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Abstract
Changes in the transcriptomes of human tissues with advancing age are poorly cata-
loged. Here, we sought to identify the coding and long noncoding RNAs present in cul-
tured primary skin fibroblasts collected from 82 healthy individuals across a wide age 
spectrum (22–89 years old) who participated in the GESTALT (Genetic and Epigenetic 
Signatures of Translational Aging Laboratory Testing) study of the National Institute 
on Aging, NIH. Using high-throughput RNA sequencing and a linear regression model, 
we identified 1437 coding RNAs (mRNAs) and 1177 linear and circular long noncod-
ing (lncRNAs) that were differentially abundant as a function of age. Gene set enrich-
ment analysis (GSEA) revealed select transcription factors implicated in coordinating 

[Correction added on 25 September 2023, after first online publication: Supporting Information items Appendix S1-S9 are included in this version].  
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1  |  INTRODUC TION

With advancing age, changes in gene expression programs in cells 
across the body are reflected in the aging phenotypes of tissues and 
organs. Therefore, interest in elucidating the RNAs and proteins that 
govern cell function as aging progresses has recently intensified, 
with the hope of shedding light on the processes that underlie both 
healthy aging and age-related disease. Aging of the outermost bar-
rier in our body, the skin, can compromise skin integrity and increase 
the risk of damage and infection of internal organs (Kim et al., 2023; 
Zhang & Duan, 2018). With aging, the fibroblasts in the dermis—the 
skin layer derived from the mesoderm—experience reductions in 
number and function, including the capacity to synthesize and re-
model the extracellular matrix (Braverman, 2000; Makrantonaki & 
Zouboulis, 2007; Shuster et al., 1975).

We recently reported the proteomes of skin fibroblasts de-
rived from chronologically aged healthy individuals (Tsitsipatis 
et al., 2022). To gain a complementary view of this process, we ex-
panded our studies to the transcriptome, focusing on both coding 
messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs). 
Skin punch biopsies were obtained from the inner axilla, an area 
that is typically not exposed to sunlight (Fisher et al., 2002; McCabe 
et al.,  2020), from 82 individual participants spanning a wide age 
range [22–89 years old (y.o.)] who were evaluated as healthy accord-
ing to the stringent clinical and functional criteria of the Genetic 
and Epigenetic Signatures of Translational Aging Laboratory Testing 
(GESTALT) study of the National Institute on Aging (NIA), NIH 
(Tanaka et al., 2018; Tsitsipatis et al., 2022; Tumasian et al., 2021). 
High-throughput RNA sequencing (RNA-seq) analysis using linear 
and spline regression models uncovered numerous mRNAs as well 
as linear and circular lncRNAs differentially expressed as a function 
of participant age. Gene set enrichment analysis (GSEA) and LncRNA 
set enrichment analysis (LncSEA) (J. Chen et al., 2021; Subramanian 
et al., 2005) identified several transcription factors (TFs), including 
members of both the forkhead box (FOX) and homeobox (HOX) TF 
families, as well as splicing RNA-binding proteins (RBPs). We pro-
pose that these TFs and RBPs may foster changes in the transcrip-
tome with age. Given the limited knowledge of lncRNA functions in 

human physiology, this study identifies promising molecular factors 
implicated in the aging of skin cells.

2  |  RESULTS

2.1  |  Transcriptomic analysis of primary skin 
fibroblasts from biopsies of GESTALT donors aged 
22–89 years old

Primary skin fibroblasts were established and expanded from biop-
sies collected from 82 healthy individuals in the GESTALT cohort 
(Table 1; NIA, NIH). Total RNA was then extracted from these skin fi-
broblasts and ribosomal (r)RNA-depleted samples were subjected to 
high-throughput paired-end RNA sequencing (RNA-seq) (Figure 1a, 
Sample acquisition) (Methods); the RNA-seq data were deposited in 
GSE226189. Following alignment to the human genome, normaliza-
tion, and quantification, the transcriptomic profiles were divided 
into coding [messenger RNAs (mRNAs)] and linear or circular long 
noncoding RNAs (lncRNAs); we then employed linear and spline 
models to identify differentially expressed transcripts, and we used 
the GSEA and LncSEA methods (J. Chen et al., 2021; Subramanian 
et al., 2005) to find molecules interacting with the differentially ex-
pressed RNAs (Figure 1a, Bioinformatic Analysis).

Using a linear regression model, we found that out of the 16,455 
mRNAs expressed in this cohort, 1437 showed significant change 
with age (unadjusted p-value <0.05) (Figure  1b and Appendix  S1, 
mRNAs—linear model). Most of these mRNAs increased with age, 
as seen for olfactomedin-1 (OLFM1) mRNA, which encodes a pro-
tein with enhanced secretion in aged primary skin fibroblasts 
(Waldera Lupa et al., 2015), and fibroblast growth factor 9 (FGF9) 
mRNA, encoding a protein that inhibits myogenesis as well as my-
ofibroblast differentiation in idiopathic pulmonary fibrosis (Huang 
et al.,  2019; Joannes et al.,  2016). Among the handful of reduced 
mRNAs, RING finger transmembrane domain-containing protein 2 
(RNFT2) mRNA, encoding a protein that represses interleukin 3 (IL3) 
signaling (Tong et al., 2020), and WNT11 mRNA, encoding a protein 
that is less abundant in old mouse liver (Hofmann et al., 2014), were 

the transcription of subsets of differentially abundant mRNAs, while long noncoding 
RNA enrichment analysis (LncSEA) identified RNA-binding proteins predicted to par-
ticipate in the age-associated lncRNA profiles. In summary, we report age-associated 
changes in the global transcriptome, coding and noncoding, from healthy human skin 
fibroblasts and propose that these transcripts may serve as biomarkers and therapeu-
tic targets in aging skin.

