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Abstract

Aims: Ischemic stroke is one of the leading causes of death worldwide and the most
common cause of disability in Western countries. Multiple mechanisms contribute to
the development and progression of ischemic stroke, and inflammation is one of the
most important mechanisms.

Discussion: Ischemia induces the release of adenosine triphosphate/reactive oxygen
species, which activates immune cells to produce many proinflammatory cytokines
that activate downstream inflammatory cascades to induce fatal immune responses.
Research has confirmed that peripheral blood immune cells play a vital role in the im-
munological cascade after ischemic stroke. The role of monocytes has received much
attention among numerous peripheral blood immune cells. Monocytes induce their
effects by secreting cytokines or chemokines, including CCL2/CCR2, CCR4, CCRS5,
CD36, CX3CL1/CX3CR1, CXCL12(SDF-1), LFA-1/ICAM-1, Ly6C, MMP-2/9, NR4A1,
P2X4R, P-selectin, CD40L, TLR2/4, and VCAM-1/VLA-4. Those factors play impor-
tant roles in the process of monocyte recruitment, migration, and differentiation.
Conclusion: This review focuses on the function and mechanism of the cytokines se-
creted by monocytes in the process of ischemic stroke and provides novel targets for

treating cerebral ischemic stroke.
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Ischemic stroke is caused by a reduction in cerebral blood flow and
is a leading cause of death worldwide.! It is the most common cause
of disability in Western countries? with a significant impact on older
adults, especially those with comorbidities (hypertension, diabetes
mellitus, and other chronic diseases), and can leave patients with dif-
ferent levels of disability (e.g., hemiplegic paralysis), leading to diffi-
culties in daily activities.

Acute brain ischemia, which leads to insufficient oxygen/glu-
cose/lipid supply to the brain, can cause loss of cell integrity and
trigger apoptosis/necrosis,* resulting in neuronal death.® Multiple
mechanisms contribute to ischemic brain injury, including excito-
toxicity, oxidative stress, and inflammation.? In the central nervous
system (CNS), ischemic neuronal injury results in a significant re-
lease of glutamate, which causes excessive activation of N-methyl-
D-aspartate receptors and a massive influx of calcium ions, leading
to cell death due to excitotoxicity.? Dying cells and cell debris can
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cause a series of inflammatory responses mediated by cytokines
(e.g., interleukins [ILs] and tumor necrosis factor-alpha [TNF-a]),
chemokines (e.g., C-C motif chemokine ligand [CCL] 2 [also known
as monocytic chemotactic protein-1 (MCP-1)]), and the activation of
immune cells (both resident and peripheral immune cells), leading
to neuronal death. Resident immune cells, such as astrocytes and
microglia, secrete cytokines and chemokines that create a proin-
flammatory environment. Astrocytes and damaged neurons can
also produce reactive oxygen species (ROS), which deplete gluta-
thione, an essential antioxidant that prevents ROS-mediated DNA
damage,z’4 which attracts peripheral immune cells to the ischemic
area to initiate downstream inflammatory cascades. After the ac-
cumulation of activated immune cells, microglia are activated by
an increase in extracellular adenosine triphosphate (ATP) from the
depolarization of neurons and glia and the release through dam-
aged plasma membranes of dying cells. Activated microglia secrete
proinflammatory mediators, such as cytokines (e.g., TNF-a), and
develop phagocytic and major histocompatibility complex class II-
restricted antigen-presenting characteristics. Microglial activation
enhances the production of growth factors, such as brain-derived
neurotrophic factor (BDNF), and removes dead cells and cell de-
bris.? Astrocytes and microglia can draw peripheral immune cells
into the ischemic area. In circulation, the proinflammatory cytokines
and chemokines produced by immune cells contribute to the de-
struction of the blood-brain-barrier (BBB). Matrix metalloprotein-
ases (MMPs) cause BBB and extracellular matrix (ECM) degradation,
resulting in brain edema and cell/cytokine leakage that can dam-
age infarcted tissue.®> Astrocyte-secreted hypoxia-inducible factor-
1-alpha (HIF-1a) promotes the secretion of CCL2, which attracts
monocytes to the brain via the bloodstream.®”’

Peripheral immune cells, especially monocytes, are involved
in the inflammatory response. Monocyte recruitment to the brain
causes an inflammatory response that promotes brain damage.
Inflammation and ischemic brain injury are strongly connected,
and inflammation is associated with stroke severity and out-
come.® Stroke causes the excessive release of ATP/ROS, which
are sensed by immune cells through the purinergic receptor P2X4
(P2X4R).? Activated immune cells produce cytokines and chemok-
ines that participate in the next step of the inflammatory response.
Monocytes are heterogeneous white blood cells that circulate in the
bloodstream and differentiate into macrophages or dendritic cells
(DCs) depending on the local tissue environment.*® Traditionally,
monocytes are divided into three subsets: classical, intermediate,
and non-classical. Classical monocytes have a proinflammatory
role in the inflammatory response, whereas non-classical mono-
cytes patrol the endothelium and have an anti-inflammatory role.**
In ischemic stroke, cell surface pattern-recognition receptors ini-
tiate an inflammatory response after sensing damage-associated
molecular patterns (DAMPs) by activating immune cells, including
monocytes.® C-C motif chemokine receptor (CCR) 2 is expressed
on classical monocytes. CCL2 binds to CCR2 to mediate monocyte
migration into the brain. The main subset of monocytes recruited
to the brain is the classical subset, which plays a proinflammatory

role in the acute phase, producing cytokines, such as IL-6 and TNF-
o112 Toll-like receptors (TLRs) are expressed on monocytes and
can enhance the production of IL-1p/6, CCL2, and TNF-o.2* CCL2
production forms a positive feedback loop that promotes mono-
cyte recruitment to the ischemic hemisphere, enhancing the in-
flammatory response.’®> CCL2 also regulates P2X4R expression,
which is stimulated by excessive ATP production.!® Intercellular
adhesion molecules (ICAMs) and vascular cell adhesion molecules
(VCAM) 1, both of which are expressed in endothelial cells, mediate
monocyte rolling and adhesion to regulate the patrolling behav-
ior of non-classical monocytes. VCAM-1 binding to its receptor,
very late activation antigen (VLA) 4, which is expressed on mono-
cytes, is associated with monocyte migration.r” CCL2 can mediate
the conformation of VLA-4 to display a high affinity for VCAM-1,
which promotes monocyte migration.18 According to the “dead cell
clearance hypothesis,” once recruited to the ischemic area, classi-
cal monocytes may acquire the M2 phenotype and play an anti-
inflammatory role.’ Thus, monocytes may be beneficial in ischemic
stroke. Circulating monocyte depletion in a mouse model was asso-
ciated with a decrease in the expression of anti-inflammatory factor
genes and the number of monocyte-derived macrophages (MDMs),
which impairs long-term neurological recovery‘20 M2 macrophages
produce anti-inflammatory cytokines and are associated with an-
giogenesis, which may facilitate recovery from disability after isch-
emic stroke.

