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Abstract Communities across the globe are 
faced with a rapidly aging society, where age is the 
main risk factor for cognitive decline and develop-
ment of Alzheimer’s and related diseases. Despite 
extensive research, there have been no successful 
treatments yet. A rare group of individuals called 
“super-agers” have been noted to thrive with their 
exceptional ability to maintain a healthy brain and 
normal cognitive function even in old age. Study-
ing their traits, lifestyles, and environments may 

provide valuable insight. This study used a data-
driven approach to identify potential super-agers 
among 7121 UK Biobank participants and found 
that these individuals have the highest total brain 
volume, best cognitive performance, and lowest 
functional connectivity. The researchers suggest 
a novel hypothesis that these super-agers pos-
sess enhanced neural processing efficiency that 
increases with age and introduce a definition of 
the “neural efficiency index.” Furthermore, sev-
eral other types of aging were identified and sig-
nificant structural–functional differences were 
observed between them, highlighting the benefit 
of research efforts in personalized medicine and 
precision nutrition.
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Introduction

The average age across the global population is 
increasing. Typically, individuals will experience 
mild cognitive decline as they enter into their 40 s [1], 
while others are open to the prospect of develop-
ing Alzheimer’s disease or another similar demen-
tia [2]. The future societal burden of cognitive aging 
and dementia will be staggering if research does not 
produce reliable and personalized protocols for pre-
vention, and pharmaceutical treatments when they 
become necessary. Most research to-date has focused 
on cognitive and neural aging processes when they 
go awry, such as when amyloid plaques and tau tan-
gles form, or when brain tissues shrink and degener-
ate. Our research sought to characterize and produce 
understanding of the aging process when it goes as 
well as naturally possible. We term these people who 
seem to exhibit the most optimal aging results as pos-
sible “super-agers.”

Super-agers show exceptional mental sharp-
ness even at later points in their lifespan. They have 
remarkable qualities worth characterizing, includ-
ing but not limited to youth-like cognitive func-
tion at advanced ages [3] and the relative absence of 
neurodegeneration  [4]. Super-agers have also been 
observed with greater neuroimmunity  [5], more von 
economo “self-control” neurons  [6], and fewer neu-
rofibrillary plaques [7]. These are many of the same 
signature biomarkers which characterize neurodegen-
erative diseases like AD  [8]. The success of super-
agers may be indicative of individual traits and other 
factors that are tapping into having a long and pro-
ductive life; hence, studying them could reveal hid-
den insights about graceful aging and the prevention 
of AD. Initial research is showing that super-aging is 
intimately connected to certain genetic and lifestyle 
traits, and environmental factors.

Although super-aging has been set to begin at age 
80  [9], no one knows when the developmental pro-
cesses which lead to being a super-ager start or end. 
To some extent, the definition of a super-ager is typi-
cally theoretically grounded in thought experiments, 
unstandardized, with arbitrary boundaries set, and 

subject to debate. Important biological details could 
be missed if we only study individual’s destined to be 
super-agers after they turn 80. Because some of the 
developmental tracks that lead into dementia start ear-
lier in life [10], it is possible that some of the super-
aging developmental processes also start in midlife or 
sooner — or at least some time prior to age 80.

There is a lack of information and theory about 
the neural and cognitive developmental mechanisms 
involved in super-aging and their time of staging. In 
this paper, we seek to offer a more rational, empiri-
cally grounded set of super-aging qualities. We uti-
lize a longitudinal data-driven process with the UK 
Biobank cohort data to (1) separate and group indi-
viduals in order to develop profiles of neurocognitive 
aging and classify the individuals accordingly and (2) 
identify and characterize the best-performing individ-
uals in mid- to late-life (potential “super-agers”).