K E Y W O R D S
aging, circular RNAs, human dermal fibroblasts, long noncoding RNAs, messenger RNAs, 
transcriptome
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previously associated with aging (Figure 1c). Notably, a subset of the 
top mRNAs that were differentially abundant with age, including 
those that encode OLFM1, FGF9, annexin a2 receptor (ANXA2R), 
and proprotein convertase subtilisin/kexin type 2 (PCSK2), followed 
the same trajectory in human lung fibroblasts WI-38 and IMR-90 
rendered senescent by replicative exhaustion (Casella et al., 2019).

By employing the spline interpolation model, we identified 
1436 mRNAs differentially expressed with age using an unadjusted 
p-value <0.05 (Appendix S1, mRNAs—spline model). While most of 
these were also identified by the linear regression model, a hand-
ful of these mRNAs that did not change linearly with age were de-
tected only when using the spline model. They included mRNAs for 
which the abundance slope increased after 50 years of age [e.g., 
those encoding matrix AAA peptidase interacting protein 1 (MAIP1, 
also known as C2ORF47), lymphatic vessel endothelial hyaluronan 
receptor 1 (LYVE1), and RNA-binding motif protein 24 (RBM24) 
(Figure 1d)] or decreased after 50 years of age [e.g., collagen type V 
alpha 3 chain (COL5A3), axin 2 (AXIN2), and dihydroorotate dehydro-
genase (DHODH) mRNAs (Figure 1e)].

Given that hormones such as estradiol and testosterone can 
modulate the production of major components in skin, such as hy-
droxyproline (Brincat et al.,  1983), we sought to identify how the 
transcriptome may change separately in females and males as a func-
tion of healthy aging. Using the linear regression model, we identified 
1425 and 476 differentially abundant coding transcripts (mRNAs) 
using an unadjusted p-value <0.05 with age in females (Figure S1a 
and Appendix S1, coding—linear—females) and males (Figure S1b and 
Appendix S1, coding—linear—males), respectively. Interestingly, using 
the spline model (unadjusted p-value <0.05), the number of differ-
entially abundant mRNAs did not change significantly in males (313 
mRNAs; Figure  S1d and Appendix  S1, coding—spline—males), but 
it increased significantly in females (4133 mRNAs; Figure  S1c and 
Appendix S1, coding—spline—females). Notably, NOG mRNA, encoding 
the secreted protein noggin (NOG), which antagonizes members of 
the transforming growth factor-β (TGF-β) family (Groppe et al., 2002; 

Massague, 2012), was the top differentially abundant mRNA in fe-
males when using either the linear or the spline regression model.

2.2  |  Subsets of differentially abundant 
mRNAs in skin fibroblasts from older donors are 
putative transcriptional targets of FOX and HOX 
transcription factors

To begin to investigate if the changes in the transcriptome with aging 
were reflected in changes in the proteome (adjusted for all covari-
ates), we compared the differentially abundant mRNAs identified 
using the linear regression model (unadjusted p-value <0.05) with 
the differentially abundant proteins (unadjusted p-value <0.05) 
we previously reported in the same skin fibroblasts from this co-
hort (Tsitsipatis et al., 2022). At the overlap of these two datasets 
(Appendix  S2), we found that the differentially expressed mRNAs 
(beta coefficient) modestly correlated with the differentially ex-
pressed proteins (age beta) as a function of age (Figure 2a; Pearson 
correlation coefficient, r = 0.429). We expanded this analysis by 
identifying differentially expressed mRNAs (unadjusted p-value 
<0.05) for which the levels of the encoded proteins were not signifi-
cantly changed (unadjusted p-value >0.05); 454 such mRNAs were 
increased, whereas 117 were decreased (Figure  2b). Conversely, 
we identified differentially expressed proteins (unadjusted p-value 
<0.05) for which the levels of the encoding mRNAs were not sig-
nificantly changed (unadjusted p-value >0.05); we found 830 and 
1029 such proteins that either increased or decreased, respectively 
(Figure 2c).

We then asked whether the transcriptomic changes may be 
jointly regulated by shared transcription factors (TFs) in this para-
digm. We used the GSEA TF target identification feature [C3-TFT 
(all transcription factor targets, 1,127 gene sets)] on the differen-
tially abundant mRNAs (Figure 1b) as a gene set input, in order to 
identify those TFs [normalized enrichment score (NES) >1.6 and 
p-value <0.05] that might potentially coordinate their transcrip-
tion. Interestingly, using these criteria, most of these putative reg-
ulatory TFs were members of either the forkhead box (FOX) or 
the homeobox (HOX) families (Appendix  S3, enriched TFs—linear 
model). The proteins in both the FOX and HOX families are evolu-
tionarily conserved and govern many processes during embryonic 
development and in adult life (Duverger & Morasso, 2008; Golson 
& Kaestner,  2016). Notably, we identified TFs previously associ-
ated with longevity, such as heat shock factor 1 (HSF1), forkhead 
box A [FOXA; also known as hepatocyte nuclear factor 3 (HNF3)], 
and paired box 4 (PAX4), as significantly enriched with age in our 
healthy cohort (Figure  2d), suggesting that they might putatively 
regulate transcription of several of the differentially expressed 
mRNAs. HSF1, through its influence on proteostasis, and the ortho-
log of FOXA in Caenorhabditis elegans, PHA-4, were shown to modu-
late C. elegans life span (Hsu et al., 2003; Morley & Morimoto, 2004; 
Panowski et al., 2007), whereas PAX4 was associated with longevity 

TA B L E  1 Demographic data of the individuals who participated 
in the study.