Several factors, from monocyte migration to cytokine activa-
tion and secretion, are involved in the pathophysiology of isch-
emic stroke. CCL2 binds to CCR2 to mediate monocyte migration.
Stroke severity is associated with the level of CCR2 expression
and the number of infiltrated monocytes. C-X3-C motif chemok-
ine ligand (CX3CL) 1 (also known as fractalkine) and C-X3-C motif
chemokine receptor (CX3CR) 1 (also known as G protein-coupled
receptor 13) are required for the patrolling behavior of non-
classical monocytes, among other functions.?! C-X-C motif chemo-
kine ligand (CXCL) 12 (also known as a stromal cell-derived factor
[SDF] 1) regulates the late accumulation of monocytes in the isch-
emic hemisphere. Nuclear receptor subfamily 4 group A member 1
(NR4A1) is responsible for the generation of lymphocyte antigen
6C (Ly6C)” monocytes and regulates neuroinflammation via the nu-
clear factor-kappa B (NF-xB) pathway and monocyte-macrophage
differentiation. MMPs are involved in the secretion of proinflam-
matory cytokines. P-selectin and CD40L play essential roles in
monocyte-platelet interactions. TLRs, especially TLR4, which is a
coreceptor for CD14 on monocytes, are involved in the recognition
of stimulatory signals and trigger the activation of inflammatory
pathways.22'23

In this review, we aim to highlight the role of monocytes in
ischemic stroke and provide new targets for the treatment of ce-
rebral ischemic stroke. Here, we discuss the role and function of
monocyte-secreted cytokines/chemokines in ischemic stroke. We
also describe the classification of monocytes, their role in ischemic
stroke, and the cytokines/chemokines secreted by monocytes and
their function.
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1.1 | Monocyte classification

Human monocytes can be divided into three subsets based on cell
surface antigen (CD14, a component of the lipopolysaccharide [LPS]
receptor complex, and CD16, the FCyRIIl immunoglobulin receptor)
expression: classical (CD147*CD16"), intermediate (CD14*CD16%),
and non-classical (CD14*CD16%*).1* Classical monocytes express
CCR2 and low levels of CX3CR1, whereas non-classical monocytes
do not express CCR2 but express high levels of CX3CR1. Murine
monocytes can be divided into two subsets based on Ly6C expres-
sion: CCR2*CX3CR1', which express high levels of Ly6C and are
considered classical/proinflammatory; and CCR2°CX3CR1M, which
express low levels of Ly6C and are considered non-classical with pa-
trolling behavior along the endothelium.?

Monocytes can also be classified according to TIE2 and SLAN
expression. TIE2Y monocytes have proangiogenic properties that
promote tumor angiogenesis, while “regulation of cytokine produc-
tion” is the key gene ontology term that distinguishes SLAN* from
SLAN™ monocytes. Interaction analysis demonstrated that a cluster
of Ubiquitin C-related genes, which regulate diverse cellular pro-
cesses, is highly expressed in SLAN* monocytes.24 CD16™ mono-

cytes can be reclassified according to their relative expression of TIE2

and SLAN into TIE2*SLAN", TIE2"SLAN™, and TIE2"SLAN" subsets.?*
Damasceno et al. (2019) identified five distinct subsets of mono-
cytes based on L-selectin (CD62L) and SLAN expression: CD62L"
classical, CD62L" classical, intermediate, SLAN* non-classical, and
SLAN™ non-classical.?

Classical monocytes are scavenger cells that phagocytose en-
dogenous and exogenous pathogens (dead cells, cell debris, and
bacteria). They are proinflammatory and produce the highest levels
of CCL2, granulocyte colony-stimulating factor (CSF), and 1L-6/10
among the three subsets.?>?7 They also produce high levels of
ROS and the highest levels of CCL2/3 and IL-8/10 in response to
LPS stimulation.?* Intermediate monocytes are in transition from
classical to non-classical monocytes. They produce steady-state
IL-18 and TNF-a, are anti-inflammatory, have phagocytic activity,
but not as high as classical monocytes, and are the main produc-
ers of ROS.1%%> They also produce the highest levels of IL-1p/6 and
TNF-« in response to LPS stimulation.?* Non-classical monocytes
provide immune surveillance by patrolling the endothelium. They
are responsible for CD4" T-cell proliferation and can stimulate 1L-4
production by CD4* T cells.?® They also produce IL-18 and TNF-«a
but do not generate ROS**?’ The classification of monocytes is in

Figure 1.
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2 | ROLE OF MONOCYTES IN ISCHEMIC
STROKE

2.1 | Monocyte recruitment during ischemic stroke
Monocytes are recruited to the ischemic hemisphere immediately
after an ischemic stroke. Inflammation is initiated by pattern-
recognition receptors that recognize DAMPs (modified/oxygenized
lipids, cytoplasmic proteins, DNA, and RNA) released by resident im-
mune cells, such as microglia, which sense ATP released by damaged
cells and migrate to the damaged area.® P2X4R is an ATP receptor
and a downstream target of CCL2, which is involved in monocyte re-
cruitment. Microglia secrete proinflammatory cytokines, such as IL-
1B and TNF-q, to create an inflammatory environment that attracts
immune cells.!

Monocyte recruitment is mediated by the interaction of mono-
cytes with the endothelium via adhesion molecules (integrins, se-
lectins, and immunoglobulins).?82? Activated classical monocytes
enter the site of inflammation by adhering to the endothelial sur-
face through interactions with integrins and other adhesion mole-
cules in the bloodstream and infiltrating the vascular walls. Adhesion
molecules expressed by classical monocytes that are involved in
this process include CD62L, lymphocyte function-associated an-
tigen (LFA)-1, macrophage receptor 1, platelet endothelial cell ad-
hesion molecule 1, P-selectin glycoprotein ligand 1 (PSGL-1), and
VLA-4.2 VLA-4/VCAM-1 have also been shown to be involved in
Ly6C'° monocyte recruitment to the brain in an infection model>?8
However, whether Ly6C'° monocyte recruitment is involved in isch-
emic stroke remains unclear. Activated classical monocytes can alter
the conformation of VLA-4 via the CCL2/CCR2 axis, thereby leading
to higher VCAM-1 binding affinity and monocyte migration to the
infarcted tissue.*®

CCL2/CCR2 are involved in monocyte recruitment to the isch-
emic brain. CCR2-deficient mice have reduced classical monocyte
recruitment.*® CCL2 mediates monocyte migration from the bone
marrow into the bloodstream by binding to CCR2, whose expres-
sion is associated with stroke severity. Many cytokines can regulate
CCL2 expression to mediate monocyte migration, including CD36,
HIF-1a, MMPs, and P-selectin.7:31:32.33 Monocyte migration can
also be induced by granulocyte-macrophage CSF. SDF-1 has been
shown to play a role in the homing of microglia/monocytes/macro-
phages/stem cells, which mainly function in the later phase of mono-
cyte recruitment, to areas of ischemic injury.34 Classical monocytes
are also recruited to the site of inflammation by the release of CD73
(ecto-5-nucleotidase), CXCL1, interferon (IFN)-gamma (IFN-y), and
mucosal addressing cell adhesion molecule 1.

