scatter plots of cells isolated from transfer colitis 
tissue samples (TC) compared with healthy murine colon tissue (Control); with 
corresponding cell size and deformation histograms. b, The same two colon 
samples gated for CD45-positive cells, showing the enrichment of leukocytes 
in transfer colitis samples, accompanied by changes of the physical phenotype 
parameters. The colour map in the scatter plots represents the event density. 
c, Kernel density estimate plots of samples shown in a and b, with contours 
marking the 0.5 (light shade, outer contour) and 0.95 (dark shade, inner contour) 

levels. d, Quantification of median deformation and percentage of CD45-
positive cells (n = 14 biologically independent animals over three independent 
experiments). Boxes extend from the 25th to the 75th percentile with a line at 
the median; whiskers span 1.5× the interquartile range. Statistical comparisons 
were performed using two-sided Mann–Whitney U test; median deformation 
*P = 0.0227 and r = 0.55, % CD45+ **P = 0.0041 and r = 0.7 (r, effect size). e, Two-
sided Pearson’s correlation of median deformation of all cells and the proportion 
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their healthy counterparts. The analysis of all 32 samples revealed that 
cells from tumours had significantly higher mean cell size (Fig. 4d), 
deformation (Fig. 4e) and area ratio (Fig. 4g), with moderate to strong 
effect sizes. The tumour samples also exhibited greater heterogeneity, 
demonstrated by the broader distribution in Fig. 4c and significantly 
higher standard deviations of cell size and area ratio (Fig. 4d,g).

We next investigated whether the physical phenotype differences 
could be exploited for the reliable distinction between tumorous and 
healthy tissue. For this, we divided cells into three categories according 
to cell size (60–90, 80–120 and 120–400 μm2). For each size category, 
12 parameters were derived: mean, median and standard deviations of 
the cell size, deformation, aspect ratio and area ratio; adding up to a 
total of 36 parameters for each sample (Supplementary Fig. 3). These 
parameters were used for PCA, Fig. 4h. The two principal components, 
PC1 (39.8%) and PC2 (18.7%), explained 58.5% of the variance. The rela-
tive importance of physical features in determining the principal com-
ponents is shown in Supplementary Fig. 3. The most dominant feature 
for PC1 was the deformation of cells between 60 and 120 µm2, whilst in 
the case of PC2, cell size parameters prevailed. Logistic regression per-
formed on the PCA (shown by the linear divide in Fig. 4h) demonstrated 

that the condensed physical phenotype information represented by 
the principal components suffices to distinguish between healthy and 
tumour tissue; 29 out of 32 samples lay in the correct region. Finally, we 
analysed the correlation between deformation and cell size and found 
it to be weak or non-existent (Supplementary Fig. 4). This led us to 
conclude that deformation and cell size were independent predictors 
of tumours in murine colon samples, further demonstrating the added 
value of deformation measured via RT–FDC as a diagnostic marker.

Distinction of tumour and healthy tissue in human biopsies
We next sought to challenge our method for detecting tumours from 
human biopsy samples. As a first step, we performed RT–FDC analysis 
on cells isolated from 13 cryopreserved biopsy samples of colorectal 
cancer and 13 samples of healthy surrounding tissue from the same 
patients. PCA was performed on 45 parameters (Fig. 5a and Supple-
mentary Fig. 5) with 41.7% of the variance explained by the two princi-
pal components (25.3% and 16.4% for PC1 and PC2, respectively); the 
selection of RT–FDC parameters was optimized to obtain a good sepa-
ration between the healthy and tumour tissue. The PCA showed that 
tumour and healthy samples segregated well along PC2, mainly by the 
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deformation histograms demonstrate greater heterogeneity of cell size and 
deformation in tumour (green) compared with the control tissue (purple).  
d–g, Means and standard deviations of physical phenotype parameters of 16 
control (purple) and 16 tumour samples (green) (n = 16 biologically independent 
animals over six independent experiments). Boxes extend from the 25th to the 

75th percentile with a line at the median; whiskers span 1.5× the interquartile 
range. Statistical comparisons were performed using two-sided Wilcoxon signed 
rank test; r, effect size: cell size (**P = 0.0019, r = 0.55), standard deviation of 
cell size (***P = 0.0005, r = 0.61) (d); deformation (*P = 0.026, r = 0.39), standard 
deviation of deformation (NS, not significant) (e); aspect ratio (NS), standard 
deviation of aspect ratio (NS) (f); area ratio (**P = 0.0023, r = 0.54), standard 
deviation of area ratio (*P = 0.013, r = 0.44) (g). h, PCA of mouse colon tissue 
samples, where green points represent tumour samples and purple points 
represent the control samples. Linear regression analysis was performed on PC1 
and PC2 with the resulting two categories shown as purple (control) and green 
(tumour) background colours.
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deformation and standard deviation of brightness of cells larger than 
100 µm2 (Fig. 5a). Cell size parameters of cells below 100 µm2 also con-
tributed to the separation of the samples. Excluding the most important 
parameter (deformation of cells larger than 100 µm2) resulted in worse 
separation between healthy and tumour samples (Supplementary  
Fig. 6). Logistic regression was performed on the PCA (shown by the 
linear divide in the PCA plot) and used to predict the classification of six 
blind samples (shown as crosses in Fig. 5a); all six samples were correctly 
classified as either healthy or tumour tissue, respectively. We examined 
the minimal number of cells needed for correct classification of these 
blind samples (Supplementary Fig. 7). Approximately 1,500 cells from 

a sample had to be analysed for correct classification, corresponding 
to RT–FDC measurement time of approximately 5 min.

