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Abstract Frailty is an aging-related clinical pheno-
type defined as a state in which there is an increase 
in a person’s vulnerability for dependency and/or 
mortality when exposed to a stressor. While underly-
ing mechanisms leading to the occurrence of frailty 
are complex, the importance of genetic factors has 
not been fully investigated. We conducted a large-
scale genome-wide association study (GWAS) of 
frailty, as defined by the five criteria (weight loss, 
exhaustion, physical activity, walking speed, and grip 

strength) captured in the Fried Frailty Score (FFS), 
in 386,565 European descent participants enrolled in 
the UK Biobank (mean age 57 [SD 8] years, 208,481 
[54%] females). We identified 37 independent, novel 
loci associated with the FFS (p < 5 ×  10–8), includ-
ing seven loci without prior described associations 
with other traits. The variants associated with FFS 
were significantly enriched in brain tissues as well 
as aging-related pathways. Our post-GWAS bioin-
formatic analyses revealed significant genetic cor-
relations between FFS and cardiovascular-, neuro-
logical-, and inflammation-related diseases/traits, 
and subsequent Mendelian Randomization analyses 
identified causal associations with chronic pain, obe-
sity, diabetes, education-related traits, joint disorders, 
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and depressive/neurological, metabolic, and respira-
tory diseases. The GWAS signals were replicated in 
the Health and Retirement Study (HRS, n = 9,720, 
mean age 73 [SD 7], 5,582 [57%] females), where the 
polygenic risk score built from UKB GWAS was sig-
nificantly associated with the FFS in HRS individu-
als (OR per SD of the score 1.27, 95% CI 1.22–1.31, 
p = 1.3 ×  10–11). These results provide new insight 
into the biology of frailty by comprehensively evalu-
ating its genetic architecture.

Keywords Frailty · GWAS · Genetic correlation · 
Polygenic risk score · Aging

Introduction

As the proportion of older adults rise around the globe, 
frailty has increasingly become the focus of attention among 
researchers and clinicians. Frailty can be defined as a medi-
cal condition characterized by a progressive decline in phys-
iological systems that increases an individual’s vulnerability 
to adverse health outcomes when exposed to a stressor [1]. 
Most prevalent in the elderly, frailty is not an inevitable con-
sequence of the aging process; rather, frailty can be viewed 
as an accelerated or pathological state of aging. Frailty is 
associated with higher risks of disability, dementia, hos-
pitalization, mortality, and poor outcomes after surgery, 
a constellation of findings that reflect both the importance 
and phenotypic complexity of this phenotype [1]. Moreo-
ver, frailty is related to increased healthcare costs and poor 
prognosis in surgical patients as well as with chronic renal 
failure, liver disease or cardiological conditions [2]. Novel 
preventive and therapeutic strategies are urgently needed to 
reduce the socioeconomic burden associated with the devel-
opment and progression of frailty.

The main systems identified to date in the patho-
physiology of frailty include the endocrine axis [3], 
inflammation/immune system [4], stress response [5] 
and metabolic pathways [6]. Multiple age-related hor-
mone changes have been associated with frailty [3]. 
It has also been suggested that the immune system is 
involved in the development of frailty. Particularly, 
serum levels of the proinflammatory cytokine interleu-
kin IL-6 [7], procalcitonin [7] and C-reactive protein 
(CRP) [7, 8], as well as white blood cell and mono-
cyte counts [8], are elevated in frail adults. Other stress 
response and metabolic systems include altered glu-
cose metabolism [9], dysregulation of the autonomic 
nervous system [10] and age-related changes in the 

renin-angiotensin system [11]. Given the observational 
design of most of the studies outlined above, it is diffi-
cult to judge whether the associations with these patho-
physiological mechanisms represent true causal links 
or just the co-occurrence of frailty with the numerous 
disease that are highly prevalent in older adults.

In addition to the aforementioned observations, 
genetic studies using a candidate-gene design iden-
tified several genes associated with frailty, mostly 
related to inflammation, protein regulation, and cogni-
tive function (with the epsilon variants within APOE 
playing a prominent role) [12, 13]. Importantly, previ-
ous genetic studies of frailty identified loci associated 
with traits such as body mass index (BMI), cardiovas-
cular disease, smoking, HLA proteins, neuropathy, 
endocrine system, depression and neuroticism [13, 
14]. However, these studies were limited by small 
sample size and their restriction to incident frailty, 
leading to diminished statistical power.