2.2 | BBBdisruptions

Monocytes can disrupt the BBB. Classical monocytes recruited to
the brain act as proinflammatory mediators. M1 monocytes secrete
ROS and cytokines/chemokines through inflammasome activation,

which degrade tight junctions (TJs) between endothelial cells and
the BBB.Y In experimental stroke, blocking CCR2 to inhibit mono-
cyte recruitment protects against brain edema but impairs long-term
recovery.”’35 Monocytes exacerbate secondary inflammatory BBB
damage by upregulating the triggering receptor expressed on my-
eloid cells 1, which activates other innate immune receptors and
promotes inflammatory cytokine/chemokine production, includ-
ing IL-8, MCP-1/3, and macrophage inflammatory protein-1 alpha
(MIP-10).173¢ Monocytes also upregulate adipocyte fatty acid-
binding protein expression to potentiate MMP-9-mediated deg-
radation of TJs by enhancing c-Jun N-terminal kinase (JNK)/c-Jun
signaling.}”®” The function and phenotype of monocytes vary during
ischemic stroke. Monocytes switch from proinflammatory M1 domi-
nant on Day 3 to anti-inflammatory M2 dominant on Day 7 after
stroke, indicating the functional transformation of monocytes from
enhancing the immune response to the resolution of inflammation.*’

Therole of monocytes in the BBB in ischemic stroke remains con-
troversial. Some studies have suggested that monocytes disrupt the
BBB as increased numbers of circulating monocytes are associated
with the hyperintense acute reperfusion marker, a larger acute isch-
emic stroke (AIS) volume, worse National Institutes of Health Stroke
Scale (NIHSS) scores, and poorer outcomes.®® However, other stud-
ies support the opposite view, as monocyte counts did not change
during AIS and could not predict long-term mortality.>’ These op-
posing views may be due to the classification of monocytes; classical
and non-classical monocytes play different roles in ischemic stroke.
Lower non-classical monocyte counts are associated with poorer
outcomes, suggesting a protective role of non-classical monocytes
in ischemic stroke.?

2.3 | Monocyte-macrophage differentiation

The monocytes recruited to the ischemic brain are mostly
Ly6ChiCCR2Jr monocytes, which differentiate into M1 macrophages
in the ischemic hemisphere and promote inflammation.'? Evidence
suggests that Ly6C" monocytes can differentiate into both M1 and
M2 macrophages.! Proinflammatory M1 macrophages produce IL-6
and TNF-a and promote tissue degradation.18 Anti-inflammatory M2
macrophages produce anti-inflammatory cytokines, such as IL-10,
and promote angiogenesis/tissue repair.® M2 macrophages can be
divided into three subsets: M2a, M2b, and M2c. M2a macrophages
are induced by IL-4/13. IL-13 promotes the transformation of mac-
rophages from the M1 to the M2a phenotype in mice 3days after
permanent ischemia, enhances the anti-inflammatory response of
M2 macrophages, and reduces the number of apoptotic neurons.!?4°
Park et al.* reported that half of monocytes differentiate into pro-
inflammatory M1 macrophages, and the other half differentiate into
anti-inflammatory M2 macrophages. Recruited infiltrating Ly6CM
monocytes downregulate Ly6C expression and upregulate mac-
rophage biomarker F4/80 expression.1 They progressively acquire
the expression of typical markers of alternatively activated mac-
rophages, such as ARG-1 and YM-1.*? During the subacute phase,



BAI ET AL.

—Wl LEYM

CN'S Neuroscience & Therapeutics

when they persist at sites of inflammation, infiltrating Ly6C" mono-
cytes lose CCR2 and Ly6C expression and start to express trans-
forming growth factor-beta (TGF-f) and vascular endothelial growth
factor (VEGF) and TGF-p to promote angiogenesis/neuroprotec-
tion.}>*3 Some researchers have referred to this phenomenon as the
“dead cell clearance” hypothesis, which states that exposure to ap-
optotic cells causes classically activated M1 macrophages to polarize
to the M2 phenotype.'?** This suggests that the role of proinflam-
matory monocytes may vary during the subacute phase of stroke
and may be beneficial for tissue repair in the subsequent resolution
phase. Conventionally, proinflammatory monocytes differentiate
into M1 macrophages and anti-inflammatory monocytes differenti-
ate into M2 macrophages. However, studies have shown that, even
in the absence of anti-inflammatory monocytes, M2 macrophages
can be found in the infarcted brain, indicating that monocyte-
macrophage differentiation mainly occurs in classical monocytes.*
The following functions have been proposed for MDMs in isch-
emic stroke: MDMs have a dual effect on the progression of isch-
emic stroke. M1 macrophages promote inflammation while M2
macrophages suppress inflammation and stimulate tissue repair.
MDM s (not microglia) are the major phagocytes in ischemic stroke.
MDM s have the highest phagocytic activity among the different cell
types in the post-ischemic brain. Phagocytosis is required for the
conversion of CD45" MDMs to a CD45'° microglia-like phenotype.*®
MDM depletion in the ischemic brain of CCR2 knockout (KO) mice
results in a smaller infarct size 3days after stroke but is associated
with greater injuries, higher mortality, and reduced functional recov-
ery 14 and 28 days after stroke.% Evidence suggests that the ratio of
M1 to M2 MDMs shifts toward the proinflammatory phenotype on
Day 3 and the anti-inflammatory phenotype thereafter. MDMs are
the main source of BDNF and TGF-, which contribute to long-term
recovery from stroke.?’ The role of macrophages in ischemic stroke
is changeable, and the timing of intervention may be crucial for the

treatment of ischemic stroke.

2.4 | Inflammatory and anti-inflammatory roles of
monocytes in ischemic stroke

Once recruited to the ischemic hemisphere, classical monocytes se-
crete proinflammatory cytokines, including IL-1/6 and TNF-a, which
promote inflammation, affect the infarcted tissue, and aggravate
ischemic injury in ischemic stroke. Monocytes trigger downstream
responses related to CCL2, such as the activation of MCP-1-induced
protein-1 and the expression of IL-1 and TNF genes, which promote
inflammation through the interaction of CCL2 with CCR2.4748 CCL2
activates the downstream target P2X4R, which has a dual effect on
the progression of ischemic stroke. On the one hand, the production
of proinflammatory cytokines is associated with P2X4R, and, on the
other hand, P2X4R" cells produce BDNF, which contributes to the
recovery of ischemic stroke.*’ Classical monocytes secrete MMP-
2/9, which degrades the TJs of the BBB, resulting in cell leakage and
ECM degradation, leading to edema and ischemic brain injury.

Classical monocytes are the main subset recruited to the ischemic
brain. They downregulate CCR2 and differentiate into non-classical
monocytes.45 Non-classical monocytes can detect the integrity of
the endothelial wall, through crawling behavior, and produce anti-
inflammatory cytokines, such as IL-10, for which monocytes are
the main producers. IL-10 suppresses the excessive production of
proinflammatory cytokines and may be beneficial for the recovery
of ischemic stroke. IL-10-deficient mice had larger damaged areas,
greater brain atrophy, and poorer long-term outcomes in a model of
transient middle cerebral artery occlusion (MCAO0).>° Figure 2 shows
a schematic of the role of monocytes in ischemic stroke.