The short combined processing and analysis time (<30 min) and 
the positive results obtained on frozen tissue biopsy sections suggest 
the use of the method for intra-operative pathology—the examination 
of a patient’s biopsy sample during surgery. To explore whether even 
the freezing step could be omitted, we analysed freshly excised biop-
sies from colorectal cancer patients (N = 14). The algorithm trained on 
frozen colon tissue did not perform well for fresh tissue, possibly due 
to differences of physical phenotype between the frozen and fresh 
tissue (Extended Data Fig. 5). Therefore, a new PCA was performed 
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Fig. 5 | Distinction of tumour and healthy tissues in human biopsies using PCA 
and logistic regression. In the PCA plots on the left, each green point represents 
a tumour sample from one patient; purple points represent the corresponding 
healthy surrounding tissue from the same patient. Logistic regression was 
performed on each of the PCAs with the resulting two categories shown as purple 
(healthy) and green (tumour) background colours. Crosses represent blind 
experiments used for the validation of the trained model. The feature importance 
analysis to the right of the PCA plot shows the colour-coded significance of each 
feature for determining PC1 and PC2 for that particular tissue; the x axis lists cell 

size categories; the y axis lists RT–FDC parameters and their statistical features 
derived across cells in the corresponding size category (in brackets). s.d., 
standard deviation. a, PCA of RT–FDC parameters of 32 frozen colon samples (16 
tumour biopsies and 16 samples of healthy surrounding tissue; n = 16 biologically 
independent samples over 16 independent experiments). b, PCA of RT–FDC 
parameters of 28 fresh colon biopsy samples (14 tumour, 14 healthy; n = 14 
biologically independent samples over 14 independent experiments). c, PCA of 
RT–FDC parameters of 18 fresh lung biopsy samples (9 tumour, 9 healthy; n = 9 
biologically independent samples over 9 independent experiments).
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on data from fresh colon biopsies in two size categories (20–50 and 
50–600 µm2) (Fig. 5b), where 68.5% of the variance was explained by 
the two principal components (36.5% and 32% for PC1 and PC2, respec-
tively). Here, the deformation of cells contributed strongly in the PCA 
and cell size was less important than the other physical phenotype 
parameters. Upon logistic regression, only 3 out of 22 samples used 
for PCA and 1 out 6 of the blind samples were not correctly classified, 
which could be attributed to inter-tumour or intra-tumour heteroge-
neity. Nevertheless, using our approach on blind samples we achieved 
100% accuracy in classifying healthy and tumour samples from frozen 
biopsies, and 83% accuracy for fresh biopsy samples.

To validate our method on tissue from a different organ, we applied 
it to freshly excised lung biopsy samples from nine cancer patients. PCA 
combined with logistic regression readily separated seven healthy from 
seven tumour samples and further four blind samples were correctly 
classified (Fig. 5c). In the PCA, 46.9% of the variance was explained by 
PC1 and PC2 (31.2% and 15.7%, respectively). Deformation parameters 
contributed strongly to PC1, which again demonstrates that the unique 
information brought by the cell deformability measurement is useful 
for distinguishing between tumour and healthy tissue.

We also tested the sensitivity of our approach to the situation 
where only few cancer cells are present (tumours with low tumour 
cellularity and extensive desmoplastic tumour stroma content) or 
remain (tumours following chemo- or radiochemotherapy with nearly 
complete remission) in the tissue samples available. This aspect is espe-
cially important for clinical situations where intra-operative analysis 
is used to determine whether the operative margin is free of cancer 
(so called, frozen sections), which can be particularly difficult when 
only very few tumour cells are present. We performed an experiment 
in which we analysed a mixture of fresh tumour and healthy lung tissue 
samples at different ratios (Supplementary Fig. 8). A sample consist-
ing of 50% healthy and 50% tumour tissue was classified as a tumour 
sample. Of course, not all the tumour tissue consists of cancer cells, so 
that the real sensitivity to detect cancer cells is higher than apparent 
here. In fact, some of the colon tumour samples had relatively high 
stromal content. In the extreme cases (Supplementary Table 5, frozen 
colon tissue samples 7 and 11) the stromal content was 98% and 80%, 
meaning the patients had nearly no residual tumour after neoadjuvant 
radiochemotherapy. Still, these samples were correctly classified as 
tumour. This result is remarkable as it points out a possible solution 
to the sampling problem present in conventional histopathological 
analysis—especially in frozen section scenarios. The result of the latter 
very much depends on whether the pathologist inspects and selects 
the correct tissue location where cancer cells are still present. Due to 
time constraints and technical limitations of slide preparation in fro-
zen section scenarios, only a small fraction of the total resected tissue 
specimen can be visualized. If the dissociation of the tissue into single 
cells, and the analysis of a random subset of these, can sensitively detect 
the presence of as low as 20%—or even 2%—of cancer cells present in a 
given tissue sample, this would be a clear advance over the state of the 
art. More specific research is needed to firmly establish this. Finally, 
our method can also detect low-grade cancer, where any differences 
in physical parameters are expected to be more difficult to detect than 
in high-grade cancer. The vast majority of the analysed samples were 
G2 (moderately differentiated) or G3 (poorly differentiated/undiffer-
entiated, often also referred to as ‘high grade’; Supplementary Tables 
5–10). In the lung tissue dataset, one of the samples was classified as 
the lowest-grade G1 (well differentiated; Supplementary Table 10). 
Therefore, the method is not limited to high-grade cancer.