Further exploration of the genetic architecture of 
frailty will provide novel insights on the biological 
pathways involved in the development and progres-
sion of frailty and identify new targets for preven-
tion and treatment. Here, we conducted a large-scale 
genome-wide association study (GWAS) of frailty in 
the UK Biobank (UKB) [15] comprising over 380,000 
individuals of European ancestry and replicated the 
associations in 9,720 individuals from the Health and 
Retirement Study (HRS) [16]. In contrast to a recent 
genome-wide studies of frailty [17], we used the Fried 
Frailty Score (FFS) [18] instead of the Frailty Index (FI) 
to model frailty. While the FI requires a thorough clini-
cal assessment, including laboratory work-up, the FFS 
uses a small number of signs and symptoms (weight 
loss, low physical activity, exhaustion, slowness, and 
weakness), thus facilitating applicability and reproduc-
ibility [19]. In addition, compared to this recent frailty 
GWAS, we maximized the discovery power by avoid-
ing an age restriction and including more samples. The 
applicability of our findings to older adults was vali-
dated in a landmark study of aging—HRS.

Subjects and methods

Study design

We conducted a two-stage (discovery and replica-
tion) GWAS using publicly available data from two 
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established observational studies: the UKB and HRS. 
Research activities were approved by the correspond-
ing local IRBs and written informed consent was 
obtained from all study participants or their legally 
appointed representatives. With the GWAS, we then 
performed a series of post-GWAS analyses to gain 
deeper understanding of the genetic basis of frailty, as 
illustrated in the flowchart in the Supplemental Data 
(Supp. Figure 1).

The UK biobank

The UKB is a large prospective study established 
to be a public resource for research into the causes 
of diseases in the UK population. The study pro-
tocol, details of the study design and information 
on data access are available online [15]. In brief, a 
total of 502,618 community-dwelling persons aged 
40–69  years were recruited from across the United 
Kingdom between 2006 and 2010. We restricted the 
analysis to unrelated individuals of genetically-con-
firmed European ancestry [20].

Fried frailty score

The FFS developed by Fried et  al. [18] is a well-
established and validated standardized definition of 
frailty phenotype. It has been widely used in sev-
eral large-scale studies, including both the UKB 
and HRS [21, 22]. Other frailty definitions exist, 
however, these are either lacking in validity evalu-
ations or are too complex in their criteria [23]. The 
FFS offers a concise and generalizable method for 
defining frailty which enhances the applicability 
and reproducibility of GWAS results. Thus, in this 
study, we adopted the FFS definition to classify 
frailty status in our participants. Specifically, based 
on self-reported answers and physical measurements 
collected at enrollment, participants were assigned 
an FFS score of 0–5 according to the number of cri-
teria met (weight loss, exhaustion, physical activity, 
walking speed, and grip strength) [18]. Although 
frailty is usually modeled as a binary variable, with 
FFS >  = 3 classified as frailty. Here we analyzed this 
phenotype as an ordinal variable in order to reduce 
information loss and enhance the statistical power of 
the analysis. There were 35,588 (7.1%) participants 
excluded from analysis for missing one or more of 
the five frailty criteria at baseline.

GWAS analysis

We used phase three genotype data released by UKB 
[20] where the participants underwent genotyping 
with one of two closely related Affymetrix micro-
arrays (UK BiLEVE Axiom Array or UK Biobank 
Axiom Array) for ~ 820,000 variants. Additional 
genotypes were imputed centrally using the 1000 
Genomes [24] and Haplotype Reference Consortium 
(HRC) [25] reference panels, yielding ~ 93 million 
variants for each individual. We restricted the analy-
sis to 8,883,488 autosomal variants with imputation 
quality score > 0.9, Hardy–Weinberg p-value > 1 × 
 10–6, and minor allele frequency (MAF) > 0.01 and 
genotyping missing rate < 0.1. European samples 
were identified by a combination of self-reported and 
genetically confirmed ancestry based on principal 
component (PC) analysis of individuals’ genotypes. 
Further sample exclusion criteria included poor het-
erozygosity or missingness, sex chromosome ane-
uploidy, and withdrawal of informed consent. We 
used BOLT-LMM (v2.3.2) to perform single-variant 
genome-wide association testing [26], including age, 
sex and the first 20 genetic principal components as 
covariates. We used Linkage Disequilibrium Score 
Regression (LDSC, v1.0.0) [27] to perform SNP-
based heritability estimation. The level of bias in 
GWAS was estimated using both LDSC intercept and 
lambda GC.