Methods

Cohort

Participants were a part of the UK Biobank 
study  [11]. This prospective cohort study collected 
baseline data in a half million individuals from 22 
assessment centers located in the UK, starting in 
2006. A total sample of 7125 participants were avail-
able. For baseline data, cognition was tested between 
2006 and 2010, while neuroimaging data collection 
began in 2014 and continued until 2018. A visit to 
the assessment center involved six consecutive steps: 
(1) consent, (2) touchscreen questionnaire, (3) verbal 
interview, (4) eye measures, (5) physical measures, 
and (6) blood/urine sample collection. The touch-
screen questionnaire collected sociodemographic, 
lifestyle, cognitive function, and family history of ill-
ness data. Informed consent to participate was given 
at baseline. The UK Biobank protocol was approved 
by the North West MultiCentre Research Ethics Com-
mittee. Participants were aged 46 to 81  years old at 
the completion of this study.

Measurement of fluid intelligence trajectory

Participants completed the fluid intelligence test 
(FIT) as part of a touchscreen questionnaire at base-
line (2006–2010) and two follow-up assessments 
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(2012–2013, 2014–2018). The FIT score is quanti-
fied by how many numeric, logic, and syntactic ques-
tions (out of 13 total questions) that participants were 
able to answer correctly within two minutes  [12]. 
We represent the temporally extended fluid intelli-
gence process with an algebraic trajectory computed 
from difference equations to model each participant’s 
initial score (intercept) and linear change over time 
(velocity).

Measurements of brain volume and neural activity

A full protocol for how the neural images were 
acquired at one of three sites in Reading, Newcastle, 
or Manchester and processed is available online (http:// 
bioba nk. ctsu. ox. ac. uk/ cryst al/ refer. cgi? id= 2367). 
In short, brain MRI data was acquired on a Siemens 
Skyra 3 T scanner with a standard Siemens 32-chan-
nel RF receiver head coil, with the imaging matrix 
angled down by 16° from the AC-PC line. Baseline 
MRI visits began in 2014 and continued until 2018. 
The baseline brain measures and third wave of cogni-
tive measures occurred at the same visit. T1-weighted 
volumetrics were acquired in the sagittal plane using a 
three-dimensional magnetization-prepared rapid gradi-
ent-echo sequence at 1 mm cubic resolution, and field 
of view at 208 × 256 × 256. Participants were instructed 
to simply focus on a crosshair with eyes open and not 
think about anything specifically. Scan duration was 
6 min and 10 s, to acquire 490 images with the follow-
ing acquisition parameters: TR = 735 ms; TE = 39 ms; 
2.4 × 2.4 × 2.4  mm voxel resolution; 88 × 88 × 64 
matrix, multiband factor = 8, in-plane acceleration 
factor = 1, flip angle 52°. Pre-processing and quality 
control measures are described in UK Biobank white 
papers (https:// bioba nk. ctsu. ox. ac. uk/ cryst al/ cryst 
al/ docs/ brain_ mri. pdf). Briefly, using FSL tools, the 
4D dataset was motion-corrected, grand-mean inten-
sity normalized, high-pass temporal filtered (with 
sigma = 50.0  s), and EPI and GDC unwarped and 
denoised (using ICA + FIX processing). Group Princi-
pal Component Analysis and Independent Component 
6 Analysis through FMRIB’s MELODIC were then 
used to derive 21 spatially orthogonal, non- noise, dis-
tinctive independent components (ICs) that represent 
resting neural networks. Each participant has a Z-score 
for a given IC, representing the degree of activation 
relative to the group mean. An expert (AAW) then 

viewed the activation maps and described the neural 
networks (see Supplementary Table 1).

Definition of the neural efficiency index

In order to analyze differences in the brain’s resource 
use efficiency at producing cognitive output, the par-
ticipant’s baseline fluid intelligence score was divided 
by their neuroactivity level of the central executive 
network during resting state.

Software

Analyses were conducted using R 3.6.3 (R Foundation 
for Statistical Programming, Vienna, Austria) [13].

Missingness

Only individuals who had at least two time-point 
observations for fluid intelligence, and full data on 
the other analyzed variables, were considered for 
analysis. To maintain an empirical and data-driven 
analysis, no missingness imputation was utilized.

Outlier analysis

To ensure that these models were generalizable to 
at least 99% of the sample population, 1% quantiles 
were computed for each variable, and 604 partici-
pants beyond 99% of the sample distribution of the 
mean among any variable were removed from further 
analysis.