Female Male

Number 35 47

Average age (years)a 54 ± 17 52 ± 20

Age range (years) 25–80 22–89

Race 32 Caucasian 36 Caucasian

1 African American 10 African 
American

2 Asian 1 Asian

Note: Demographic data for the very healthy individuals in the 
GESTALT study [inclusion criteria described in (Tsitsipatis et al., 2022)] 
who provided skin biopsies for this study. After expansion, the skin 
fibroblasts derived from these healthy individuals were used for RNA-
seq analysis and validation.
aAverage age (± SD) at time of skin biopsy collection.
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in a Korean cohort (Park et al., 2009). Notably, interferon regulatory 
factor 1 (IRF1), a TF which governs innate immune responses by pre-
dominantly promoting the transcription of type-I interferon genes 
and is implicated in cellular senescence (Feng et al., 2021; Frisch & 
MacFawn, 2020), was also identified as a putative transcriptional 
regulator of subsets of mRNAs enriched with age (Figure S2a).

In addition to the aforementioned TFs previously associated 
with longevity, we also found several FOX members [FOXJ1, FOXJ2, 
and FOXD3 (Figure 2e)], as well as HOX members [HOXA4, TGFB-
induced factor homeobox (TGIF), pre-B-cell leukemia homeobox 1 
(PBX1), HNF6 (also known as OC-1), HNF1A, MSX-1, and pituitary-
specific positive transcription factor 1 (PIT1; also known as POU1F1) 
(Figure 2f and Figure S2b)] as predicted transcriptional regulators of 
several mRNAs changing with age. Whether these TFs coordinately 
control aging-associated gene expression programs is unknown at 
present.

Nonetheless, while these TFs belong to two major families, FOX 
(Figure 2g) and HOX (Figure 2h), each factor has unique transcrip-
tional targets based on the GSEA method (Appendix S4), supporting 
the view that a broad subset of differentially expressed transcripts 
is required for healthy aging. When employing the exclusive subset 
of differentially expressed transcripts (unadjusted p-value <0.05) 
identified by the spline model, similar TFs were preferentially en-
riched based on the GSEA method (Appendix S3, enriched TFs—spline 
model). Notably, lymphoid enhancer-binding factor 1 (LEF1), which 
shares homology with the high mobility group protein-1 (HMGB1) 
(Giese et al., 1991), was among the most preferentially enriched TFs 
in our analysis (Figure S2c).

2.3  |  Linear lncRNAs following age-dependent 
expression patterns are predicted targets of 
splicing RBPs

Given the rising interest in lncRNAs associated with aging and age-
related diseases (Grammatikakis et al., 2014; J. Kim et al., 2016), we 
first identified linear lncRNAs showing strong correlations with age 
in our study. Using a cutoff length of >200 nucleotides, we identified 
a total of 11,570 lncRNAs in this cohort; among them, 800 were dif-
ferentially abundant with advancing age using the linear regression 
model and an unadjusted p-value <0.05 (Figure 3a and Appendix S5, 

linear lncRNAs—linear model). The top differentially expressed linear 
lncRNAs (linear model) as a function of age are poorly character-
ized (Figure 3b). Using the same length cutoff criterion in the spline 
regression model, 728 lncRNAs were differentially abundant (unad-
justed p-value <0.05) with age (Appendix S5, linear lncRNAs—spline 
model). Here too, most lncRNAs were differentially abundant with 
age whether we used linear or spline regression analysis; for a few of 
them, the slope increased (Figure 3c) or decreased (Figure 3d) after 
50 years of age and thus were detected only using spline regression 
analysis.

As studied for mRNAs (Figure S1), we sought to identify if the 
abundance of linear lncRNAs changed in female and male partici-
pants with advancing age. By linear regression analysis (unadjusted 
p-value <0.05), we identified 730 and 475 differentially expressed 
linear lncRNA with age in females (Figure  S3a and Appendix  S5, 
lncRNAs—linear—females), and males (Figure S3b and Appendix  S5, 
lncRNAs—linear—males), respectively. As observed for mRNAs, with 
the spline model the number of differentially expressed linear 
lncRNAs (unadjusted p-value <0.05) increased markedly to 1723 
in females (Figure S3c and Appendix S5, lncRNAs—spline—females), 
whereas only 279 linear lncRNAs were differentially expressed in 
males (Figure S3d and Appendix S5, lncRNAs—spline—males).

To better understand why these linear lncRNAs were differen-
tially expressed as a function of age (adjusted for all covariates, unad-
justed p-value <0.05), we sought to identify preferentially enriched 
TFs interacting predominantly with the promoter region of these 
linear lncRNAs using the LncSEA method (transcription factor fea-
ture). Utilizing the differentially abundant linear lncRNAs detected 
using the linear regression model (Appendix S5, linear lncRNAs—linear 
model), we identified a number of zinc-binding TFs, including snail 
family transcriptional repressor 2 (SNAI2), GATA-binding protein 3 
(GATA3), zinc finger protein 362 (ZNF362), CCCTC-binding factor 
(CTCF), and p53 (Cassandri et al., 2017; Nicolai et al.,  2015), pre-
dicted to bind to the promoter regions of these lncRNAs (p < 0.05; 
Appendix  S6, enriched TFs—linear model). Surprisingly, members of 
the FOX family (FOXA1 and FOXA2) were once again preferentially 
enriched in our analysis, thus highlighting the potential importance of 
FOX TFs in healthy aging (p < 0.05; Appendix S6, enriched TFs—linear 
model). Notably, these TFs shared lncRNA targets, thus potentially 
implying that these linear lncRNAs are transcriptionally regulated by 
multiple TFs as a function of age (Figure 4a). Strikingly, although most 