Genomic risk loci definition

To identify independent associations, we conducted a 
conditional and joint (COJO) analysis of the GWAS 
results as implemented by GCTA, accounting for 
the correlation structure between single nucleotide 
polymorphisms (SNPs) within a 10-Mb window and 
using a random subset of 10,000 unrelated Europe-
ans from the UKB as linkage disequilibrium (LD) 
reference. For comparison, we used PLINK [28] to 
identify regional lead SNPs for genome-wide sig-
nificant loci, and subsequently clumped variants with 
this lead SNP if they were located less than 10  Mb 
away and had  r2 > 0.01 with the index variant. Since 
GCTA-COJO accounts for long-range LD and inter-
action effects between variants, it tends to be more 
conservative, reporting fewer but more valid inde-
pendent loci, we use it as primary method to identify 
the independent genomic risk loci.

2513



GeroScience (2023) 45:2511–2523

1 3
Vol:. (1234567890)

Pathway analysis

We used MAGENTA (Meta-Analysis Gene-set Enrich-
ment of Variant Associations) to conduct a pathway-wide 
association analysis [29]. MAGENTA implements gene 
set enrichment analysis (GSEA) [30] from across five 
databases to test a total of 3,224 pathways and provides 
GSEA p-values for both 95th percentile and 75th per-
centile cutoffs. We chose the latter option, as it provides 
more statistical power when analyzing highly polygenic 
diseases [29]. Biological pathways were considered sug-
gestively significant if their GSEA marginal P value was 
less than 0.05.

Tissue and cell-type enrichment analysis

We applied LDSC to perform tissue and cell-type enrich-
ment analysis for FFS. We first used dichotomized anno-
tations and 1000 Genomes European reference panels to 
estimate annotation-stratified LD scores. Enrichment was 
then defined as the ratio of the percentage of heritability 
explained by variants in each annotated category versus 
the percentage of variants covered by that category. In 
addition to the 53 baseline annotations [27] for diverse 
genomic features as suggested in the LDSC user manual 
and GenoCanyon general functionality scores [31], two 
tiers of annotations of different resolutions were further 
considered in enrichment analyses: 1) GenoSkyline-Plus 
functionality scores [32] of seven broad tissue clusters 
(immune, brain, cardiovascular, muscle, gastrointestinal 
tract, epithelial, other) and 2) GenoSkyline-Plus function-
ality scores of 66 tissue and cell types. For comparison, 
we also used MAGMA [33] to perform the tissue enrich-
ment analysis, where we used annotation data from 30 
general tissues types and 54 specific tissue types (GTEx 
project. v.8) [34] as provided by the FUMA (Functional 
Mapping and Annotation) platform [35]. Bonferroni 
multiple-testing correction was applied for each tier of 
enrichment analysis, separately.

Genetic correlation

To investigate potential shared underlying molecular 
mechanisms, we applied GNOVA [36], an annota-
tion-stratified genetic covariance analyzer, to test the 
genetic correlation between FFS and a wide range 
of traits. We extracted GWAS summary statistics 

without large sample overlap with UKB from the LD 
Hub (http:// ldsc. broad insti tute. org/ gwash are/), the 
FinnGen cohort (https:// finng en. gitbo ok. io/ docum 
entat ion/ data- downl oad), the Philadelphia Neurode-
velopmental cohort (https:// www. med. upenn. edu/ bbl/ 
phila delph ianeu rodev elopm ental cohort. html), and 
other large GWAS consortiums as organized previ-
ously [37], retaining available summary data for 2,086 
traits in total. A Bonferroni-corrected p < 2.4 ×  10–5 
(corrected for 2,086 tests) was considered significant. 
Specifically, we also tested the genetic correlation 
between hearing loss [38] and frailty, as a strong epi-
demiological association between these two has long 
been observed [39].

Mendelian randomization

Mendelian randomization (MR) analysis is widely used 
to explore the potential causal relations between pheno-
typic traits and health-related outcomes. For the traits 
that had significant genetic correlation with FFS, we fur-
ther investigated their causal associations with FFS. Spe-
cifically, we used inverse variance weighted MR (IVW-
MR) [40] as the initial approach since it usually provides 
greater power to detect potential causal relationships. For 
traits with significant causal associations with FFS based 
on the IVW-MR, we also used other MR approaches in 
sensitivity analyses, including MR PRESSO [41], MR‐
Egger regression [42], weighted median MR [40] and 
mode‐based methods [43] (e.g., simple mode MR and 
weighted mode MR). The 37 independent leading SNPs 
were used as instrumental variables.