Discussion
We have shown a quick and simple method for the processing and analy-
sis of cells from solid tissue, suitable for biopsy-based diagnostics. 
Mechanical dissociation of tissue is followed by high-throughput analy-
sis of cells in deformational flow. Within a few minutes, thousands of 

cells are imaged, and various physical phenotype features are extracted 
from each cell image. The method is label free and relies simply on 
brightfield images, in contrast to molecular diagnostic tools or conven-
tional flow cytometry, where expensive reagents or fluorescent markers 
are needed. Importantly, the information is available within 30 min 
of biopsy excision, which can be an advantage when there is necessity 
to detect pathology quickly. This is the case during intra-operative 
consultation providing diagnostic information during cancer surgery 
and often defining the further course of the procedure. The standard 
workflow requires transport of the biopsy sample to the pathology 
department, where it is embedded in a mounting medium (optimal 
cutting temperature compound), frozen and cut in thin slices using a 
cryostat. The slides are then prepared with H&E staining, and patholo-
gists assess numerous characteristics including the nature of the lesion 
(that is, its malignancy) using a microscope30,50. Our workflow circum-
vents the freezing and staining steps, could be performed directly 
on-site, and allows to detect malignancy on the basis of the automated 
assessment of physical parameters of single cells.

Beyond intra-operative diagnosis, we show that the method is use-
ful for the rapid examination of IBD samples. Clinical diagnosis of IBD 
in most cases requires the combination of different tests, including a 
blood test, stool examination, endoscopy and histological analysis of 
mucosal biopsies51,52. Histological scoring has growing importance in 
IBD, as the histological level of inflammation correlates with recurrence 
of disease, probability of surgery and risk of cancer. We show that the 
degree of tissue inflammation in a colon biopsy sample can be obtained 
by monitoring the physical phenotype of the cells via RT–FDC, bypass-
ing the need for staining or expert assessment. We envision that the 
method could be used to monitor temporal inflammatory changes to 
assess disease progression and response to treatment, and to provide 
an objective diagnostic scoring system for daily clinical practice, which 
is currently lacking for IBD.

Previous studies on cancer cells have shown a strong correlation 
between malignancy and the mechanical properties of cells10–12,46,49,53. 
Here we exploit this correlation for detecting malignancy in human tis-
sue biopsies. RT–FDC probes cell deformability, at a high-throughput 
rate, by exposing cells to shear flow in a microfluidic channel; and it 
allows for the mechanical phenotyping of single cells, using an analyti-
cal model and numerical simulations54,55. Assuming an initial spherical 
cell under normal (stress-free) conditions, RT–FDC can provide an 
elastic modulus as a quantitative measure of cell stiffness. However, in 
heterogeneous tissue samples, such as the ones used in this study, the 
cells are often not spherical before entering the microfluidic channel 
and an elastic modulus cannot be obtained. Nevertheless, the degree 
of deformation in this standard deformation assay can be interpreted 
as a qualitative measure of deformability and the deformation informa-
tion inherent in the images is shown to be valuable diagnostic marker. 
PCA of murine colon samples and human colorectal biopsies revealed 
that cell deformation in standardized channel flow conditions is key 
for distinguishing between healthy and tumorous tissue in the exam-
ined biopsy types. This highlights the uniqueness of the information 
brought by this method, currently missing from routine diagnostic 
practices that, so far, rely mostly on histological assessment. Following 
this proof-of-concept study, it will be necessary to investigate whether 
the method can be adapted to different types of cancer or tissue. We 
expect that cell deformability changes might manifest more in certain 
types of cancer than in others. There may be certain application areas 
where the method has potential for improving diagnostic practice.

For practical clinical use, it will be beneficial to integrate the 
tissue-processing and single-cell-phenotype analysis into a single 
automated pipeline. Although mechanical dissociation using a TG 
is an efficient way to obtain single cells from tissues for diagnostic 
applications, it will be important to reduce the manual handling steps, 
such as filtering and concentrating cells. However, even in its current 
state, it is faster and more cost effective than enzymatic processing 
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of tissue. A key advantage of mechanical dissociation was that the 
processing time took less than 5 min per sample, as opposed to tens 
of minutes or even several hours for enzymatic dissociation protocols. 
Moreover, enzymatic protocols typically require sample-dependent 
reagents that are often expensive and require special storage condi-
tions, whereas mechanical dissociation can be performed in standard 
culture medium. Although different enzymatic protocols often enrich 
for specific cell types56, we believe that the single-cell suspension from 
mechanical dissociation might be more representative of the actual 
populations in tissue, and that it is therefore suitable for an unbiased 
examination of the cellular landscape. Fast dissociation also has the 
potential to preserve biochemical and biophysical properties of cells 
in a state near to in situ; these properties are likely to deteriorate with 
longer processing times in other approaches. Owing to the speed of 
mechanical dissociation, cells might undergo less proteomic or tran-
scriptional changes, which are known to happen during enzymatic 
processing34,57–60. Further comparative and molecular studies are neces-
sary to assess these assumptions.