F I G U R E  1 Differentially expressed coding transcripts (mRNAs) with advanced aging. (a) Workflow of sample acquisition and preparation 
(blue) and bioinformatic analysis (green) followed in this study. (b) Volcano plot showing beta coefficients of mRNAs expressed with age 
(per year). Transcripts showing significantly increased (red dots) or decreased (blue dots) levels with age (p < 0.05, adjusted for covariates) 
are indicated. Gray dots show transcripts that did not change significantly with age (p > 0.05). (c) Heatmap of the top 10 significantly 
elevated mRNAs (top) and top 10 significantly reduced mRNAs (bottom) with age based on a linear regression model (unadjusted p-values). 
(d,e) Graphs of mRNAs showing differentially increased (d) or decreased (e) slopes after 50 years of age based on a spline regression model 
(unadjusted p-values). In (b), the R2 values for the reported transcripts increasing with advancing age are as follows: R2 = 0.25 for OLFM1 
mRNA; R2 = 0.14 for ERG mRNA; R2 = 0.21 for PTPRB mRNA; R2 = 0.14 for FGF9 mRNA; R2 = 0.16 for KCNJ8 mRNA; R2 = 0.081 for DNASE1L3 
mRNA; R2 = 0.16 for PCOLE2 mRNA; R2 = 0.16 for CDH10 mRNA; R2 = 0.13 for CHN2 mRNA; and R2 = 0.14 for C10orf11 mRNA. Similarly, for 
the reported transcripts decreasing with advancing age, the R2 values are as follows: R2 = 0.13 for PCSK2 mRNA; R2 = 0.18 for BEX4 mRNA; 
R2 = 0.11 for CNTN4 mRNA; R2 = 0.15 for NEFH mRNA; R2 = 0.11 for ADCY1 mRNA; R2 = 0.15 for RNFT2 mRNA; R2 = 0.18 for C3orf70 mRNA; 
R2 = 0.18 for ANAX2R mRNA; R2 = 0.081 for WNT11 mRNA; and R2 = 0.13 for FAM213A mRNA.
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TFs were shared regardless of the regression model used to detect 
differentially abundant linear lncRNAs, the TF MYC was more deeply 
enriched when using the subset of linear lncRNAs detected by the 
spline regression model (Appendix S6, enriched TFs—spline model).

Given that there is virtually no information on the roles of most 
linear lncRNAs differentially expressed in our healthy cohort and 
that RBP-lncRNA interactions are closely linked to lncRNA function 
(Herman et al.,  2022), we sought to identify enriched interacting 
RBPs by using the RBP feature in the LncSEA platform. Focusing 
on the linear lncRNAs differentially abundant with age by linear re-
gression analysis (unadjusted p-value <0.05), we found several pro-
teins implicated in RNA splicing, including poly(C)-binding protein 
(PCBP2), heterogeneous nuclear ribonucleoprotein C (HNRNPC), 
and RNA-binding motif protein 15 (RBM15) (Georgiadou et al., 2021; 
Zarnack et al., 2013; L. Zhang et al., 2015), as being preferentially 
enriched by the LncSEA method (p < 0.05) with age (Figure 4b and 
Appendix  S7, enriched RBPs—linear model). Notably, after applying 
the differentially expressed transcripts detected by the spline re-
gression model to the same analysis, we identified other RBPs that 
also affected RNA splicing, including FAS-activated serine/threonine 
kinase D2 (FASTKD2), which governs mitochondrial RNA processing 
and translation (Popow et al., 2015) (Figure S3e and Appendix S7, 
enriched RBPs—spline model).

The top elevated and reduced lncRNAs (from Appendix  S5) 
known to interact with the RBPs in Figure  4b and Appendix  S7 
based on crosslinking analysis available through the LncSEA plat-
form are indicated (Figure 4c,d). RT-qPCR analysis was used to vali-
date the levels of five annotated lncRNAs that increased (Figure 4e; 
SOCS2-AS1, LINC00595, ZFHX4-AS1, A2M-AS1, and INHBA-AS1) or 
decreased (Figure  4f; MIAT, THBS4-AS1, MIR600HG, KDM4A-AS1, 
and LINC00926) in old (>70 years old, y.o.) relative to young individ-
uals (<35 y.o.).

2.4  |  Differentially expressed circRNAs as a 
function of donor age in human skin fibroblasts

To complete the characterization of differentially expressed RNAs, 
we assessed the differential expression of circular lncRNAs (circR-
NAs) with age. Excluding small circRNAs (<200 nts) from further 
analysis, we detected 46,120 circRNAs with at least one junction 
count in any donor. After including the additional requirement 

that at least seven donors within any age group should have at 
least one junction count for each specific circRNA, we focused 
on 2345 circRNAs (Appendix  S8). In this circRNA pool, super-
vised partial least square (PLS) analysis revealed distinct separa-
tion across the age groups based on circRNA signatures in our 
cohort (Figure  5a). Linear regression analysis of this set revealed 
47 elevated and 37 decreased circRNAs (unadjusted p-value <0.05) 
across aging (Figure 5b); notably, two of the increased circRNAs, 
chr3:128516879_128526460 and chr7:91621471_91632549, were 
considered novel as their junctions have not been reported in the 
major databases. After considering the relative abundance (base-
Mean >1.5), significance (p < 0.01), and beta coefficient with age 
(|beta coefficient| >0.01), we then focused on validating the top 
five circRNAs in each group, as well as the cognate linear mRNAs 
sharing the same precursor transcripts, in young (<35 y.o.) and old 
(>70 y.o.) donors using RT-qPCR analysis; the nomenclatures of 
these circRNAs (Figure 5c) are based on CircInteractome (Dudekula 
et al., 2016) and a new guide to naming eukaryotic circRNAs (L. L. 
Chen et al., 2023). We used the nomenclature guide and predicted 
circRNA body composition based on short-read sequencing.

Among those circRNAs elevated in older individuals, we success-
fully validated three transcripts with age-dependent increased ex-
pression, hsa_circ_0055019, hsa_circ_0067682, and hsa_circ_0128535 
(Figure  5d), whereas hsa_circ_0078226, hsa_circ_0001610, hsa_
circ_0000591, and hsa_circ_0071106 were significantly lower in 
older donors (Figure  5e); interestingly, none of the tested linear 
cognate mRNAs changed significantly with age. Given the modest 
changes observed in the validated circRNAs, analyzing pools of cir-
cRNAs, rather than individual circRNAs, may be more informative in 
this paradigm. When assessing the sex differences in the expression 
of circRNAs, we only found 29 increased and 43 decreased circRNAs 
in females (unadjusted p-value <0.05; Figure S4a and Appendix S8, 
circular lncRNAs—females), and only 41 increased and 14 decreased 
in males (unadjusted p-value <0.05; Figure S4b and Appendix  S8, 
circular lncRNAs—males) as a function of age.