3 | MONOCYTE-RELATED CYTOKINES/
CHEMOKINES IN ISCHEMIC STROKE

Under the circumstance of ischemic stroke, monocytes secret sev-
eral cytokines and chemokines. They could help in the recruitment,
migration, and differentiation of monocytes. The monocyte-related
cytokines and chemokines in ischemic stroke include CCL2/CCR2,
CCR4, CCR5, CD36, CX3CL1/CX3CR1, CXCL12(SDF-1), LFA-1/
ICAM-1, Ly6C, MMP-2/9, NR4A1, P2X4R, P-selectin, CD40L,
TLR2/4, VCAM-1/VLA-4, and their functions are listed in Table 1
below. Figure 3 shows the cytokines/chemokines involved in the re-

cruitment and migration of monocytes in ischemic stroke.

3.1 | CCL2/CCR2

CCL2 is a member of the C-C chemokine family that plays important
roles in cell migration, immune responses, and cell polarization.
It is produced by many cells in the brain, including astrocytes, mi-
croglia, endothelial cells, pericytes, perivascular macrophages, and
neurons.>?>” Astrocyte-derived CCL2 promotes leukocyte infiltra-
tion across the BBB, thereby enhancing inflammation.>® CCR2 is the
main receptor that binds to CCL2 in ischemic stroke. In cancer, CCL2
binds to the T cell receptor, CCR4, to induce T-cell migration to the
target cells or tissues.’”¢® CCL2 production is mediated by many cy-
tokines, including IFN-y, 1L-1/4/6, and TNF-a.#*¢ CCL2 is produced
by astrocytes and microglia, under anoxic conditions, which are
induced by HIF-1.47 CCL2 has three domains, the most important
being the N-terminal domain, which determines the affinity of CCR2
binding, as demonstrated in an experiment using MCP-1/3 chime-
ras.®? Changes in this region reduce the chemotaxis of monocytes
toward CCL2.

CCR2 is highly expressed on the cell surface of classical mono-
cytes and is involved in monocyte migration. CCR2 has two iso-
forms: CCR2A and CCR2B. Using both A and B antibodies, CCR2B
was identified as the main receptor to which CCL2 binds to initiate
signal transduction. CCR2A contributes only 10% of the signaling
activity.63 CCR2 binds to five proinflammatory chemokines (CCL2,
CCL7, CCL8, CCL12, and CCL13), of which CCL2 is the most import-
ant in monocytes.®* The CCL2/CCR2 axis is involved in monocyte
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migration, including the migration of monocytes from the bone mar-
row to the infarcted tissue via the bloodstream. In monocytes, CCL2
only binds to CCR2, and CCR2 is only expressed on the surface of
classical monocytes. Evidence from experimental and clinical studies
suggests that classical monocytes are the main subset recruited to
the brain during an ischemic stroke >3

The CCL2/CCR2 axis mediates monocyte migration in ischemic
stroke and affects the integrity of the BBB. It is also involved in
the recovery from ischemic stroke. The mechanism of the CCL2/
CCR2 axis in ischemic stroke can be explained as follows. HIF-1
is produced by astrocytes and other cells, under hypoxic condi-
tions, and enhances CCL2 expression.58 CCL2 recruits monocytes
and their precursors from the bone marrow to the bloodstream
by binding to CCR2. CCL2 is released at sites of inflammation and
stored in the glycocalyx, forming a chemokine gradient. CCL2 then
recruits circulating monocytes to the inflamed tissue.r® CCL2 also
regulates the expression of TJ-associated proteins in brain micro-
vascular endothelial cells (BMECs) by CCR2-expressing endothelial
cells. Plasmin cleaves the C-terminus, which destroys the BBB and

allows monocytes to exudate into the parenchyma of the ischemic

hemisphere.48'65'66 CCL2/CCR2 binding changes the conformation
of VLA-4, which results in high affinity for its receptor VCAM-1,
promoting monocyte adhesion and migration.18 CCR2* monocytes
promote the differentiation of pericytes into proangiogenic fibro-
blasts in the brain. As CCR2* monocytes mediate platelet-derived
growth factor (PDGF) beta and PDGF receptor beta messenger RNA
(mRNA) expression in ischemic stroke, it can be inferred that mono-
cytes support pericyte differentiation.®” We infer that this also en-
hances tissue repair after ischemic stroke. In CCR2-deficient mice,
monocytes show a delayed increase in proinflammatory mediators,
which impairs tissue repair and attenuates the acute inflammatory
response.’” CCR2* monocytes express high levels of VEGF-A and
are important for vascular sprouting.68

The CCL2/CCR2 axis mediates the expression of specific
proinflammatory cytokines and regulates the inflammatory re-
sponse. Upon CCL2 binding to CCR2 on monocytes, intracellular
calcium levels increase via activation of the phospholipase C/ino-
sitol triphosphate/protein kinase C (PKC) pathway.®’ PKC activates
NF-kB, which upregulates several genes that produce directional

cell motion, promoting cell migration to sites of inflammation.®
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FIGURE 3 Cytokines/chemokines involved in the recruitment and migration of monocytes in ischemic stroke. ATP, adenosine
triphosphate; BDNF, brain-derived neurotrophic factor; BM, bone marrow; CCL, C-C motif chemokine ligand; CCR, C-C motif chemokine
receptor; CKLF1, chemokine-like factor 1; CX3CL, C-X3-C motif chemokine ligand; CX3CR, C-X3-C motif chemokine receptor; CXCL, C-X-C
motif chemokine ligand; CXCR, C-X-C motif chemokine receptor; DAMP, damage-associated molecular pattern; G-CSF, granulocyte colony-
stimulating factor; HIF-1«, hypoxia-inducible factor-1-alpha; ICAM, intercellular adhesion molecule-1; IL, interleukin; LFA, lymphocyte
function-associated antigen 1; Ly6C, lymphocyte antigen 6C; MCP-1, monocyte chemotactic protein-1; MCPIP1, monocyte chemoattractant
protein-1 induced protein 1; M-CSF, macrophage colony-stimulating factor; MMP, matrix metalloproteinase; MyD88, myeloid differentiation
factor 88; NF-xB, nuclear factor-kappa B; P2X4R, purinergic receptor P2X4; PKC, protein kinase C; PSGL-1, P-selectin glycoprotein ligand-1;
SDF, stromal cell-derived factor; STAT1, signal transducer and activator of transcription 1; TGF-p, transforming growth factor-beta; TLR,
Toll-like receptor; TNF-«, tumor necrosis factor-alpha; VCAM, vascular cell adhesion molecule; VLA, very late activation antigen.

monocyte infiltration, attenuating classical monocyte-mediated in-
flammation in an ischemic stroke model.*%-78

CCR5 may also be involved in monocyte migration in other dis-
eases. CCR5 expression is regulated by receptor-interacting protein
3, which enhances NF-kB activity by regulating proinflammatory
mediators.”? In chronic obstructive pulmonary disease, monocyte
migration is directed toward CCL5.8° In sepsis, CCR5" monocytes
migrate to inflammation sites via the bloodstream where they
phagocytize and kill bacteria. CCR5 is crucial for monocyte migra-
tion from the bone marrow to the bloodstream.8!