Cluster analysis

To discover latent categories that represent differ-
ent states and stages of neurocognitive aging, we 
formed a divisive hierarchical clustering decision tree 
using Euclidean distance and complete linkage  [14]. 
Despite the availability of new approaches, traditional 
hierarchical clustering remains an easy and effective 
way to establish group substructure  [15]. The input 
variables included age, fluid intelligence initial values 
and 10-year velocity (collectively, “fluid intelligence 
trajectory”), whole brain grey matter volume, and 
resting state neural activity of the central executive 
network. This network was chosen a priori because it 
is strongly related to executive function performance, 
including fluid intelligence [16]. Preliminary analyses 
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also suggested it was a better predictor than mean 
resting state activity across all neural networks (data 
not shown). Variables were standardized to ensure 
that clusters were not influenced by differing scales 
among the inputs. We computed solutions for nested 
sequences of 2 through 12 clusters and selected the 
12-cluster solution for further characterization.

A solution that characterized 12 latent groups 
was selected. The primary parameter for select-
ing this solution, beyond the statistical parameters, 
was that it identified potential super-ager groups, 
consistent with our second goal. Twelve neuro-
cognitive clusters were initially identified, and 
8 were carried forward for further analysis. Two 
clusters were dismissed for having only 1 and 3 
participants, thus possibly representing outliers 
or extremely rare groups that are too underpow-
ered to be characterized here. Three clusters were 
recombined to a former cluster (producing the 
“steady state” and “cognitive reserve” clusters) 
due to a lack of meaningful differences and the 
desire to keep analyses as simple as possible. See 
Fig. 1 for a schematic of the hierarchical tree and 8 
derived clusters.

Characterization of the neurocognitive profile of each 
cluster

Once the cluster designations were known, the mean-
structure (average value and standard deviation) for 
each cluster’s age, total grey matter volume, resting 
state executive function network, and fluid intel-
ligence trajectory was computed. Comparison and 
contrasts of this neurocognitive profile between each 
cluster were the basis for the ad hoc naming conven-
tions (Figs. 2 and 3).

Regression analysis

Fluid intelligence was regressed against age, sex, total 
grey matter volume, and resting state executive func-
tion network in a cluster-wise manner (i.e., this model 
was built separately for each cluster). We also con-
trolled for tobacco and cannabis smoking status, level 
of education, and social class. Estimates were calcu-
lated using maximum likelihood. Uncertainty analy-
sis relied upon standard errors and p-value estimates, 

where results were considered statistically significant 
at p < 0.05.

Sensitivity analysis

Given the sample size of the smallest cluster 
(n = 276) and number of predictors (3), and no a 
priori hypotheses (“two-tails”), GPower 3.1 esti-
mated the smallest effect which could be reliably 
detected was f2 = 0.047 (small), while minimizing 
type I error to α = 0.05, and type II error to β = 0.05.

Results

In summary, cluster analysis showed latent group-
ings of individuals that manifested (1) forms of 
neurocognitive decline over 6–10  years, with or 
without cognitive reserve; (2) forms of neurocogni-
tive stability; or (3) super-ager-like neurocognitive 
improvement. In a regression analysis, this 8-clus-
ter solution explained 77% of total grey matter vol-
ume, 37% of neural activity, and 43% of the 10-year 
cognitive trajectory. There were prominent group 
differences between brain volume, resting state neu-
ral function, cognitive performance, and age. The 
clustering solution had a very reasonable cluster 
structure based on an agglomerative coefficient of 
0.957, indicating well-separated clusters [17]. After 
participants were categorized, Table  1 shows each 
latent group’s mean age, fluid intelligence trajec-
tory, total brain grey matter volume, and resting 
state functional neuroactivity of the central execu-
tive network. Clusters are characterized by sample 
size representation, from largest (20.3%) to smallest 
(0.9%).

Characterization of older individuals with low 
cognition

As shown in Table  1, the first cluster represented 
20.3% of the population sample and had an aver-
age age of 66, making it the largest and second old-
est sub-cohort. This group had low fluid intelligence 
score with small increases over time. Total brain vol-
ume, however, was mid-level, while neural activity 
was low. This trajectory represents the most typical 
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variation of neurocognitive aging among this sample, 
and we characterize it as older individuals with low 
fluid intelligence.