3  |  DISCUSSION

There has been a recent surge of interest in identifying the mo-
lecular gene expression programs (RNAs and proteins) that govern 
aging physiology and disease. The analysis of human tissues and 

F I G U R E  2 Transcription factors (TFs) putatively driving the expression of differentially abundant mRNAs with age based on a linear 
regression model. (a) Correlations between differentially abundant mRNAs (unadjusted p-value <0.05) and differentially abundant proteins 
(unadjusted p-value <0.05; Tsitsipatis et al., 2022) from the same cohort as a function of age. Proteins and mRNAs changing in the same 
direction are indicated with red dots (both increased) or blue dots (both decreased), while proteins and mRNAs changing in opposite 
directions are indicated in purple dots (Pearson correlation coefficient, r = 0.429). Gray dots represent instances in which either the 
mRNA levels or the protein levels did not change significantly (unadjusted p-value >0.05). (b) Overlap of differentially abundant mRNAs 
(unadjusted p-value <0.05) for which the levels of encoded proteins were not significantly changed (unadjusted p-value >0.05). (c) Overlap 
of differentially abundant proteins (unadjusted p-value <0.05) encoded by mRNAs that did not show significant changes in abundance 
(unadjusted p-value >0.05). (d) TFs HSF1, FOXA, and PAX4 (above the graphs), previously associated with longevity, capable of transcribing 
mRNAs that were enriched with age by the GSEA method. (e,f) TFs in the FOX (e) or HOX (f) families whose transcribed mRNAs were 
preferentially elevated in older individuals by the GSEA method. (g,h) Network of differentially expressed mRNAs, predicted to be 
transcriptionally induced by the FOX (e) or HOX (f) transcription factors.
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primary cells from healthy individuals can be particularly informa-
tive about the mechanisms that modulate healthy aging, with the 
ultimate goal of improving mean and maximum life span and health 
span. We recently employed an ex vivo model of primary skin fibro-
blasts to identify altered pathways across the life span in a healthy 
human cohort (GESTALT, NIA, NIH) (Tsitsipatis et al., 2022). Here, 
we sought to expand our understanding of these cells by analyzing 
their transcriptomes.

Using high-throughput RNA-seq analysis, we identified the 
lncRNAs (linear and circular) and mRNAs that were differentially 
abundant as a function of age in this healthy cohort employing both 
linear and spline regression models. Although most differentially 
abundant mRNAs and lncRNAs were detected using both models 
(Appendixes S1, S5, and S8), a subset of these RNAs was only found 
using the spline model. This trend was even more evident when we 
analyzed separately female and male participants (Figures S1 and 
S3a–d). As shown, in females substantially more mRNAs and linear 
lncRNAs were identified by the spline model than the linear model 
(Figures S1c and S3c), whereas in males the number of mRNAs and 
linear lncRNAs was comparable, whether we used the linear or spline 
model (Figures S1d and S3d). This observation is in line with reports 
suggesting possible nonlinear changes in skin thickness (Shuster 
et al., 1975), the secretome (Lehallier et al., 2019), and DNA meth-
ylation (Vershinina et al., 2021) with age, further suggesting that in-
tegrating both linear and spline models is important when studying 
age-related changes. Notably, several reports suggest that changes 
in skin are associated with hormonal imbalances fostered by meno-
pause (Rahrovan et al., 2018; Windhager et al., 2019), which in turn 
can lead to nonlinear changes (Brincat et al., 1983). We thus sought 
to identify how the transcriptome may change separately in females 
and males as a function of healthy aging.

A comparison between changes in the proteome (Tsitsipatis 
et al., 2022) and the coding transcriptome (mRNAs) of the same co-
hort with age revealed modest correlations between altered mRNA 
and protein levels as a function of age (Figure 2a). It is worth not-
ing that many proteins were differentially abundant with age with-
out corresponding changes in the levels of the encoding mRNAs 
(Figure 2c) and, conversely, many mRNAs showed altered abundance 
without corresponding changes in protein levels (Figure  2b). Such 
discrepancies can be attributed to highly regulated processes like 
alternative splicing to produce mRNA variants, as well as to changes 
in translation efficiency, protein processing, protein stability, protein 

secretion, etc., which warrant consideration when assessing changes 
in the levels of proteins and corresponding mRNAs (Koussounadis 
et al.,  2015; Mertins et al.,  2016). These discrepancies also un-
derscore the caution that must be exercised when assuming that 
changes in mRNA levels are a surrogate for changes in the levels of 
the encoded proteins or the functional pathways governed by such 
proteins.

Strikingly, many of the most prominent mRNAs were predicted 
to be transcriptionally regulated by TF members of the FOX and 
HOX families (Figure 2d–h and Appendix S2). Future studies are 
required to evaluate whether these TFs play prominent roles in 
skin aging, although there is information to suggest that they 
may be broadly involved in aging. For example, FOXJ1 has a key 
role in regulating the expression of genes important for ciliogen-
esis in primary human and mouse airway epithelial cells (Didon 
et al., 2013; You et al., 2004). Growing evidence suggests a prom-
inent role for primary cilia as receiving or releasing organelles for 
extracellular vesicles (EVs) and as sensors of transduced signals 
(Hosio et al., 2020; Ikegami & Ijaz, 2021). With emerging interest in 
the role of EVs in aging and age-related diseases (Takasugi, 2018; 
Yin et al., 2021), whether FOXJ1 elicits a similar role in regulating 
ciliogenesis in skin fibroblasts and in turn affects the uptake or 
release of EVs with age, warrants further investigation. Another 
interesting TF that was among the most preferentially enriched 
TFs in our analysis, LEF1, shares homology with HMGB1, a pro-
tein that translocates from the nucleus to the extracellular space, 
has a role in cellular senescence, and fine-tunes the skin macroen-
vironment to enhance wound healing (Davalos et al., 2013; Phan 
et al., 2020; Sofiadis et al., 2021). Whether LEF1 may have a role 
in senescence or wound healing remains to be studied. Notably, 
the levels of these TFs and RBPs did not significantly change with 
age in our previous proteomic analysis, likely indicating that mech-
anisms affecting their activity (not necessarily their levels), such 
as posttranslational modifications or shuttling across the nuclear 
envelope, may be more prominent in these cells.