34 | CD36

CD36 is a highly glycosylated class B scavenger receptor that
is expressed on many cells, including microglia and monocytes/

macrophages. It mediates immune cell migration via the CCL2/
CCR2 axis and has many ligands (depending on the context), in-
cluding apoptotic cells, thrombospondins, fibrillary amyloid-p, and
oxidized lipids.8%83 CD36 mediates inflammatory responses upon
ligand binding and enhances the phagocytic ability of microglia and
monocytes/macrophages.?t

In ischemic stroke, CD36 expression is upregulated compared to
that in normal brain tissues. CD36 mediates monocyte recruitment
by regulating CCL2/CCR2 expression in immune cells. In a model of
ischemic stroke, CD36 KO mice had reduced CCL2/CCR2 expres-
sion. Wild-type (WT) splenocytes incubated with normal serum had
increased CCR2 and CD36 expression compared to those incubated
with CD36 KO serum, consistent with the observation that CD36
enhances CCR2 expression in immune cells.®? It is conceivable that
CD36 mediates monocyte recruitment by regulating CCL2/CCR2
expression. CD36 mediates leukocyte recruitment in neonatal mice,
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leading to increased inflammatory monocytes and neutrophils, fol-
lowed by a delayed accumulation of patrolling monocytes early after
transient MCAO.%°

CD36 plays a negative role in the early phase of ischemic stroke
and has a restorative function during the resolution phase. CD36
exacerbates brain injury in adult mice with transient MCAO. CD36
KO mice show downregulation of inflammatory mediators (CD68,
CSF1, tissue inhibitor of MMP-1, and TLR4) and upregulation of anti-
inflammatory cytokines (IL-10, DAMP, and high-mobility group pro-
tein box 1 [HMGB1]). Compared to WT mice, CD36 KO mice have
reduced expression of TLR4 after 13h of reperfusion and reduced
numbers of toxic cells.> CD36 is redistributed between the sub-
acute phase and the chronic phase. Cell surface CD36 expression
increases 7 days after ischemic stroke with a concomitant reduction
in intracellular CD36 expression. CD36 has a restorative function
during the resolution phase, suggesting that the mechanism of CD36
depends on the environment and timing of the stroke. CD36 is in-
volved in tissue repair and resolution of inflammation during the res-
olution phase of ischemic stroke and is also involved in the clearance

of cell debris and phagocytosis.

3.5 | CX3CL1/CX3CR1

CX3CL1 is produced by neurons and plays an important role in
neuronal/glial signaling. It is the only member of the CX3C family
of chemokines that has only one receptor, CX3CR1.8¢ All mono-
cytes express CX3CR1 at different levels. Classical monocytes
express low levels of CX3CR1, whereas non-classical monocytes
express high levels of CX3CR1.8” CX3CR1 is not only expressed
in monocytes but is also expressed in microglia, where it medi-
ates microglial activity and maintains homeostasis. In CX3CR1-
deficient mice, the CX3CL1/CX3CR1 axis is involved in the
progression of atherosclerosis, as CX3CR1 deficiency reduces
lesion formation in atherosclerosis.®” CX3CR1 is a marker of TGF-
B-producing monocytes. Human CX3CR1* DCs produce higher
levels of TGF- than other types of DCs.8%8 TGF-g is a crucial
mediator that upregulates CX3CR1 expression on microglia, T
cells, and mesangial cells.

CX3CR1 is involved in non-classical monocyte patrolling along
the endothelium. Non-classical monocytes patrol the endothelium
to monitor its integrity, through crawling behavior, and promote
tissue repair.?%7%?! CX3CR1 mediates monocyte adhesion to the
endothelium through the activation of integrins and intrinsic ad-
hesion. Non-classical monocytes depend on CX3CR1 to patrol the
endothelium and LFA-1 for crawling behavior. In a study using an-
tibody blockade of LFA-1, detached crawling monocytes were ob-
served in CX3CR1*~ mice.?! In cardiovascular disease, reconstituted
high-density lipoprotein reduces CX3CL1/CX3CR1 expression on
monocytes and vascular smooth muscle cells.®” Therefore, we can
infer that reconstituted high-density lipoprotein modulates the pro-
gression of cardiovascular disease by regulating monocyte patrolling
behavior.

In ischemic stroke, CX3CR1 affects the volume of the infarcted
area, BBB integrity, angiogenesis, and neurological recovery. In a
model of ischemic stroke, CX3CR1 KO mice have larger damaged
areas than WT and CCR2 KO mice 48h after stroke. In the chronic
phase, CX3CR1 KO mice have minimal brain damage/BBB leakage
and increased angiogenesis, which contribute to recovery.’? Sex-
related differences are observed where female mice have more se-
vere hippocampal lesions and learning deficits than male mice.”??°
CX3CR1 depletion reduces monocyte recruitment, microglial pro-
liferation, and the inflammatory capacity of both cell types.”’94
CX3CR1-depleted monocytes alone may not be sufficient to protect

the brain from ischemic stroke.”??>

3.6 | CXCL12(SDF-1)

CXCL12 (SDF-1) is a member of the CXC chemokine family that has a
single receptor, C-X-C motif chemokine receptor (CXCR) 4, which in-
teracts with all SDF-1 isoforms. SDF-1 is involved in the recruitment
of monocytes to the infarcted tissue in the late stage of ischemic
stroke. In a mouse model of MCAO, SDF-1 expression is upregu-
lated and persists for >30days. Monocytes are the main recruited
cells 7days after stroke and become the predominant cells, along
with macrophages. Activated astrocytes produce SDF-1, which
mediates CXCR4" bone marrow-derived cell migration to damaged
tissue after ischemic injury. MCP-1 is an early cytokine that medi-
ates monocyte recruitment. SDF-1 is involved in the late invasion
of the penumbra, as MCP-1 peaks early and decreases 5days after
stroke.>* Therefore, we can infer that astrocyte-derived SDF-1 in-
teracts with CXCR4" cells, including monocytes, leading to their re-
cruitment to ischemic tissues.

SDF-1a regulates monocyte adhesion to BMECs. In neuroinflam-
mation, circulating monocytes adhere to activated BMECs, which
express high levels of ICAM-1, via LFA-1 integrin. SDF-1a bind-
ing to CXCR4 reduces monocyte binding activity via LYN kinase.
Monocytes migrate toward the SDF-1a gradient, enabling them to
cross the BBB.”

3.7 | LFA-1/ICAM-1

LFA-1 is a monocyte-expressed p-integrin that binds to ICAM-1 to
mediate monocyte adhesion to the endothelium. ICAM-1 is a gly-
coprotein adhesion receptor that is mainly expressed in endothelial
cells. Its function is similar to that of chemokines in that it recruits
leukocytes from the bloodstream to sites of inflammation.”” LFA-1/
ICAM-1 are required for the patrolling behavior of Ly6C™ monocytes
on the endothelial surface.® Changes in integrin affinity affect
leukocyte patrol along the endothelium. Monocytes require tight
binding to the endothelium to perform patrolling behavior. LFA-1
antibody treatment results in the rapid, prolonged release of mono-
cytes from the endothelial wall, indicating that LFA-1 is required for

crawling.??
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Soluble ICAM-1 levels are elevated in patients with ischemic
stroke and are associated with stroke outcome. Serum ICAM-1 levels
are higher in patients with poor outcomes than in those with good
outcomes. Receiver operating characteristic curve analysis shows
that the optimal cutoff value for distinguishing between good and
poor outcomes is 129.5 pg/mL (sensitivity, 74%; specificity, 76%).”