Replication GWAS

To evaluate the consistency of our GWAS discovery 
results in an independent sample, we used data from 
the HRS (http:// www. nia. nih. gov/ resea rch/ resou rce/ 
health- and- retir ement- study- hrs) to conduct replica-
tion analyses. HRS is a nationally representative lon-
gitudinal survey of individuals over age 50 in 23,000 
households in the USA. We included individuals from 
Waves 8–13 (2006–2016) of the HRS, as these waves 
contained physical measurement data for calculating 
the frailty score. A subgroup of 15,567 study par-
ticipants underwent genome-wide genotyping using 
Illumina’s Human Omni2.5-Quad (Omni2.5) Bead-
Chip. The current analysis was restricted to study 
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participants of genetically confirmed European ances-
try. The quality control, imputation, post-imputation 
filtering, and association testing were similar to the 
one used in the discovery cohort. Specifically, for 
variants that were genome-wide significant in UKB 
GWAS but not available or with low quality in HRS, 
we selected the variant having the highest LD, with 
the target variant within a 10-Mb window as the 
proxy-variant.

Polygenic risk score analysis

Polygenic risk scores (PRS) quantify the inherited 
risk for an individual by aggregating information 
from GWAS summary statistics. Here we applied 
PRS-CS [44] to generate weights for each genetic 
variant based on our GWAS summary statistics and 
1000 Genomes LD reference panel. PRS for each 
individual in the replicated dataset was then calcu-
lated as the weighted sum of the genetic variants. 
The genetic variants we used were the overlaps 
between the reference panel, UKB and HRS genetic 
data. We calculated both odds ratio (OR) per stand-
ard deviation (SD) and area under ROC curve (AUC) 
to evaluate the prediction performance of PRS after 
adjustments for age, sex and first 10 PCs in a logistic 
regression model, where we used the binary frailty 
phenotype (FFS >  = 3 is classified as frailty) as the 
outcome during the PRS evaluation.

Statistical analysis

In our replication analysis, we not only evaluated 
the associations of individual SNPs in the HRS 
cohort, but also conducted a sign test to compare 
the leading SNPs in both the UKBB and HRS 
cohorts. Specifically, we employed a binomial 
sign test with the null hypothesis that the prob-
ability of having the same sign in both cohorts is 
0.5. The significance threshold was set at 0.05. To 
better visualize the results of the PRS analysis, we 
divided the HRS population into 20 groups based 
on PRS quantiles and calculated the mean frailty 
scores within each group. We then plotted the 
mean frailty scores against PRS to easily visualize 
the correlation between them. All statistical anal-
yses in this study, aside from the genetic analysis 
tools mentioned previously, were performed using 
R software version 3.5.

Results

Characteristics of participants

The discovery phase included 386,565 participants 
of European ancestry with complete data for frailty 
criteria from the UKB (mean age 57  years [SD 8], 
208,481 (54%) were female). The distribution of the 
FFS (from 0–5) in the UKB participants was: 231,629 
(60%), 110,651 (29%), 31,561 (8%), 9,564 (2%), 
2,801 (1%), and 359 (~ 0%), respectively. A compari-
son of the basic characteristics among the non-frail, 
pre-frail, and frail people is summarized in Table 1. 
The replication phase included 9,720 HRS partici-
pants with complete data for the FFS. This population 
was older than the UKB cohort (mean age 73 years, 
[SD 7]), with over half (n = 5,582, 57%) being female. 
The distribution of the FFS (from 0–5) in the HRS 
was: 3,734 (38%), 2,948 (30%), 1,769 (18%), 891 
(9%), 357 (4%), and 21 (~ 0%), respectively.

GWAS

In the GWAS analysis (Fig.  1), a total of 8,883,488 
SNPs with a MAF greater than 0.01 were examined. 
The estimated SNP heritability (h2) for FFS based on 
these SNPs in our data was 0.062 ± 0.003. LDSC pro-
duced a genomic inflation factor (λGC) estimate of 1.37 
with an intercept of 1.03 ± 0.01 prior to inflation cor-
rection (Supp. Figure  2), suggesting that the inflation 
was probably due to polygenic signals and unlikely to be 
confounded by population structure [27]. Using COJO 
as our primary method, we identified 37 independent 
novel risk loci for FFS (Supp. Table  1). We obtained 
similar results when utilizing a clumping approach in 
PLINK (Supp. Table 2). Of these 37 novel loci for FFS, 
30 have been previously reported to be associated with 
other traits (Supp. Table 3) and 7 have not been asso-
ciated with any other traits (Supp. Figure  3). Among 
these 7 loci without previously described associations, 
the top associated variants within each locus included 
two intergenic variants (rs12992177 [AC017104.2, 
AC017104.4] and rs72709800 [RN7SKP120, TUSC1], 
four in protein-coding genes, including one splicing 
variant (rs10986468 in ARPC5L), one exonic variant 
(rs28509789 in C15orf39), and two intronic variants 
(rs2044169 in METTL16 and 17:61,736,108:TTTTG:T 
in MAP3K3); and the remaining variant rs2857597 
located 500b downstream from AIF1.
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Replication