We identified a number of differentially expressed linear 
lncRNAs (Figure  3) that were not previously identified as being 
associated with advanced aging; among the validated lncRNAs, 
SOCS2-AS1 was proposed to sponge microRNAs in tumor pro-
gression models (Jian et al., 2021; Zheng et al., 2020), and MIAT 
controls the development of the atherosclerotic lesion and plaque 
destabilization in atherosclerosis (Fasolo et al., 2021). Strikingly, 

F I G U R E  3 Differentially expressed linear lncRNAs as a function of age. (a) Volcano plot showing beta coefficients of linear lncRNAs 
expressed with age (per year). Transcripts showing significantly increased (red dots) or decreased (blue dots) levels with age (p < 0.05, 
adjusted for covariates) are indicated. Gray dots show transcripts that did not change significantly with age (p > 0.05). (b) Heatmap of the 
top 10 significantly elevated linear lncRNAs (top) and top 10 significantly reduced lncRNAs (bottom) with age based on a linear regression 
model (unadjusted p-values). (c,d) Regression graphs of linear lncRNAs differentially increased (c) or decreased (d) with advanced aging 
based on a spline regression model (unadjusted p-values). In (b), the R2 values for the reported lncRNAs increasing with advancing age 
are as follows: R2 = 0.17 for RP11-588H23.3; R2 = 0.095 for ABCB10P1; R2 = 0.11 for ABCB10P3; R2 = 0.12 for SOCS2-AS1; R2 = 0.18 for 
RP11-­13 N12.1; R2 = 0.17 for XX-CR54.3; R2 = 0.16 for RP11-578F21.12; R2 = 0.1 for ABCB10P4; R2 = 0.15 for LINC00595; and R2 = 0.17 for 
LINC01018. Similarly, for the reported transcripts decreasing with advancing age, the R2 values are as follows: R2 = 0.049 for HCG4P7; 
R2 = 0.22 for AF131215.2; R2 = 0.19 for CACNA2D3-AS1; R2 = 0.02 for HLA-W; R2 = 0.12 for LRRC37A4P; R2 = 0.11 for RP11-248C1.3; R2 = 0.14 
for AC017083.2; R2 = 0.12 for KIF28P; R2 = 0.085 for RP11-­21 L19.1; and R2 = 0.21 for AF131215.9.
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the levels of SOCS2 and INHBA mRNAs, transcribed from loci 
near those of the respective lncRNAs, were significantly elevated 
with age, whereas the levels of THBS4 mRNA were reduced, 

potentially suggesting that SOCS2-AS, INHBA-AS, and THBS4-AS 
may act as cis-regulatory elements. FOXA1 and FOXA2, two 
members of the FOX family, were predicted by LncSEA to interact 
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with the promoters of the differentially expressed linear lncRNAs 
(Figure 4a), supporting the notion that FOX TFs may foster pro-
grams underlying healthy aging by regulating the expression of 
both coding and long noncoding transcripts. Besides FOX TFs, 
TF members of the zinc finger family were identified as prefer-
entially interacting with the promoters of a wide subset of differ-
entially expressed linear lncRNAs showing age-related changes in 
expression in our analysis. Given the emergence of zinc finger TFs 
as prominent antiaging targets (Fischer et al., 2022; Zimmermann 
et al., 2019), activating the transcription of lncRNAs may be part 
of the healthy aging program elicited by zinc finger TFs. Notably, 
many of the differentially expressed linear lncRNAs were pref-
erentially associated with RBPs implicated in RNA splicing 
(Figure  4b and Figure  S3e). With escalating interest in the po-
tential role of splicing in healthy aging and longevity (Angarola & 
Anczukow, 2021; Bhadra et al., 2020), whether the interactions 
of the linear lncRNAs or mRNAs with the RBPs predicted in our 
analysis have a prominent role in healthy aging warrants further 
investigation.

While the roles of the vast majority of circRNAs are poorly under-
stood, a few of the validated circRNAs in our study were previously 
associated with age-related declines or disease. For example, hsa_
circ_0000591 and hsa_circ_0071106 were previously linked to knee 
osteoarthritis and type 2 diabetes, respectively (Jiang et al., 2021; 
Yingying et al., 2021), whereas delivery of hsa_circ_0001610 via EVs 
from tumor-associated macrophages reduced radiosensitivity in en-
dometrial cancer (Gu et al., 2021). Notably, we identified the RBP 
interleukin enhancer-binding factor 3 (ILF3) as interacting with linear 
lncRNAs that changed with age (Figure 4b), and ILF3 coordinates the 
biogenesis of some circRNAs during viral infection (Li et al., 2017). 
In light of emerging interest in the expression of circRNAs in healthy 
aged individuals, supervised PLS analysis of differentially abundant 
circRNAs showed a prominent age-dependent distribution in this co-
hort (Figure 5a). The fact that linear RNAs revealed a less apparent 
distribution with age (not shown) suggests that circRNAs may track 
better with human age, particularly when jointly analyzing groups of 
circRNAs. Similar studies are needed to test if circRNA analysis can 
be informative in instances of age-associated diseases.