In future, investigations on larger patient cohorts will allow to 
exploit machine learning for diagnostic or prognostic decision mak-
ing. Artificial intelligence is already aiding pathologists in inspect-
ing histological whole-slide images, diagnosing cancer or classifying 
tumours61–63. The large datasets obtained by RT–FDC analysis, com-
posed of thousands of cell images and multi-dimensional informa-
tion, lend themselves for such artificial intelligence approaches. In 
this study, we focused on parameters calculated from images in real 
time, but additional physical phenotype parameters can be calculated 
post-acquisition, and used as further inputs for machine learning, such 
as shape or texture features. Future work will also focus on the corre-
lation between the physical phenotype data and tumour malignancy 
scoring, metastatic potential and survival rate.

Finally, an important aspect of the method is that the physical phe-
notype of cells can be used to identify cell populations in tissue, either 
in a fully label-free manner or synergistically with molecular markers, 
enhancing the fluorescence measurements. Furthermore, owing to 
the sorting modality recently added to RT–FDC36, a specific popula-
tion of cells can be isolated according to parameters calculated from 
images in real time or using trained neural networks64,65. This could be 
employed for enrichment of uncharacterized cell populations in tissue 
for downstream omics analysis or even for regenerative medicine pur-
poses, such as for the label-free isolation of tissue-derived stem cells.

Overall, our findings show that the physical phenotyping of cells 
via RT–FDC after enzyme-free mechanical tissue dissociation is a quick 
and simple method that can be used to diagnose pathological states in 
tissue biopsies. In particular, it may provide a rapid and unbiased pre-
diction of disease state in inflammatory conditions and in malignancy.

Methods
Animal experiments
All animal experiments were conducted in collaboration with the 
Department of Internal Medicine 1, University Hospital Erlangen, in 
compliance with all institutional and ethical guidelines, and covered 
by appropriate animal licences (Tierversuchsantrag no. 55.2.2- 2532-2-
1032/55.2.2- 2532-2-473). Animal studies were conducted in a gender- 
and age-matched manner using littermates for each experiment. Both 
male and female animals were used. All mice were kept under specific 
pathogen-free conditions. Mice were routinely screened for patho-
gens according to Federation of European Laboratory Animal Science 
Associations guidelines. Mice were housed in 12 h light–dark cycle, 
at 20–23 °C and 40–60% humidity. Experiments were performed in 
accordance to the guidelines of the Institutional Animal Care and 
Use Committee of the State Government of Middle Franconia. Ani-
mals were killed by cervical dislocation and organs were surgically 
removed. For comparison of enzymatic and TG processing, female 
and male C57BL/6J mice were used, age 8–19 weeks. Lung and liver 

tissues perfusion preceded the enzymatically dissociation process. For 
mechanical dissociation using a TG, organs were washed thoroughly 
with phosphate buffer solution (PBS) before being placed in Dulbecco’s 
modified Eagle medium (DMEM) supplemented with 2% foetal bovine 
serum (FBS) and placed on ice until further processing. Enzymatic 
protocols were obtained from literature and are summarized in Sup-
plementary Table 1. For both the enzymatic protocols and the TG, the 
weight of the tissue used was recorded. At the end of the dissociation 
procedure the total cell yield was counted using a LUNA cell counter.

Adoptive lymphocyte transfer colitis
Immunodeficient Rag1−/− mice received 1 million CD4+ CD25− T cells 
via intraperitoneal injection. Mononuclear cells were isolated from the 
spleen of C57/BL6 donor mice and purified using magnetic-activated 
cell sorting technology, before being injected into immunodeficient 
mice as previously described66,67. Animals were killed 3 weeks after cell 
transfer and the colon tissue was processed as described in the ‘Tissue 
dissociation and single-cell preparation section’.

Spontaneous tumour model
To generate a specific deletion of an intestinal epithelial cell-specific 
protein with a key role for epithelial integrity, mice carrying LoxP-Cre 
flanked for the specific protein were cross-bred with VillinCre mice. 
Spontaneous tumorigenesis was observed in colon with 100% 
penetrance.

Human tissue preparation
Surgically resected human biopsy samples (obtained from the Pathol-
ogy Institute, Erlangen) from tumour or healthy tissue were immedi-
ately placed in Advanced DMEM medium supplemented with 10% FBS, 
1% GlutMAX, 1% HEPES and 1% penicillin/streptomycin and stored at 
4 °C, processed immediately or frozen in liquid nitrogen for later use. 
Matched pairs of samples were analysed, with two samples derived 
from each patient: a tumour sample and a control sample originating 
from healthy tissue surrounding the tumour.