In the replication phase, we analyzed 9,720 individu-
als from the HRS cohort. Of the 37 lead SNPs, 22 
were eligible or well proxied by an eligible SNP in 
the HRS cohort after genetic QC. Of the 22 eligible 
SNPs, 18 were found to have consistent direction of 
effect in both UKB and HRS datasets, resulting in a 
highly significant P value of 0.00042 in the binomial 
sign test. Notably, three of these 18 SNPs retained 
significance in their individual associations with 
frailty when corrected for a 5% false discovery rate in 
the HRS (Fig. 2a). Taking the overlap between UKB 
genetic data and quality controlled HRS genetic data, 
we built a PRS based on 890,487 SNPs for 9,720 HRS 
individuals. After adjusting for age, sex and the first 
10 PCs, the PRS was significantly associated with the 

frailty phenotype (OR per SD 1.27, 95% CI 1.22–1.31, 
p = 1.3 ×  10–11). The prediction performance of raw 
PRS was moderate with AUC being 0.57 (95% CI 
0.56–0.59). When combined with age, sex and first 10 
PCs, the prediction of frailty PRS achieved an AUC of 
0.72 (95% CI 0.70–0.73) (Fig. 2b). The improvement 
in AUC when including the 10 PCs suggested that 
there may be sub-populations within the European 
British population that are captured by the PCs.

Gene set enrichment/pathway analysis

176 gene sets were marginally significantly (P < 0.05) 
associated with the FFS using MAGENTA (Supp. 
Table 4), three of them remained significant after multi-
ple testing correction, including response to drugs, mul-
ticellular organismal development, and aging. (Fig. 3a).

Table 1  Basic 
characteristics in the UK 
Biobank

T2D Type 2 diabetes; CAD Coronary artery disease; AF Atrial fibrillation

Characteristics All
(n = 386,565)

Non-frail
(n = 231,629)

Pre-frail
(n = 142,212)

Frail
(n = 12,724)

Age (years), mean (SD) 56.9 (8.0) 56.6 (8.0) 57.2 (8.0) 58.5 (7.4)
Sex, (Female, %) 208,481 (54%) 119,427 (52%) 81,067 (57%) 7,942 (62%)
BMI, mean (SD) 27.4 (4.7) 26.6 (4.1) 28.3 (5.1) 31.3 (6.7)
Hypertension, n (%) 212,532 (55%) 121,716 (53%) 82,001 (58%) 8,815 (69%)
T2D, n (%) 29,670 (8%) 11,323 (5%) 15,017 (11%) 3,330 (26%)
Lipid medication, n (%) 66,937 (17%) 32,509 (14%) 29,741 (21%) 4,687 (37%)
Current smoking, n (%) 38,397 (10%) 19,472 (8%) 16,359 (12%) 2,566 (20%)
Previous smoking, n (%) 136,282 (35%) 80,199 (35%) 51,400 (36%) 4,683 (37%)
CAD, n (%) 34,829 (9%) 18,145 (8%) 14,505 (10%) 2,179 (17%)
AF, n (%) 20,278 (5%) 10,299 (4%) 8,577 (6%) 1,402 (11%)

Fig. 1  Manhattan plot of 
the frailty GWAS in the UK 
Biobank. Manhattan plot 
for the discovery GWAS of 
frailty (n = 386,565). Green 
dots indicate independent 
significant leading SNPs 
that have been reported to 
be associated with traits 
other than frailty; Red dots 
indicate independent sig-
nificant leading SNPs that 
have never been reported 
before
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Tissue and cell-type enrichment

We used both LDSC and MAGMA to test whether 
genetic associations with FFS were enriched in human 
tissues and cell-types. Both LDSC and MAGMA 
indicated that brain tissues were significantly asso-
ciated with frailty (Fig.  3b, Supp. Figure  4A, Supp. 
Table  5-8). Specifically, in the LDSC analysis, ante-
rior caudate, dorsolateral prefrontal cortex, angular 
gyrus, inferior temporal lobe and cingulate gyrus in 
brain tissue were shown to be significantly enriched 
with frailty GWAS signals (Fig.  3c, Supp. Table  6). 
In the MAGMA analysis, frailty genetic associations 
were significantly enriched in cerebellar hemisphere, 
frontal cortex BA9, cerebellum, anterior cingulate 
cortex BA24 and the nucleus accumbens within the 
basal ganglia (Supp. Figure 4B, Supp. Table 8).