To conclude, it is worth noting that the study design may cause 
spurious correlations and that the stringent criteria to recruit healthy 
individuals inevitably reduced the size of our cohort. Although some 
of the observed changes were validated using molecular biology 
techniques (Figure 4e,f and Figure 5d,e), future studies that include 
larger numbers of participants are needed to validate and extend 
the current findings. Also, given that the cultured primary skin fi-
broblasts do not faithfully recapitulate all traits of the aging human 
skin, where cells are typically quiescent and exposed to different 

endogenous factors, it will be important to complement our stud-
ies with single-cell RNA-seq analysis (Sole-Boldo et al., 2020; Zou 
et al., 2021) and spatial transcriptomic analysis of aging skin. While 
these approaches enable the study of skin cells closer to their na-
tive state without artifacts arising from cell culture, they mainly 
detect the most abundant RNAs. With growing appreciation of the 
key roles of low-abundance linear and circular lncRNAs in driving 
protein programs and cell fate (Herman et al., 2022), improving and 
integrating methods of analysis of all RNA molecules changing with 
advancing age will lead to a better understanding of the molecular 
mechanisms that drive healthy aging.

4  |  METHODS

4.1  |  Skin biopsies and culture of skin fibroblasts

Skin biopsies and expanded fibroblast cultures were obtained 
as previously described (Tsitsipatis et al., 2022). Briefly, punch 
skin biopsies (4 mm2) were obtained from the non-sun-exposed 
skin of the inner upper arm, just below the axilla, of 82 healthy 
GESTALT participants (Table  1) following a stringent clini-
cal protocol that minimized the risk of infections and side ef-
fects (Tanaka et al., 2018). The enrolled participants were free 
of any major diseases, did not take any prescribed medication 
except a single monotherapy for hypertension, had no physical 
or cognitive impairments, did not train professionally, and had a 
body mass index (BMI) less than 30 kg/m2. The inclusion criteria 
were assessed during a 6-h evaluation at the Clinical Research 
Unit (NIA IRP) based on medical history, physical exams, and 
blood tests interpreted by an experienced nurse practitioner 
(Roy et al.,  2022; Schrack et al.,  2014). Collected skin biop-
sies were minced into smaller pieces and distributed into three 
wells of 6-well, collagen-coated plates. The minced biopsies 
were incubated in Dulbecco's Modified Eagle Medium (DMEM, 
Gibco) supplemented with 20% fetal bovine serum (Gibco), 1% 
penicillin–streptomycin (Gibco), and 1% nonessential amino acids 
(Gibco) at 37°C in a humidified atmosphere for 2 weeks; then in 
DMEM supplemented with 10% FBS, 1% penicillin–streptomycin, 
and 1% nonessential amino acids for 1–2 weeks until confluent. 
The established primary human dermal fibroblasts (HDFs) were 
further expanded to three 100-mm culture plates, grown until 
confluency, and frozen until use. The GESTALT protocol is ap-
proved by the Intramural Research Program of the US National 
Institute on Aging and the Institutional Review Board of the 
National Institutes of Health. All participants provided written, 
informed consent at every visit.

F I G U R E  4 TFs capable of transcribing and RBPs capable of binding to linear lncRNAs differentially abundant with age based on a linear 
regression model. (a) TFs FOX (pink) or zinc-finger (purple) putatively interacting with top differentially expressed linear lncRNAs (p < 0.05) 
based on the LncSEA method. (b) RBPs putatively interacting with linear lncRNAs based on LncSEA. (c,d) List of RBPs predicted to interact 
with differentially increased (c) or decreased (d) lncRNAs in our LncSEA. (e,f) Validation of differentially increased (e) or decreased (f) linear 
lncRNAs using RT-qPCR analysis. Data were normalized to B2M mRNA, encoding a housekeeping protein. Significance was established using 
Student's t test. *** p < 0.001.
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4.2  |  RNA isolation, library preparation, and 
RNA sequencing

After thawing, HDFs were cultured in DMEM supplemented 
with 10% FBS, 1% penicillin–streptomycin, and 1% nonessen-
tial amino acids at 37°C in a humidified atmosphere until they 
reached confluency and were used within four passages. Cells 
were harvested, washed once with 1× PBS, and total RNA was 
isolated using the Direct-zol™ RNA MiniPrep kit (Zymo Research) 
following the manufacturer's instructions. Following RNA isola-
tion, quality was assessed on an Agilent Bioanalyzer, and 500 ng 
of total RNA was subjected to Ribo-RNA depletion with Low Input 
RiboMinus Eukaryote System v2 (Thermo Fisher Scientific). Ribo-
RNA-depleted samples were then used for cDNA synthesis with 
Ovation® RNA-Seq System V2 (Nugen) following the manufac-
turer's protocol. Briefly, the first cDNA strand was synthesized 
from Ribo-RNA-depleted samples using a unique first strand 
DNA/RNA chimeric primer mix and reverse transcriptase (RT) 
included in the kit, followed by synthesis of the second cDNA 
strand. After purification with Agencourt RNA CleanUp XP beads, 
the double-stranded cDNA products were amplified with the 
Single primer isothermal amplification (SPIA) included in the kit. 
The amplified products were then purified with QIAGEN QIAquick 
PCR Purification Kit (QIAGEN) and checked on an Agilent 2100 
Bioanalyzer with a DNA 1000 kit (Agilent) and fragmented by a 
Bioruptor. Fragmented cDNAs were checked again on Agilent 
2100 Bioanalyzer with a DNA 1000 kit.

The fragmented cDNAs were used for library preparation with 
Illumina TruSeq ChIP Library Preparation Kit (Illumina) according 
to the manufacturer's protocol. Briefly, the cDNAs were subjected 
to end repair, the 3′ end adenylation, and adapter ligation, and 
were then purified with AMPure beads (Beckman). The products 
were size-selected with SPRIselect beads (Beckman), and then 
the selected cDNAs were amplified by PCR and purified again 
with SPRIselect beads to generate final libraries. Paired-end se-
quencing was performed by Quick Biology (Pasadena), aiming for 
250 million reads per sample using an Illumina NovaSeq 6000 
instrument.