The biopsy samples were not collected specifically for this 
research study but were part of the standard practices of patient care. 
Informed consent was obtained from patients providing samples and 
all experiments were carried out in accordance with the declaration 
of Helsinki. The protocol for obtaining human biopsy samples for this 
study was approved by ethic votes of the University Hospital of the 
Friedrich-Alexander University Erlangen-Nürnberg (24 January 2005, 
18 January 2012; Institutional Review Board of the University Hospital 
of the Friedrich-Alexander University Erlangen-Nürnberg approval 
number: Re.-No. 4607).

Supplementary Tables 5–10 present the population characteristics 
and pathological information for all analysed human samples. Stromal 
tumour infiltrating lymphocytes and stroma content of tumours was 
scored by pathologists as described previously68.

Tissue dissociation and single-cell preparation
Tissue dissociation using a TG (Fast Forward Discoveries GmbH) was 
performed, as described in refs. 34,35. Briefly, the tissue sample was 
cut into small pieces of about 1–2 mm and placed into the rotor unit of 
the TG with 800 μl of DMEM supplemented with 2% FBS. The rotor unit 
was positioned in the lid of a 50 ml Falcon tube; the stator insert with a 
100 μm cell strainer was placed on top of the rotor unit. A 50 ml Falcon 
tube was placed on the lid, screwed and positioned on the TG device 
(Fig. 1). The grinding process parameters for each tissue type are sum-
marized in Supplementary Table 2. TG protocols were provided by the 
manufacturer with some minor modifications34,35. Following the grind-
ing procedure, the Falcon tube was inverted onto a rack, opened and 
the cell strainer washed with 5 ml of DMEM, 2% FBS. The flow through 
was transferred into a 15 ml Falcon tube and centrifuged for 8 min at 
300g. Subsequently, the supernatant was aspirated, and the cell pellet 
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washed with 2 ml of PBS, 2% FBS, passed through a flow cytometry 
round bottom tube with a cell strainer cap and centrifuge at 300g for 
5 min. The cell pellet was resuspended in the high-viscosity measure-
ment buffer prepared using 0.6% (wt/wt) methyl cellulose (4,000 cPs; 
Alfa Aesar) diluted in PBS without calcium and magnesium, adjusted 
to an osmolality of 270–290 mOsm kg−1 and pH 7.4. The viscosity of 
the buffer was adjusted to (25 ± 0.5) mPa s−1 at 24 °C using a viscometer 
(HAAKE Falling Ball Viscometer Type C, Thermo Fisher Scientific).

RT–FDC
RT–FDC measurements were performed as previously described13,14, 
using an AcCellerator instrument (Zellmechanik Dresden GmbH). The 
cell suspension was drawn into a 1 ml Luer-Lok syringe (BD Biosciences) 
attached to a syringe pump and connected by PEEK-tubing (IDEX Health 
& Science LLC) to a microfluidic chip made of polydimethylsiloxane 
bonded on a cover glass. A second syringe filled with pure measure-
ment buffer was attached to the chip and used to hydrodynamically 
focus the cells inside the constriction channel. The microfluidic chip 
consisted of a sample inlet, a sheath inlet and an outlet connected by a 
central channel constriction of a 20 × 20, 30 × 30 or 40 × 40 μm square 
cross-section and a length of 300 μm. The corresponding total flow 
rates used were: 0.06 µl s for 20 μm−1 channels, 0.12 µl s−1 for 30 μm 
channels and 0.2 µl s−1 for 40 μm channels. The sheath to sample 
flow ratio was 3:1. The chip was mounted on the stage of an inverted 
high-speed microscope equipped with a high-speed complementary 
metal-oxide semiconductor camera. The laser power for each fluoro-
phore was adjusted accordingly, based on single stain controls and an 
unstained sample. An image of every cell was captured in a region of 
interest of 250 × 80 pixels at a frame rate of 2,000 fps. Morphological, 
mechanical and fluorescence parameters were acquired in real time. 
The fluorescence threshold for each antibody was adjusted accord-
ing to an unstained sample of cells obtained from the same tissue. 
Supplementary Table 3 lists the features acquired in real time and 
during post-processing analysis; described in detail in previous pub-
lications69,70. Data were acquired using ShapeIn software (ShapeIn2; 
Zellmechanik Dresden GmbH).

Fluorescence labelling
Where necessary, single-cell suspensions were incubated for 20 min 
at room temperature with 200 μl of corresponding antibodies (for 
antibodies dilution, see Supplementary Table 4) diluted in PBS supple-
mented with 0.5% bovine serum albumin (Sigma-Aldrich) and Fc recep-
tor blocking reagent of corresponding species (Miltenyi Biotec, human: 
130-059-901; mouse: 130-092-575). The antibodies were washed by 
adding 1 ml of PBS and 2% FBS, and centrifuged for 500g for 5 min. 
The final cell preparation was then resuspended in the measurement 
buffer before loading onto the microfluidic chip for RT–FDC analysis. 
For frozen biopsy samples, the tissue was placed in pre-warmed DMEM, 
supplemented with 10% FBS for 10 min and allowed to thaw before 
processing as described above.

Data analysis
RT–FDC data were analysed using public packages in Python 3.7. Dclab 
0.32.3 library was used for the initial loading, pre-processing and filter-
ing of the data71. To remove images of debris, damaged cells and red 
blood cells, we applied gates for minimum cross-sectional area (20 µm2), 
area ratio (1:1.1) and aspect ratio (1:2). Small cells <60 µm2 were identi-
fied by additionally gating for area ratio 1:1.05 and aspect ratio 1:2. Any 
events outside of these gates and all events <25 µm2 were considered 
as debris. In the scatter plots of RT–FDC parameters, colour coding is 
according to kernel density estimates normalized between 0 and 1.