3.8 | Ly6C
Ly6C is used to classify murine monocytes into two subsets: Ly6Chi
and Ly6C'°. LyéChi monocytes are proinflammatory, with CCR2 as
their receptor. Human (classical) and murine monocytes that express
high levels of Ly6C share similar functions. CCR2" monocytes also
express high levels of LyéC.98

During the acute phase of ischemic stroke, they infiltrate into
the ischemic brain where they inhibit inflammatory and oxidative
damage by enhancing M2 macrophage polarization.”® CCR2 antag-
onists that block the binding of CCL2 to CCR2 expressed on mono-
cytes reduce the expression of IL-10 and the number of circulating
and infiltrating LyéChi monocytes and prevent increased expression
of markers of M2 macrophages (ARG-1 and YM-1), suggesting that
Lyé:Chi monocytes affect macrophage polarization, especially toward
the M2 phenotype. Ly<SChi monocytes preferentially differentiate
into M1 macrophages, secrete proinflammatory cytokines (IL.-6 and
TNF-a), and enhance T-cell activation.”® Patrolling Ly6C'® monocytes
may have little effect on the progression of ischemic stroke. Ly6CIo
monocyte depletion does not affect infarct size, cell loss, atrophy, or
macrophage and microglial activation at the lesion site.””

39 | MMP-2/9

MMPs are proteinases that participate in ECM degradation. These
zinc-binding endopeptidases are secreted as catalytically latent
species that are processed to their activated forms by other pro-
teinases.>1?? At least 25 MMPs have been identified to date with dif-
ferent functions in various diseases. MMPs can be divided into five
subtypes according to their structural similarity and function, includ-
ing control of chemokine activity (e.g., CCL2), endothelial repair, in-
nate immunity, and activation of inflammatory cytokines. MMPs are
involved in the pathophysiology of ischemic stroke, including BBB

degradation,100

atherosclerotic plaque maturation, degradation,
rupture, and hemorrhagic transformation. MMP-2/9 are gelatinases
that play the most important roles in ischemic stroke.%!

MMPs are important for cell migration and affect monocyte mi-
gration and function. MMPs are secreted by monocytes in different
ways (e.g., by binding bacteria to TLR2). MMP expression increases
upon monocyte differentiation into MDMs.2%t MMPs are associ-
ated with chemokine secretion (e.g., CCL2).31 In ischemic stroke,
MMP-9 activates proinflammatory cytokines and chemokines, such
as CXCLS, IL-1p, and TNF-a. Therefore, we can infer that MMPs me-
diate monocyte migration. MMP-9 mediates monocyte activation

through interactions with soluble CD14, leading to reduced respon-
siveness to LPS in the immune response.’®! In ischemia, adipocyte
fatty acid-binding protein enhances JNK/c-Jun activation to pro-
mote MMP-9 transactivation in peripheral monocytes (macrophages
and microglia), accelerating the breakdown of the BBB.%”

MMP-2/9 levels increase at different time points after ischemic
stroke. Early elevations in MMP-2 levels may be associated with
better outcomes, whereas late elevations in MMP-9 levels may be
associated with worse outcomes.’®? Plasma MMP-2 levels increase
after the onset of ischemic stroke, especially lacunar stroke. There is
also evidence that serum MMP-2 levels do not increase significantly
after AIS.3! Plasma MMP-2 levels on admission negatively correlate
with NIHSS scores, and patients with better outcomes have higher
MMP-2 levels, suggesting that MMP-2 has a positive effect on
stroke outcomes.’®® MMP-2/9 is involved in BBB degradation and
MMP-2 is associated with leukoaraiosis. In a MCAO model, MMP-2
activation inhibitor-treated mice have less cell leakage, indicating
better BBB integrity. In MMP-2 KO mice, white matter lesions are
less severe than those in WT mice.31102

In ischemic stroke, MMP-9 is associated with BBB degradation
and inflammation, with higher levels of MMP-9 predicting poor out-
comes. This may be explained as follows. MMP-9 activates proin-
flammatory cytokines and chemokines, such as CXCL8, IL-1f, and
TNF-a.3! Elevated MMP-9 levels after ischemic stroke and low levels
of MMP-9 on admission are associated with better NIHSS scores.” In
ischemic stroke models, MMP-9 KO mice have less BBB damage and
smaller strokes, and MMP inhibitor-treated rats have reduced in-
farct size.'°* MMP-9 disrupts BBB integrity by degrading TJs and the
ECM to induce cerebral edema.® TJ degradation is inhibited by MMP
inhibitors in animal models.2°* MMP-9 is associated with ischemia-
induced neuronal death. MMP-9 inhibitors inhibit oxidative DNA

damage and neuronal death after oxygen-glucose deprivation.'®®

3.10 | NR4A1
NR4A1 functions as a molecular switch in many cellular processes,
such as inflammation, proliferation, and apoptosis, and is of funda-
mental importance to Ly6C™ monocytes. NR4A1 is essential for the
survival of Ly6C™ monocytes and the differentiation of Ly6C* into
Ly6C™ monocytes. Ly6C™ monocytes exhibit apoptosis in the bone
marrow of NR4A1™™ mice. Additionally, the conversion of NR4A1™"
Ly6C* monocytes to Ly6C™ monocytes is aborted in the bone mar-
row, blood, and tissues.'>10¢

NR4A1 regulates neuroinflammation in ischemic stroke. In
mice, NR4A1 regulates neuroinflammation in cerebral ischemia
by interacting with NF-kB/p65. NR4A1 inhibits inflammatory re-
sponses and reduces the infarct volume in ischemic stroke. NR4A1
inhibits microglial M1 polarization and monocyte adhesion and re-
duces CCL2/7 expression, which is involved in monocyte recruit-
ment. 1%’ Infiltrating monocytes differentiate into M2 macrophages
in the presence of NR4A1, which has been proven in NR4A1"" mice.
NR4A1”~ mice have more inflammatory M1 macrophages than M2
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macrophages.*1°® Therefore, we can infer that NR4A1 affects
monocyte migration and differentiation.

NR4A1 is involved in the differentiation of LyéCIO monocytes.
NR4A1 deficiency impairs the resolution of inflammation in myo-
cardial infarction. NR4A1 inhibits the infiltration of inflammatory
monocytes into the myocardium and the expression of inflammatory
mediators by MDMs. NR4A1-deficient monocytes express higher
levels of CCR2 with increased cell mobilization and monocyte infil-

tration into the infarcted tissue.'°8

3.11 | P2X4R

P2X4R is an ATP receptor that is highly expressed on immune cells
and can modulate the response of myeloid cells, such as peripheral
monocytes and resident microglia. Excessive release of ATP from
neurons or dead cells overstimulates P2X4R and contributes to is-
chemic injury. P2X4R is a downstream target of CCL2, which trans-
locates P2X4R to the cell surface.