Characterization of individuals with neural 
degeneration

The second cluster represented 18% of the population 

Fig. 1  This is a schematic of the hierarchical clustering tree 
with solutions for nested sequences from 1 through 12 clus-
ters. The sample size and mean-structure are shown within 
each cluster bubble, where  FIµ is the initial fluid intelligence 
score observed,  FIv is the linear change over time in the fluid 
intelligence score, Vol is the total brain volume, and Fun is 
the neural activity of the central executive function network at 

rest. Cluster bubbles that are red with a dotted bubble were not 
analyzed due to low sample size. Cluster bubbles that are black 
with a dotted bubble were recombined into a previous cluster 
(please see RESULTS for more details). Cluster bubbles that 
are bolded and have a name tag under them represent one of 
the eight clusters that we characterize
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sample and were 63 years old on average. Most note-
worthy among this sub-cohort was that they had the 
least brain volume. Their fluid intelligence was lower, 
while fluid intelligence velocity was steady, and 
neural activity was approximate to the total sample 
average.

Characterization of individuals with cognitive reserve

The third cluster represented 16.6% of the population 
sample with an average age of 65. The most defining 

characteristic of this group was that they had almost 
the highest levels of fluid intelligence, despite their 
older age. Although they had cognitive reserves, their 
fluid intelligence levels were declining steadily each 
year. Brain volume and neural activity levels were 
close to the total sample averages.

Characterization of steady state individuals

The fourth cluster represented 15.6% of the population 
sample who had an average age of 61  years old. This 
group was noted as having midrange levels of fluid intel-
ligence and a steady fluid intelligence velocity. They have 
above average levels of brain volume and neural activity.

Characterization of younger potential super-agers

The fifth cluster represented 13.9% of the population sam-
ple, and their average age was 57 years old. This group 
demonstrated high levels of fluid intelligence and brain 
volume. They also had a slightly positive velocity in fluid 
intelligence. Levels of neural activity were midrange.

Characterization of individuals with low fluid 
intelligence/low neuroactivity

The sixth cluster represented 5.6% of the popula-
tion sample with an average age of 61 years old. This 
group had low performing fluid intelligence levels, 
low brain volume with significantly less neural activ-
ity. Oddly, the group did have the greatest average 
fluid intelligence velocity.

Fig. 2  This trajectory plot 
shows changes in fluid 
intelligence over 10 years 
for each of the eight neuro-
cognitive profiles identified, 
facetted by low versus aver-
age to high neuroactivity. 
Solid line trajectories have 
above average brain vol-
ume, and dotted trajectories 
have below average brain 
volume

Fig. 3  This is a scatterplot overlaid with centroids to demon-
strate differences in cluster mean-structure for the central exec-
utive network at rest and the intercepts of the fluid intelligence 
trajectory
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Characterization of older potential super-agers

The seventh cluster represented 4% of the population 
sample who were 67 years old on average. This group 
was noted for its high levels of fluid intelligence and 
brain volume, while also maintaining that level of fluid 
intelligence with an absence of cognitive decline. In 
contrast to the younger potential super-ager group, they 
had lower levels of neural activity.

Characterization of individuals with low fluid 
intelligence/high neuroactivity

The eighth cluster represented 3.9% of the population 
sample and were 62 years old on average. This cluster 
was defined by its high levels of neural activity com-
bined with poor fluid intelligence performance. Nonethe-
less, they had slightly above average brain volume and 
fluid intelligence was observed to increase over time.

Differences in neuroactivity, cognition, and neural 
efficiency between clusters

We examined the relationship between central execu-
tive neuroactivity and fluid intelligence scores (Fig. 4). 

Importantly, and as related to our development of per-
sonalized medicine, we observed that the relationship 
could differ markedly depending on cluster assignment. 
A hallmark feature we noted for the two potential super-
ager groups and the cognitive reserve group was greater 
neural efficiency indices, in contrast to the other 5 neu-
rocognitive profiles. The older super-ager group dem-
onstrated the best neural efficiency, despite being the 
oldest group on average (Fig. 5).