Statistical analysis was done using the SciPy 1.3.0 package. The 
Wilcoxon signed rank test was used to assess paired samples (murine 
healthy versus tumour samples and human fresh colon tissue samples 
versus frozen samples). A Mann–Whitney U test was applied on transfer 

colitis data. In graphs, P values are represented by * P < 0.05, ** P < 0.01 
and *** P < 0.001. Effect sizes were calculated as r = |z|/√N, where z is the 
z statistic of the test and N is the number of samples. Effect sizes were 
judged according to Cohen criteria as follows: 0.1–0.3 small effect, 
0.3–0.5 moderate effect and >0.5 large effect. Pearson’s correlation 
was performed to judge the correlation between cell deformation and 
the number of CD45+ cells and the correlation between cell size and 
area of murine healthy and tumour samples.

The Scikit learn 0.23.2 package was used for further data process-
ing and analysis72. Parameters obtained from RT–FDC were transformed 
by scaling each feature to the range between 0 and 1. PCA was used for 
linear dimensionality reduction, using singular value decomposition 
of the data to project onto a two-dimensional space (PC1 versus PC2). 
Logistic regression was used for the classification of healthy versus 
tumour samples.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The RT–FDC datasets generated and analysed for Figs. 2–5 and 
Extended Data Figs. 3–5 are available on the Deformability Cytom-
etry Open Repository (https://dcor.mpl.mpg.de/organization/
soteriou-kubankova)73. Individual identifiers for each dataset are 
provided in Supplementary Table 11. Source data for Extended Data 
Fig. 1 are also provided with this paper. Source data are provided with 
this paper.

Code availability
The Python code for the processing and visualization of RT–FDC 
data is available at https://github.com/marketakub/physical_ 
phenotyping_tissues.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Comparison of cell viability and cell yield of mechanical 
vs standard dissociation of different murine tissues. a,b, Percentage of viable 
cells for different organs dissociated using a tissue grinder (TG; marked in red) 
or standard dissociation (marked in blue). Cell viability was assessed using (a) 
propidium iodide and RT-FDC and (b) trypan blue exclusion assay. c, Number 
of cells (obtained using a cell counter device) per mg of tissue processed. Lung, 

liver, kidney, pancreas and stomach processed with enzymatic dissociation were 
not weighted prior to the experiments. The line represents the mean and the box 
extends from minimum to maximum values. TG data kidney and spleen: n = 5, 
all other organs n = 5; for enzymatic dissociation kidney, pancreas, stomach: 
n = 3; all other organs n = 4; biologically independent repeats performed as 
independent experiments).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Detection of fluorescent cell surface markers using RT-
FDC. a, Representative scatter plots of fluorescence intensities in three different 
detection channels of RT-FDC, showing the possibility of using fluorescent 
cell surface markers to characterize the cells. Plots show expression of an 
endothelial marker (CD31-PE) vs leucocyte marker (CD45-FITC); and an epithelial 

marker (EpCAM-APC) vs CD45-FITC. b, Representative images of cells and their 
corresponding fluorescence traces; the temporal shape of the fluorescence peak 
corresponds to the subcellular localization of the fluorophore. Top left to right: 
cell negative for all markers, a cell positive for CD45; bottom left to right: cell 
positive for EpCAM only and cell positive for CD31 only.
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Extended Data Fig. 3 | Detection of cell doublets using RT-FDC. Representative 
scatter plots of aspect ratio vs cell size of cells isolated from murine a, thymus, 
c, spleen and e, kidney showing the gating strategy for identifying cell 

doublets. Cell doublets identified in b, thymus and d, spleen and f, kidney with 
corresponding fluorescence traces (b,d), showing a leucocyte (CD45) attached to 
an endothelial cell (CD31), or (f) the interaction of two leukocytes.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Physical phenotype characterisation of cells isolated 
mechanically and enzymatically from murine lung and liver. a, Scatter 
plots of deformation vs cell size for cells isolated from mouse liver tissue using 
a tissue grinder (TG) or enzymatic dissociation, showing the enrichment of 
hepatocytes following mechanical dissociation for 3 independent biological 
repeats. b, Scatter plot of deformation vs cell size showing 3 clusters of cells that 

correspond to hepatocytes of different sizes; with the corresponding kernel 
density estimate (KDE) plot and representative images (r = radius of cells). c, 
Percentage of hepatocytes to the total number of liver cells, as detected by RT-DC 
for five independent biological repeats. d, Scatter plots of deformation vs cell 
size for cells isolated from mouse lung tissue using a tissue grinder or enzymatic 
dissociation for 3 independent biological repeats.
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Extended Data Fig. 5 | Comparison of physical phenotype parameters of cells 
from frozen and fresh human biopsy samples. Cell size vs deformation scatter 
plots of single cells extracted from either fresh (purple) or frozen (green) colon 
biopsy samples; a, healthy sample; b, tumour sample; including 3 representative 
cell images for each plot with a scale bar = 10 μm2. The kernel density estimate 
(KDE) plots on the right correspond to the scatter plots on the left; the 
histograms show the distributions of cell size and deformation. c, Medians and 

standard deviations of cell size, deformation, area ratio and aspect ratio of fresh 
(N = 6) and corresponding frozen (N = 6) samples. Boxes extend from the 25th to 
the 75th percentile with a line at the median; whiskers span 1.5x the interquartile 
range. Statistical comparisons were performed using a two-sided Wilcoxon 
signed rank test, standard deviation cell size (*p = 0.0277, r = 0.64), median 
area ratio (*p = 0.0277, r = 0.64) and standard deviation area ratio (*p = 0.0277, 
r = 0.64); r: effect size; NS: non-significant.
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Software and code
Policy information about availability of computer code