Genetic correlation

Of the 2,086 traits tested for genetic correlation with 
FFS, 591 had significant genetic correlations after Bon-
ferroni correction (Supp. Table  9). The most significant 

of these were multisite chronic pain (genetic correla-
tion  (rg) = 1.079, P = 3.95 ×  10–264), BMI  (rg = 0.714, 
P = 3.01 ×  10–196) and depressive symptoms  (rg = 1.116, 
P = 3.23 ×  10–189). Among the other most interesting 
statistically significant genetic correlations were edu-
cation attainment  (rg = -0.601, P = 5.36 ×  10–168), age 
of first birth  (rg = -0.692, P = 3.60 ×  10–95), insomnia 
 (rg = 0.824, P = 7.82 ×  10–95), Attention-Deficit/Hyper-
activity Disorder (ADHD,  rg = 0.535, P = 6.05 ×  10–94), 
type 2 diabetes  (rg = 0.416, P = 4.16 ×  10–72), smok-
ing behavior  (rg = 0.418, P = 1.14 ×  10–71), neuroticism 
 (rg = 0.525, P = 4.52 ×  10–70), cognitive performance 
 (rg = -0.347, P = 5.40 ×  10–64), neurological diseases 
(0.484, P = 7.56 ×  10–57), and hypertensive diseases 
(0.376, P = 1.46 ×  10–56). Of the four types of hearing 
loss tested, both low frequency and low-to-medium fre-
quency hearing loss were marginally significantly genet-
ically correlated with FFS, while there was no evidence 
suggesting genetic correlation between high frequency 
hearing loss and FFS (Table 2). And possibly due to the 
small sample size of the available hearing loss GWAS, 
these genetic correlations do not pass the multiple test-
ing correlation.

Fig. 2  Replication in the Health and Retirement Study. (a) We 
plotted the effect sizes of the SNPs identified in the discovery 
GWAS (UKBB) against their effect sizes in the replication 
GWAS (HRS). The points represent significant leading SNPs 
identified in the UKBB. The x-axis and y-axis depict the effect 
sizes of the SNPs in the UKBB and HRS, respectively. The 
colored points indicate SNPs that retained significance in the 
HRS. Specifically, out of the 22 SNPs in the plot, 18 had con-
sistent directions of effects in both studies and three remained 

significant in HRS. (b) We visualized the association between 
the frailty phenotype and the frailty PRS in HRS by plotting 
the mean FFS in 20 groups, which were binned according to 
the percentile of the frailty PRS in HRS. The PRS was gener-
ated using the UKBB data. The plot shows a significant asso-
ciation between the frailty PRS and the frailty phenotype in the 
HRS cohort, further supporting that the genetic findings from 
our discovery GWAS are replicable
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Mendelian randomization

Of the 591 traits with significant genetic correlation 
with FFS, 8 could not be evaluated using MR analyses 
due to the lack of at least 10 valid instruments in the 
corresponding GWAS. Of the 583 traits evaluated via 
IVW-MR, 24 were causally associated with FFS after 
Bonferroni correction, including multisite chronic pain, 
education-related traits, joint disorders (e.g. rheumatism 
and carpal tunnel syndrome), depression (e.g. major 
depressive disorders, depressive symptom), interstitial 
lung disease related comorbidities, neurological diseases 
(e.g., nerve/nerve root/plexus disorders), endocrine/
nutritional/metabolic diseases, respiratory diseases (e.g. 
asthma/chronic obstructive pulmonary disease, smok-
ing: current or former smoker), father’s age at death, 
obesity, and diabetes. (Fig.  4, Supp. Table  10). 17 of 
these causal associations remained significant when 
evaluated using the MR PRESSO. (Supp. Table 11).

Discussion

We report the largest-to-date GWAS of frailty, an 
important phenotype in aging research. Our study 
included over 380,000 individuals from two cohort 
studies and identified 37 novel susceptibility risk loci for 
frailty. Thirty of these newly found loci have been previ-
ously reported in GWASs of other traits, including obe-
sity/BMI, lipids, coronary artery disease, hypertension, 
diabetes, and cancer. These results provide important 
confirmatory evidence for the associations of these traits 
with frailty found in observational and clinical studies 

[45–47]. Importantly, genetic correlation and MR analy-
ses also revealed significant associations for pain, neu-
ropsychiatric, cardiovascular, and inflammation-related 
traits, adding important evidence to support a causal link 
between these pathways and frailty.