P2X4R is a double-edged sword as P2X4R blockade is neuro-
protective in the early phase of stroke, but not in the late recov-
ery phase. Compared with WT mice, P2X4R KO mice have reduced
infarct volume in the acute phase, but not in the chronic phase. In
myeloid-specific P2X4R KO mice, the mRNA levels of proinflamma-
tory cytokines are elevated in both the acute and chronic phases.
P2X4R deficiency leads to a reduction in BDNF.*’ The mechanism
underlying this phenomenon is unknown but may be due to several
reasons. First, it has been reported that the activation of P2X4R*
cells, especially myeloid cells, promotes the release of proinflam-
matory cytokines, such as IL-6/1p and TNF-a, which play a role in
the immune response in the early phase and mediate the release of
neuropeptides and growth factors in the chronic/recovery phase.
Second, the activation of P2X4R enhances the release of BDNF,
which is involved in synaptic plasticity and promotes recovery.49

P2X4R is involved in monocyte migration to the brain during
ischemic stroke. P2X4R inhibition using the antagonist, 5-BDBD, re-
duces monocyte migration to the brain.” CCL2 modulates P2X4R ex-
pression to mediate its effect on cells. CCL2 treatment increases the
cell surface levels of P2X4R in a concentration-dependent manner.
The CCL2-induced increase in P2X4R expression is abolished after
CCL2 antibody administration, indicating that CCL2 promotes the
cell surface expression of P2X4R.X The PI3K/AKT pathway may be
involved in this process. p-AKT expression is significantly increased
in response to CCL2 treatment. This increase is reversed by the ad-
ministration of a CCL2 antagonist, and a PI3K inhibitor decreases
the expression of P2X4R.1%7 P2X4R may be involved in the polar-
ization of M1 monocytes, which secrete proinflammatory cytokines
and chemokines that degrade TJs between endothelial cells and the
BBB.Y” The mRNA levels of proinflammatory cytokines (IL-1p/6 and
TNF-a) are elevated in P2X4R KO mice compared to WT mice. The
mRNA levels of intracellular cytokines are also elevated in mono-
cytes in myeloid-specific P2X4R KO mice. These findings suggest
that P2X4R may affect the maturation/release of proinflammatory

cytokines and may be involved in proinflammatory monocyte

polarization.*

3.12 | P-selectin (CD62P)and CD40L

P-selectin (CD62P) and CD40L affect the tethering of monocytes
and platelets. P-selectin is a transmembrane adhesion molecule
that is expressed on the alpha-granule membrane of unstimulated
platelets and plays an important role in monocyte and platelet adhe-
sion.1*® CD40L is a transmembrane protein that is expressed on ac-
tivated platelets. During the acute and subacute phases of ischemic
stroke, soluble P-selectin and CD40L levels increase, and after
90days, they return to normal. Soluble P-selectin and CD40L levels
in the blood are associated with stroke severity and outcome. ™!

P-selectin is required for monocyte and platelet tethering
and is involved in monocyte recruitment. Upon platelet activa-
tion, P-selectin is phosphorylated and translocated to the mem-
brane where it interacts with PSGL-1. PSGL-1 is highly expressed
in classical monocytes and is involved in the tethering of mono-
cytes and platelets.112 P-selectin is required for the secretion of
CCL2 and IL-8 by monocytes that are stimulated by activated
platelets.®® P-selectin is also involved in monocyte recruitment,
which is enhanced by CCL2 secretion after monocyte and plate-
let adhesion. Tight adhesion occurs after activation and binding
to macrophage 1. Cytokine and chemokine secretion (e.g., CCL2
and TNF-a) are enhanced by the tight adhesion of monocytes and
platelets.®”'® Therefore, we can infer that adhesion is mediated
by P-selectin and its receptor is involved in monocyte recruitment.
Tight adhesion upregulates and activates beta 1/2 integrin and the
deposition of platelet-derived chemokines (CCL5 and CXCL4).8”
Together, this promotes monocyte recruitment and the formation
of a proinflammatory environment.

P-selectin expression on platelets is increased in patients with
ischemic stroke compared to that in healthy controls and is associ-
ated with outcome. P-selectin expression is elevated 24 h after isch-
emic stroke and is sustained for 7days. P-selectin expression and
leukocyte counts are higher in patients with poor outcomes com-
pared to those with good outcomes, suggesting that P-selectin is a
biomarker of platelet activation and can predict stroke severity and
outcome.1*

CD40L is a ligand for CD40, which is expressed on monocytes
and is structurally related to TNF-a.'*> CD40L is upregulated in the
ischemic brain and can lead to the formation of platelet-leukocyte
aggregates by activating the expression of adhesion molecules (P/E-
selectin and ICAM-1).11¢1Y7 After leukocyte involvement in throm-
bosis, including monocytes, I1L-1/6/8, MIP-1a, and TNF-a secretion
is triggered by platelet-derived CD40L interaction with monocyte
CD40.'*> Therefore, we can infer that CD40L promotes the forma-
tion of a proinflammatory environment.

CDA40L expression on the platelet surface increases in ischemic
stroke, and differences in expression may exist between small-

artery and cardioembolic stroke. Patients with ischemic stroke
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have increased platelet and monocyte activation and upregulated
platelet surface expression of CD40L. Patients with small-artery
stroke have higher CD40L expression than those with cardioem-

bolic stroke.?”

3.13 | TLR2/4

TLRs are innate immune receptors on the cell surface or inside en-
dosomes that are involved in the inflammatory response.118 TLRs are
expressed on innate immune cells (monocytes/macrophages, DCs,
and neutrophils). They are expressed on the membrane surface and
mediate inflammatory responses through the recognition of LPS/Ii-
poteichoic acid (LTA). TLRs recognize cell debris and microbial prod-
ucts from necrotic cells in inflamed tissues, followed by LPS in the
case of TLR4, to trigger an inflammatory response.**” TLR signaling
pathway activates the NF-kB pathway, promoting the production of
proinflammatory cytokines. In the ischemic brain, several cytokines
mediate the expression of TLRs, including IFNs, ILs, and exogenous
microorganisms. The expression of these mediators is dependent
on the NF-xB pathway.'*®'20 TLR2/4 are the main TLRs studied in
ischemic stroke.