Data collection We used ShapeIn (ShapeIn2; commercially available from Zellmechanik Dresden GmbH) for the acquisition of the RT-FDC data.

Data analysis Python 3.7 was used. The Python library dclab is open-source and available on github (https://github.com/ZELLMECHANIK-DRESDEN/dclab); 
package version 0.32.3 was used for data analysis. We performed statistical analyses with the SciPy 1.3.0 package. Additional data analysis 
was performed with Scikit learn 0.23.2 package (https://scikit-learn.org/stable/). 
The Python code for the processing and visualisation of RT-FDC data is available at https://github.com/marketakub/
physical_phenotyping_tissues.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The RT-FDC datasets generated and analysed for Figs. 2–5 and Extended Data Figs. 3–5 are available on the Deformability Cytometry Open Repository (https://
dcor.mpl.mpg.de/organization/soteriou-kubankova)73. Individual identifiers for each dataset are provided in Supplementary Table 11. Source data for Extended 
Data Fig. 1 are also provided with this paper.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Sex and gender were not considered in the study design nor in the data analysis. Our working assumption was that there are 
no sex-related or gender-related differences in colon tumours; hence, sex and gender were not considered as relevant 
parameters in our analysis. 

Population characteristics Surgically resected human biopsy samples from male and female patients of age range 57–88 were obtained from the 
Pathology Institute, Erlangen. All samples used were obtained from leftover biopsy samples. Therefore, this work did not 
interfere with standard practices of care or with sample-collection procedures. We provide the main population 
characteristics, including age, gender, diagnosis, localization of biopsy, histology, pT and pN stage, tumour grade, resection 
status, and the characteristics of the stroma and invasion state, in the Supplementary Information.

Recruitment No active recruitment was needed. We used leftover biopsy samples that were obtained (subject to availability) from the 
Pathology Institute, Erlangen, following patient surgery. The biopsy samples were not collected specifically for this research 
study but were part of the standard practices of patient care. Informed consent was obtained from the patients providing 
samples. The participants were not compensated. All experiments were carried out in accordance with the declaration of 
Helsinki.

Ethics oversight The study is covered by ethic votes of the University Hospital of the Friedrich-Alexander University Erlangen-Nurnberg 
(24.01.2005, 18.01.2012). The Institutional Review Board of the University Hospital of the Friedrich-Alexander University 
Erlangen-Nürnberg approved the study (ID: Re.-No. 4607).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to predetermine sample sizes. The sample sizes used in the study are in accordance with past experience and 
with standard sizes used in real-time deformability-cytometry measurements, which are of the order of several hundreds of cells per 
measurement per condition. The number of mice used in the animal studies were estimated according to the Resource Equation method 
[Charan et al. (2013), J Pharmacol Pharmacother]. For human biopsies, sample sizes were determined by the number of patient samples 
available.

Data exclusions For the analysis of real-time deformability-cytometry data, we excluded debris by filtering out events smaller than 20 μm^2 in cross-sectional 
area, a procedure commonly used in real-time deformability cytometry.  An additional area-ratio filter of 1.0–1.1 was used to ensure that only 
events with correctly fitted contours are used in the data analysis, as previously established by ZellMechanik Dresden GMBH, Dresden, 
Germany. 

Replication All of the experiments presented in the manuscript were repeated more than once, as indicated in the figure legend. All experiments were 
included in the analysis.

Randomization Randomization was not relevant for the study, because no treatment group was involved.
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Blinding For blind data analysis, samples were numerically tagged. The investigator running the analysis was unaware of which sample corresponded 

to tumour or healthy tissue. Only the investigators acquiring the data were aware of the status of the biopsy. Owing to the appearance of the 
biopsy samples, it was in some cases clear to the investigator performing the experiments which sample corresponded to tumour or healthy 
tissue. It was therefore impossible to perform blind data acquisition.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used anti-human: CD326 (EpCAM) Alexa Fluor 488 (1:100, Clone:9C4, Ref :324210; BioLegend, CA, USA); CD31(PECAM-1) APC (5μl/

reaction, Clone: WM59, Ref: 303115; BioLegend, CA, USA); CD45-PE (1:500. Clone HI30, Ref: 304008; BioLegend, CA, USA); CD326 
(EpCAM) FITC (1:500, Clone:9C4, Ref: 324203; BioLegend, CA, USA); CD45 Alexa Fluor 700 (5μl/reaction, Clone: HI30, Ref: 304024; 
BioLegend, CA, USA). Anti-mouse: CD45 Alexa Fluor® 700 (1:1000, Clone: 30-F11, Ref: 103128; BioLegend, CA, USA); CD326 (EpCAM) 
Alexa Fluor 488 (1:200, Clone: G8.8, Ref: 118210; BioLegend, CA, USA); CD45-FITC (1:800. Clone: 30-F11, Ref: 11-0451-82; Thermo 
Fischer Scientific, MA, USA); CD326 (EpCAM) APC (1:500, Clone: G8.8, Ref: 17-5791-82; Thermo Fischer Scientific, MA, USA); CD31 
(PECAM) PE (1:250, Clone:390, Ref: 12-0311-82; Thermo Fischer Scientific, MA, USA).