We provide important new evidence related to the 
genetic underpinnings of frailty, an important phe-
notype in aging research that has been minimally 
investigated from a genomics perspective. Exist-
ing candidate-gene studies represented important 
first steps to identify genetic risk factors for frailty 
but are limited in scope, tend to yield inconsistent 
results, and many reported signals failed to reach 
statistical significance [12, 48]. The first GWAS 
study on frailty, conducted by Mekli et  al. [14], 
was hampered by its relatively limited sample sizes 
(n = 8532) and the leading SNPs identified in their 
study were not replicable in the current study. Nev-
ertheless, it is noteworthy that one of the two SNPs 
identified by Mekli et  al. is related to brain devel-
opment, synaptic plasticity, and cognition, which is 
consistent with our findings. A more recent GWAS 
conducted by Atkins et  al. is more comparable to 
the current study [17], as they also used the UKBB 
as the discovery dataset. However, their study was 
restricted to older individuals, which resulted in a 
smaller sample size (n = 164,610) compared to this 
study. Additionally, the study by Atkins et  al. used 
the FI instead of the FFS to define the frailty pheno-
type. The FI is a count of health-related problems, 
which is distinct from the physical frailty defini-
tion used in the current study by FFS. As a result 
of these differences, most of the loci identified by 
Atkins et al. were not present in our study. However, 
there was one notable exception: both studies identi-
fied a genetic locus located in the gene HTT, which 
has previously been linked to factors such as waist-
hip ratio, LDL levels, and longevity [17].

Many novel loci with no reported associations are 
located at or close to protein-coding genes, point-
ing to novel pathophysiological pathways for frailty. 
rs10986469 is a splice site variant within ARPC5L, the 
gene that codes for Actin Related Protein 2/3 Complex 
Subunit 5 Like, a protein that regulates actin polymeriza-
tion and branched actin networks. Similarly, rs2857597 
is 500b downstream of AIF1, which encodes an actin-
binding protein. MAP3K3, where the intronic variant 
17:61,736,108:TTTTG:T resides, is a component of 

Fig. 3  Pathway and tissue enrichment. (a) The top 20 path-
ways associated with frailty were identified using pathway 
analysis based on our discovery GWAS. The left vertical dot-
ted line represents a P-value of 0.05 for suggestive enrichment 
and the right vertical dotted line represents the Bonferroni-
adjusted P-value for significant enrichment. We found that 
three pathways were significantly associated with frailty after 
Bonferroni correction. (b) and (c) show the results from tissue 
enrichment analysis based on LDSC. Specifically, (b) illus-
trates the enrichment results across 7 tissues, including brain, 
muscle, immune, gastrointestinal (GI), epithelium, cardiovas-
cular (CV), and other tissues as annotated using GenoSkyline-
Plus annotations. (c) provides a closer look at the stratified 
enrichment by sub-tissues or cell-types. In both panels (b) and 
(c), the vertical dotted line represents the Bonferroni-adjusted 
P-value for significant enrichment. The analysis revealed that 
brain tissues were significantly associated with frailty

◂
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protein kinase signal transduction cascades, mediating 
activation of NF-kappa-B, AP1, and DDIT3 transcription 
regulators. METTL16, containing the intronic rs2044169, 
encodes a methyltransferase involved in RNA modifica-
tion and gene expression. These genes have been linked 
to cancer and inflammation pathways [49], two groups 
of diseases with strong associations reported in obser-
vational studies [50].

Important to note is the relationship of frailty with 
the central nervous system, observed when using dif-
ferent, albeit complementary, analytical tools. Our tis-
sue and cell-type enrichment analyses revealed that 
the genomic regions where frailty-associated SNPs are 

mapped, as determined by LD, are more likely to exhibit 
higher functional expression in brain tissues compared 
to other tissues. In addition, Genetic correlation analy-
ses indicated a significant correlation between frailty 
variants and both neurological (especially cognitive 
decline) and psychiatric (depression, insomnia, ADHD, 
and neuroticism) diseases, with Mendelian randomi-
zation further implying the potential causality. These 
genetic findings are aligned with the results of existing 
cognitive and neuroanatomical studies showing that 
frailty is an early predictor of dementia and Alzheimer 
disease and is associated with reduced total brain vol-
ume, reduced gray matter volume, and increased cor-
tical brain infarcts. [51] Our results provide important 
new evidence supporting these connections between 
frailty and disease involving the central nervous sys-
tem. The specific underlying mechanisms are not yet 
fully understood, but previous research has identified 
shared biological pathways between frailty and cogni-
tive impairment [52]. A more recent study found that 
the association between frailty and cognitive function 
persisted even after adjusting for potential confounders, 
suggesting that other mechanisms may be involved [53]. 
Further research is needed to fully understand the under-
lying mechanisms.