TLR2 is associated with the production of inflammatory cyto-
kines by monocytes. TLR2 recognizes LTA and peptidoglycan to ini-
tiate downstream responses. In monocytes, TLR2 is upregulated by
IL-1/10 and LPS and downregulated by IFN-y, IL-4, and TNF. During
infection, TLR2 may be involved in monocyte migration via the RAC/
PI3K pathway. TLR2 expressed on the surface of monocytes stimu-
lates the production of proinflammatory cytokines (IL-1p/6, MCP-1,
and TNF-a). This was demonstrated in an experiment using agonist
gradients.'*’

TLR2 is involved in inflammation caused by ischemic brain in-
jury. Increased TLR2 expression is associated with poor outcomes
in patients with ischemic stroke.'?® TLR2 is also associated with
neuronal apoptosis. TLR2 antibody blockade effectively reduces
post-ischemic neuronal death. In a model of ischemic stroke,
TLR2-deficient mice have a smaller infarct volume and reduced
inflammatory cell accumulation (monocyte/macrophage and ac-
tivated microglia) in the ischemic hemisphere compared to WT
mice.*?! TLR2 binds to HMGB1, an essential DAMP secreted
by apoptotic neurons in the ischemic hemisphere that is associ-
ated with the severity of neurological impairment in ischemic
stroke 12118122 A T| R2 requires CD36 to initiate an inflammatory
response, and CD36 expression is suppressed, inflammation is also
suppressed.“S’123

Classical monocytes express the highest levels of TLR4 among
all subsets, supporting their proinflammatory role in the immune re-
sponse.’? TLR4 is involved in signal transduction by CD14 and the
LPS/LPS binding protein complex.!*12> CD14 is a coreceptor for
TLR4, which is activated by DAMPs/pathogen-associated molec-
ular patterns and is highly expressed in classical monocytes. TLR4
may have less impact on the recruitment of Ly6C'® monocytes. In
vitro experiments using TLR agonists showed that late accumulation

of Ly6C'® monocytes was promoted by TLR4 compared with other
TLRs.?22

TLR4 expression is associated with infarct volume, stroke severity,
and functional outcome. In patients with AIS, elevated TLR4 levels in
circulating monocytes correlate with increased stroke severity and cy-
tokine levels.'?5127 TLR4 levels are also associated with ICAM-1 lev-
els.** TLR4 is involved in the development of infarct volume by binding
to its endogenous ligand, HMGB1. HMGB1-treated TLR4* mice show
increased neurological impairment, while TLR4™ mice do not differ
from WT mice.}'8122 Myeloid differentiation factor 88 (MyD88) also
plays a role in TLR4-mediated brain injury during ischemia.*?” MyD88
activates the NF-kB and activator protein 1 pathways, leading to an
inflammatory response and the release of proinflammatory cytokines.
MyD88 promotes the interaction of TLRs with TNF-associated factor
6, which activates TGF-B-activated kinase 1 (TAK1) and TAK1-binding
protein %/3. TAK1 activates mitogen-activated protein kinase and the
IxB kinase complex, which phosphorylates IkB, leading to NF-kB trans-
location to the nucleus, where it triggers the expression of proinflam-
matory genes.'8128 |n a model of transient cerebral ischemia, TLR4
expression is upregulated, and TLR4-deficient mice show suppression
of proinflammatory cytokines, including cyclooxygenase-2 (COX-2),
IFN-B, IFN regulatory factor 1, inducible nitric oxide synthase, and
MMP-9.2412% COX-2 and MMP-9 are associated with monocyte infil-
tration and breakdown of the BBB. TLR4 affects BBB degradation by
regulating COX-2 and MMP-9, which are implicated in the pathology
of ischemic stroke.

3.14 | VCAM-1/VLA-4

VCAM-1 is an adhesion molecule that binds to VLA-4 to mediate
monocyte recruitment. VCAM-1 is expressed on endothelial cells
and VLA-4 is expressed on monocytes. VCAM-1/VLA-1 mediate
monocyte rolling, adhesion, and transmigration. VCAM-1/VLA-4
antibody blockade inhibits monocyte recruitment to the brain vas-
culature during infection.?® VCAM-1 levels increase from the onset
to the chronic phase of stroke,’®® and soluble VCAM-1 levels are
associated with short-term mortality as non-survivors have higher

levels than survivors.'?

4 | CONCLUSIONS

In this review, we focused on the role and mechanism of cytokines
and chemokines secreted by monocytes in ischemic stroke. Firstly,
we introduced the classification of monocytes. Monocytes can be
divided into classical monocytes, intermediate monocytes, and non-
classical monocytes. Classical monocytes are the main producer of
inflammatory cytokines in ischemic stroke, which take part in the dis-
ruption of the BBB. Intermediate monocytes are in transition from
classical to non-classical monocytes and they are anti-inflammatory
monocytes. Non-classical monocytes provide immune surveil-

lance by patrolling the endothelium, and they may be protective of
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FIGURE 4 Involved cytokines/chemokines in functions of monocyte in ischemic stroke. Flow chart.

the BBB. Secondly, we depicted the role of monocytes in ischemic
stroke, including the role of monocytes in the BBB disruption, the
differentiation of monocyte to macrophage during ischemic stroke,
the recruitment of monocytes in ischemic stroke, as well as the
proinflammatory role and the anti-inflammatory role of monocytes
in ischemic stroke. Finally, and most importantly, we described the
cytokines and chemokines related to monocytes in ischemic stroke.
These include CCL2/CCR2, CCR4, CCR5, CD36, CX3CL1/CX3CR1,
CXCL12 (SDF-1), LFA-1/ICAM-1, Ly6C, MMP-2/9, NR4A1, P2X4R,
P-selectin, CD40L, TLR2/4, and VCAM-1/VCCL2/CCR2. They are
involved in monocyte migration from the bone marrow to the blood
and mediate monocyte migration to the inflamed tissue. CCR4 may
play a role in monocyte migration, CCR5 mediates the migration of
monocytes and MDMs. CD36 interacts with ligands to initiate inflam-
matory responses and enhances the phagocytosis ability of microglia
and monocytes/macrophages. CD40L triggers the expression of ad-
hesive molecules, such as E/P-selectin and ICAM-1, leading to the
formation of platelet-leukocyte aggregates. CX3CL1/CX3CR1 are
required for the patrolling behavior of non-classical monocytes, acti-
vate integrins, and have intrinsic adhesion properties. CXCL12 regu-
lates monocyte adhesion to BMECs. ICAM-1/LFA-1 are required for
the patrolling behavior of Ly6C monocytes in the endothelium. Ly6C
is a classical monocyte marker. MMP-2 is involved in the secretion of
chemokines, such as CCL2 and its level elevates during monocyte-to-
macrophage differentiation. MMP-9 is involved in monocyte activa-
tion by interacting with soluble CD14. CD36 mediates the monocyte
migration through regulation of CCL2/CCR2 and has a restorative
function during the resolution phase of inflammation. Nr4al is es-
sential for Ly6C™ monocyte survival and the transition from Ly6C* to

Ly6C™ monocytes and may impact the differentiation of monocytes
into macrophages. P2X4R promotes monocyte migration and may
be involved in the release of proinflammatory cytokines. P-selectin
participates in monocyte-platelet tethering, and promotes mono-
cyte secretion of CCL2, IL-8, and TNF-a. P-selectin and CD40L af-
fect the tethering of monocytes and platelets. P-selectin is involved
in monocyte recruitment. TLR2 and TLR4 are associated with the
production of inflammatory cytokines by monocytes, TLR4 expres-
sion is associated with infarct volume, stroke severity, and functional
outcome. VCAM-1 binds to VLA-4 to mediate monocyte recruitment
and VCAM-1 levels increase in ischemic stroke. The flow chart of
cytokines/chemokines involved in the function of monocytes in is-
chemic stroke is in Figure 4.

In conclusion, this review introduces the monocyte-related cyto-
kines in cerebral ischemic stroke to lay the foundation for the study
of the mechanisms of monocyte function in ischemic stroke and pro-
vides new targets for the treatment of ischemic stroke.
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