Discussion

In this paper, we demonstrated that neurocognitive aging 
between age 45 and 80 is diverse and heterogeneous. We 
identified and characterized eight neurocognitive pro-
files based on 10-year cognition trajectories, total brain 
grey matter volume, and neural activation of the execu-
tive network at rest. These profiles exhibited pronounced 
between-group differences in both their mean-structure 
and correlation-structure. Two potential “super-ager” pro-
files consistently outperformed other profiles on 5 neuro-
cognitive parameters, especially on their neural efficiency 
index. The remaining profiles represented variations of 
normal and pathological aging. One profile represented 

Table 1  Latent group’s mean age, fluid intelligence trajectory, total brain grey matter volume, and resting state functional neuroactivity 
of the central executive network

*** p-value < 0.001 and power > 0.999, where the older-leaning low FI group is the reference

Identification Age FI intercept FI velocity Total grey volume Central execu-
tive neural activ-
ity

Neural efficiency

Older, low FI:
n = 1442 (20.2%)

66 (46–78) 5.5 0.10 660 2.1 2.6

Older potential super-agers:
n = 287 (4%)

67 (58–76) 8.5*** 0.02*** 716*** 2.0*** 4.5***

Low FI and neural activity:
n = 398 (5.6%)

61 (47–74) 4.8*** 0.42*** 633*** 2.3*** 2.1***

Cognitive reserve:
n = 1267 (17.8%)

64 (46–81) 8.2*** -0.22*** 668 2.4*** 3.6***

Neural degeneration:
n = 1277 (17.9%)

63 (46–78) 6.2*** 0.04*** 622*** 2.6*** 2.5***

Younger potential super-agers:
n = 990 (13.9%)

57 (45–71) 8.3*** 0.13 698*** 2.6*** 3.4***

Steady state:
n = 1184 (16.6%)

61 (45–78) 7.1*** -0.04*** 703*** 3.0*** 2.4***

Low FI, high neural activity:
n = 276 (3.9%)

62 (47–77) 5.0*** 0.34*** 694*** 3.5*** 1.5***

Overall population
n = 7121 (100%)

62 (45–81) 6.8 0.04 669 2.5
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individuals who were characterized by having cognitive 
reserve [18]. About one-fifth of the population presented 
with brain hyper-neuroactivity, half of the population 
showed midrange levels of neuroactivity, and almost a 
third had hypo-neuroactivity.

Hypometabolism in the brain has traditionally been 
discussed as a marker of AD coinciding with cognitive 
decline and neurodegeneration  [19–21]. Hypometabo-
lism represents reduced glucose uptake and is observed 
prior to the initiation of brain atrophy  [22]. There are 
some reports of a “transient hypermetabolism pheno-
type” which seems to precede and predict transition to 
Alzheimer’s disease  [23, 24]. Brain metabolism and 
resting state fMRI values are almost multicollinear 
(ρ = 0.80) in the absence of neurodegeneration, although 
their synchronicity becomes distorted (ρ = 0.67) as the 
rate of brain deterioration accelerates [25].

We noted a discordant observation: the neuroactiv-
ity levels of both super-ager groups were below average, 
especially for the older super-agers. While our results 
did replicate prior research that super-agers maintain 
youthful cognitive function  [3] with a relative absence 
of neurodegeneration  [4], the older potential super-ager 
cluster had the lowest neuroactivity of the entire cohort. 
Considering that there was a decade age gap between 
the younger and older super-ager clusters, it is plausible 
to infer that the younger group is on the same “aging 
track” (the trajectory to super-agerhood) as the older 
group (see Fig. 6). A progressive hypometabolism rep-
resenting a 23% reduction was noted in this 10-year gap 
between the two clusters. Given that their cognitive per-
formance remained high-powered and youth-like, while 
the metabolic resources necessary to achieve that per-
formance level decreased, we interpret this as potentially 
representing a novel super-aging phenotype described as 
an aging-related metabolic shift into greater neural effi-
ciency. If this phenotype description is accurate and is 
also observed among the potential super-agers of other 
cohorts, that biological shift could be occurring anytime 
between age 50 and 80, just based on the reference range 
for age between the younger and older potential super-
agers in this cohort.