4.3  |  Reverse transcription (RT) followed by 
real-time quantitative (q)PCR analysis

Following RNA isolation, 1 μg of total RNA was used for reverse 
transcription (RT) followed by real-time quantitative PCR (qPCR) 

analysis. For qPCR analysis, 0.1 μL cDNA was used with 250 nM of 
primers (Appendix  S9) and KAPA SYBR® FAST qPCR Kits (KAPA 
Biosystems) as described (Tsitsipatis et al., 2021). Divergent prim-
ers spanning the circRNA junctions of interest were designed using 
CircInteractome (Dudekula et al., 2016). RT-qPCR analysis was car-
ried out on a QuantStudio 5 Real-Time PCR System (Thermo Fisher 
Scientific) with a cycle setup of 3 min at 95°C, 40 cycles of 5 s at 
95°C, and 20 s at 60°C. Relative RNA levels were calculated after 
normalizing to beta-2-microglobulin (B2M) mRNA using the 2−ΔΔCt 
method; among the examined mRNAs encoding housekeeping pro-
teins, B2M mRNA levels showed the least variability across partici-
pants (not shown).

4.4  |  Bioinformatic and statistical analyses

Binary Base Call (BCL) files were demultiplexed and converted to 
FASTQ files using bcl2fastq program (v2.20.0.422). FASTQ files were 
trimmed for adapter sequences using Cutadapt version v1.18 and 
aligned to human genome hg19 Ensembl v82 using STAR software 
v2.4.0j (Dobin et al., 2013); featureCounts (v1.6.4) (Liao et al., 2014) 
were used to create gene counts from the samples for linear RNA 
analysis. The chimeric junction file obtained from STAR software 
was parsed for fusion junctions and analyzed using CIRCexplorer 
v1.1.10 (X. O. Zhang et al., 2014) to obtain the circularizing junction 
counts for circRNA analysis as well as for circRNA annotation. To 
filter out RNAs with very low counts across the cohort we divided 
the 82 samples into four groups, each enclosing approximately 20 
age-consecutive samples. We required at least seven samples in any 
group to have 10 or more counts for linear RNA analysis, whereas for 
the circRNA analysis one or more counts for a specific circRNA was 
required. Age-related differential expression analysis for both linear 
and circular RNAs was conducted using the R Bioconductor pack-
age, DESeq2, version 1.36.0 (Love et al., 2014) after adjusting for 
gender and collection batches. The linear regression model was run 
using default parameters. Briefly, we applied default DESeq(), which 
uses the median ratio method, to estimate the size factors. Next, the 
dispersion was estimated assuming a negative binomial distribution 
for count, the model was fitted, and the Wald test was employed for 
significance testing (Anders & Huber, 2010). Significance was deter-
mined using p-value <0.05 for all transcripts. For the spline model, 
we used natural spline with degree of freedom equal to three, and 
the spline model was run using the likelihood ratio test. The full 
model included the three spline covariates, along with batch and sex, 
while the reduced model included only batch and sex. The data on 

F I G U R E  5 Differentially expressed circular lncRNAs as a function of age. (a) PLS analysis of age-associated circular lncRNAs. (b) Volcano 
plot showing beta coefficients of circular lncRNAs expressed with age (per year). Transcripts showing significantly enhanced (red dots) 
or reduced (blue dots) levels with age (p < 0.05, adjusted for covariates) are indicated. Gray dots show transcripts that did not change 
significantly with age (p > 0.05). (c) Nomenclatures of increased (left table) or decreased (right table) circular lncRNAs and the respective 
cognate linear mRNAs. (d,e) Validation by RT-qPCR analysis of differentially increased (d) or decreased (e) circular lncRNAs. Data were 
normalized to B2M mRNA, encoding a housekeeping protein. Significance was established using Student's t test. * p < 0.05, ** p < 0.01, *** 
p < 0.001.
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differentially abundant mRNAs and (linear or circular) lncRNAs as a 
function of age are summarized in Appendixes S1, S4, and S7.

For downstream plot generation, including heatmap and re-
gression plots, we normalized and log-transformed the count 
matrix using edgeR's (version 3.38.4) (Robinson et al., 2010) calc-
NormFactors and cpm functions. Next, adjusted count data were 
generated via the function “removeBatchEffect” in the LIMMA 
package (version 3.52.4) (Ritchie et al., 2015). For PLS plotting, 
we used adjusted data and the packages pls (version 2.8–1) as 
well as plotly (4.10.1). Count data for downstream plot genera-
tion, including PLS plot and heatmap, was created via the func-
tion “removeBatchEffect” in the LIMMA package (version 3.52.4) 
and Package plotly (4.10.1) was used for PLS plotting. GSEA of 
“transcription factor targets” gene set from Molecular Signature 
Database (https://www.gsea-msigdb.org) was performed with 
GSEA_4.2.3 software (Subramanian et al., 2005) on C3-TFT (all 
transcription factor targets, 1127 gene sets) feature using dif-
ferentially expressed mRNAs (p < 0.05), whereas LncSEA (http://
bio.liclab.net/LncSE​A/) was run with either the “Transcription 
Factor” or the “RNA Binding Protein” feature using differentially 
expressed linear lncRNAs (p < 0.05) (J. Chen et al.,  2021). The 
data generated by GSEA are summarized in Appendixes S2 and 
S3, and the data from LncSEA are summarized in Appendixes S5 
and S6.

For RT-qPCR analysis, quantitative data were represented as 
the means ± SD of the number of samples indicated in each case; 
statistical significance was established using unpaired Welch's t 
test in GraphPad Prism (9.0). A p-value of <0.05 was considered 
statistically significant; significance was indicated in the figures as 
* p < 0.05, ** p < 0.01, *** p < 0.001. Graphs were generated using 
GraphPad Prism (9.0).
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