Aging research is increasingly interested in identify-
ing biological pathways and therapeutic targets involved 

Table 2  Genetic correlation between frailty and hearing loss

We highlight the P values passing significant threshold using 
bold formats
HML Patients with high frequency hearing loss without low 
frequency hearing loss; HIGH Patients with high frequency 
hearing loss; LOW Patients with low frequency hearing loss; 
WHO Patients with low-to-median hearing loss

Hearing loss type Correlation 
coefficient

Standard error P

HML: HIGH – LOW 0.0031 0.005 0.53
HIGH: 4&8 kHz 0.0095 0.005 0.052
LOW: 0.5, 1, 2 kHz 0.0111 0.005 0.025
WHO: 0.5, 1, 2, 4 kHz 0.012 0.005 0.010

Fig. 4  Mendelian randomi-
zation analysis estimates. 
Effect sizes (beta) and 95% 
confidence intervals of the 
associations between FFS 
and significantly causally 
associated traits are pro-
vided (based on MR-IVW 
method)
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in resilience rather than risk of disease [54]. This notion 
is particularly important for traits like frailty, that capture 
a person’s general functional status and likely lie down-
stream in the causal pathway of several different specific 
diseases. Our study provides important novel results on 
this front, including the identification of genetic loci 
for frailty known to associate with intelligence as well 
as protective causal associations with years of schooling 
and educational attainment using Mendelian Randomi-
zation analyses. These causal associations are particu-
larly important, as prior observational studies could not 
differentiate whether educational phenotypes constitute 
a true causal protective factor or a proxy for better health 
and socioeconomic status. Akin to cognitive reserve as 
a protective factor for dementia, these findings support 
the concept of “functional reserve” as a protective fac-
tor against frailty: it is possible that prolonged exposures 
to certain beneficial exposures, in this case educational 
activities, will improve a person’s overall physical status 
resulting in a delay or avoidance of frailty.

Our study features many strengths, which include 
a large sample size of middle- and older-aged par-
ticipants in our discovery and replication cohorts. 
We utilize the FFS, a physical model of frailty 
that can be easily assessed in the clinic, has been 
validated across multiple studies and populations 
[55], but has not yet been utilized to define frailty 
in published GWAS. A limitation of our study is 
the inclusion of only European-ancestry individu-
als. Participants of the UKB are also healthier and 
less socioeconomically deprived than the average 
population and thus do not reflect frail individuals 
who tend to be of low socioeconomic status and/or 
ethnic minorities [56]. In addition, many SNPs sig-
nificantly associated with frailty in the UKB were 
not able to be replicated in HRS. This discrepancy 
may be due to certain leading SNPs being removed 
during quality control, or the proxy SNPs used in 
HRS not having sufficient power to reach statisti-
cal significance. Also, it is important to note that 
much of the variations in frailty are non-genetic, and 
various population-specific factors—both genetic 
and non-genetic—can affect the outcome. The small 
sample size of HRS also resulted in a heritability esti-
mate with large uncertainty in the replication GWAS. 
Despite these limitations, three significant loci were 
replicated, and a PRS of all associated loci demon-
strated good prediction of frailty status in HRS. While 

we have identified many possible causal relations 
between frailty and common diseases/traits using mul-
tiple MR methods, it is important to note that MR is an 
epidemiological tool and further experimental validation 
is necessary to confirm these findings. Contributions to 
frailty from epigenetics or rare variants (MAF < 0.01) 
should also be considered in future studies.

In conclusion, the genetic architecture of frailty is 
complex. Identification of individuals with a genetic 
predisposition to frailty provides an opportunity for the 
prevention and screening of frailty earlier in life and can 
inform clinical strategies in a myriad of specialties, from 
cardiology to oncology, to identify at-risk populations. 
Increasing efforts to address diabetes, obesity, and blood 
pressure, preventable and modifiable diseases, in midlife 
and later life may reduce the burden of frailty in our 
aging society.
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