Validation Antibodies were validated by the manufacturers and were used according to manufacturers' recommended dilutions.  
Anti-human: 
CD326 (EpCAM) Alexa Fluor 488: https://www.biolegend.com/en-ie/search-results/alexa-fluor-488-anti-human-cd326-epcam-
antibody-3759 
CD31(PECAM-1) APC: https://www.biolegend.com/en-ie/products/apc-anti-human-cd31-antibody-6123 
CD45 PE: https://www.biolegend.com/en-ie/products/pe-anti-human-cd45-antibody-708 
CD326 (EpCAM) FITC: https://www.biolegend.com/en-ie/products/fitc-anti-human-cd326-epcam-antibody-3756 
CD45 Alexa Fluor 700: https://www.biolegend.com/en-ie/products/alexa-fluor-700-anti-human-cd45-antibody-3401 
 
Anti-mouse: 
CD45 Alexa Fluor 700 : https://www.biolegend.com/en-ie/products/alexa-fluor-700-anti-mouse-cd45-antibody-3407 
CD326 (EpCAM) Alexa Fluor 488 :https://www.biolegend.com/en-ie/products/alexa-fluor-488-anti-mouse-cd326-ep-cam-
antibody-4972 
CD45 FITC: https://www.thermofisher.com/antibody/product/CD45-Antibody-clone-30-F11-Monoclonal/11-0451-82 
CD326 (EpCAM) APC: https://www.thermofisher.com/antibody/product/CD326-EpCAM-Antibody-clone-G8-8-
Monoclonal/17-5791-82 
CD31 (PECAM-1) PE: https://www.thermofisher.com/antibody/product/CD31-PECAM-1-Antibody-clone-390-Monoclonal/12-0311-82

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals For the comparison of enzymatic and tissue grinding: C57BL/6J females and males, age 8–19 weeks;  
For the transfer colitis model: Mus musculus, Rag1-/-, female, 8–12 weeks at the start of the experiment. 
For the tumour model: Mus musculus, female and male mice, 30–40 weeks. 
Animals were housed in 12-hour light–dark cycle, at 20–23°C and 40–60 % humidity.

Wild animals The study did not involve wild animals.

Reporting on sex Male (N=3) and female (N=4) animals were used for the comparison of enzymatic dissociation and tissue grinding. For each tissue 
extracted, half were used for enzymatic dissociation and half for tissue grinding. 
 
Only female animals were used for the transfer colitis experiments (N=14), as described in the original publication 
(DOI: 10.1093/intimm/5.11.1461) 
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Both male (N=7) and female (N=9) animals were used for the tumour model. 
 
No sex-based analysis was performed because this was beyond the scope of this study.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight The experiments were performed in accordance to the guidelines of the Institutional Animal Care and Use Committee of the State 
Government of Middle Franconia. 
Transfer colitis: TVA: 55.2.2- 2532-2-473; Government of Lower Franconia 
Tumour model: TVA: 55.2.2- 2532-2-1032; Government of Lower Franconia

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies

	Results

	Physical phenotyping of cells from mechanically dissociated tissues

	Tissue inflammation is detected by cell physical phenotyping

	Distinction of tumour and healthy tissue in mouse colon

	Distinction of tumour and healthy tissue in human biopsies


	Discussion

	Methods

	Animal experiments

	Adoptive lymphocyte transfer colitis

	Spontaneous tumour model

	Human tissue preparation

	Tissue dissociation and single-cell preparation

	RT–FDC

	Fluorescence labelling

	Data analysis

	Reporting summary


	Acknowledgements

	Fig. 1 Schematic of the physical phenotyping method.
	Fig. 2 Illustrative scatter plots of physical parameters of cells from murine liver, colon and kidney samples.
	Fig. 3 Physical phenotyping of cells via RT–FDC reflects tissue inflammation.
	Fig. 4 Physical phenotyping of cells in tumour and healthy mouse colon tissue.
	Fig. 5 Distinction of tumour and healthy tissues in human biopsies using PCA and logistic regression.
	Extended Data Fig. 1 Comparison of cell viability and cell yield of mechanical vs standard dissociation of different murine tissues.
	Extended Data Fig. 2 Detection of fluorescent cell surface markers using RT-FDC.
	Extended Data Fig. 3 Detection of cell doublets using RT-FDC.
	Extended Data Fig. 4 Physical phenotype characterisation of cells isolated mechanically and enzymatically from murine lung and liver.
	Extended Data Fig. 5 Comparison of physical phenotype parameters of cells from frozen and fresh human biopsy samples.