We additionally examined the relationship neu-
ral activity had with both brain volume and cognitive 
function, stratified by the eight groups. Interestingly, 
we noted that the relationship between central execu-
tive neuroactivity and fluid intelligence scores differed 
drastically between groups. Neuroactivity and cognitive 
function typically presented with a positive correlation, 

Fig. 4  These cluster-wise 
scatterplots show how the 
linear relationship between 
central executive function 
and fluid intelligence score 
differ dramatically depend-
ing on which cluster the 
individual was assigned to

Fig. 5  This histogram shows the distribution of the neural effi-
ciency index by cluster. Note that older potential super-agers, 
younger potential super-agers, and cognitive reserve clusters 
demonstrate superior efficiency
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but the relationship was inverse for younger super-agers 
and the cluster who had the least brain volume (“neural 
degeneration”). Lower neuroactivity among the older 
potential super-agers was not suggestive of any neuro-
cognitive deficits. Despite strong statistical power, no 
association was observed for “older, low FI” and “low 
FI and low neuroactivity” clusters, which, if replicated 
in other cohorts, could be suggestive of a biological 
uncoupling between the brain and higher-order func-
tions of the mind that occurs in these individuals. These 
group-specific differences in the mean-structure and 
correlation-structure may even represent useful targets 
for personalized medicine and precision nutrition.

Because of these pronounced group differences in 
the mean- and correlation-structure of cognition and 
brain function, and the usefulness of employing both 
cognitive and neuroimaging data for distinguishing 
between the clusters, we made a ratio dividing the 
individual’s cognitive score by their fMRI levels, such 
that the fMRI ROI is thought to be concordant with the 
cognitive subdomain in question. We are naming that 
resulting ratio the “neural efficiency index.” Although 
this variable was not employed in the cluster analysis, 
we found that it was a potent differentiator for several 
of the clusters, especially the potential super-agers and 
cognitive reserve. It was less useful in differentiating 
“main sequence” clusters by itself.

This paper had several advantages including the use 
of a data-driven methodology that was able to replicate 
established theory and generate new post-priori hypoth-
eses. The method capitalizes on information from both 
cognitive and brain imaging data, including the use of 

10-year longitudinal cognitive data among a very large 
sample. A few limitations are also noted. Longer lon-
gitudinal data is required on this cohort before we can 
more accurately map out how the types of neurocognitive 
aging unfold. We also acknowledge that future research 
would be beneficial to examine among two or three 
other cohorts how well and how frequently these results 
replicate before strongly considering these post-priori 
hypotheses further. Nonetheless, we also consider that 
we were able to vindicate the results from other aspects 
of internal, external, and face validity [26]. The lack of 
longitudinal neuroimaging data was also a limitation; 
for instance, neuroimaging occurred simultaneous to the 
third wave of cognitive testing, but not the first or second 
waves.

While aging and dementia are often typified by 
decreasing neuroactivity, reducing brain volume, and 
deteriorating cognitive performance, we demonstrate 
that neurocognitive aging is diverse because people 
develop and age rather differently from each other. 
We utilized a clustering methodology that was able 
to capture that diversity, and which identified the rare 
trait of super-aging in the UK Biobank cohort. Poten-
tial super-agers sustain youthful minds and brains 
into late life, possibly while continually improving 
their brains’ efficiency as they age. We also observed 
and discussed that the nature of mean-structure and 
correlation-structure varied drastically between sub-
groups and that reduced neural activity with age does 
not always coincide with reduced cognition. Future 
directions in determining the causative factors of 
super-aging include exploring and testing genes, life 

Fig. 6  This schematic illus-
trates inferred (not empiri-
cally observed) 10-year 
changes in neurocognition 
between super-agers
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choices, environments, and other biomarkers that best 
predict or associate with the super-ager phenotype.
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