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Abstract
Changes in the transcriptomes of human tissues with advancing age are poorly cata-
loged.	Here,	we	sought	to	identify	the	coding	and	long	noncoding	RNAs	present	in	cul-
tured primary skin fibroblasts collected from 82 healthy individuals across a wide age 
spectrum	(22–	89 years	old)	who	participated	in	the	GESTALT	(Genetic	and	Epigenetic	
Signatures	of	Translational	Aging	Laboratory	Testing)	study	of	the	National	Institute	
on	Aging,	NIH.	Using	high-	throughput	RNA	sequencing	and	a	linear	regression	model,	
we	identified	1437	coding	RNAs	(mRNAs)	and	1177	linear	and	circular	long	noncod-
ing	(lncRNAs)	that	were	differentially	abundant	as	a	function	of	age.	Gene	set	enrich-
ment	analysis	(GSEA)	revealed	select	transcription	factors	implicated	in	coordinating	
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1  |  INTRODUC TION

With	advancing	age,	changes	 in	gene	expression	programs	 in	cells	
across the body are reflected in the aging phenotypes of tissues and 
organs.	Therefore,	interest	in	elucidating	the	RNAs	and	proteins	that	
govern cell function as aging progresses has recently intensified, 
with the hope of shedding light on the processes that underlie both 
healthy	aging	and	age-	related	disease.	Aging	of	the	outermost	bar-
rier in our body, the skin, can compromise skin integrity and increase 
the	risk	of	damage	and	infection	of	internal	organs	(Kim	et	al.,	2023; 
Zhang	&	Duan,	2018).	With	aging,	the	fibroblasts	in	the	dermis—	the	
skin	 layer	 derived	 from	 the	 mesoderm—	experience	 reductions	 in	
number	and	 function,	 including	 the	capacity	 to	synthesize	and	re-
model	 the	extracellular	matrix	 (Braverman,	2000;	Makrantonaki	&	
Zouboulis,	2007;	Shuster	et	al.,	1975).

We	 recently	 reported	 the	 proteomes	 of	 skin	 fibroblasts	 de-
rived	 from	 chronologically	 aged	 healthy	 individuals	 (Tsitsipatis	
et al., 2022).	To	gain	a	complementary	view	of	this	process,	we	ex-
panded our studies to the transcriptome, focusing on both coding 
messenger	 RNAs	 (mRNAs)	 and	 long	 noncoding	 RNAs	 (lncRNAs).	
Skin	 punch	 biopsies	 were	 obtained	 from	 the	 inner	 axilla,	 an	 area	
that	is	typically	not	exposed	to	sunlight	(Fisher	et	al.,	2002;	McCabe	
et al., 2020),	 from	 82	 individual	 participants	 spanning	 a	wide	 age	
range	[22–	89 years	old	(y.o.)]	who	were	evaluated	as	healthy	accord-
ing to the stringent clinical and functional criteria of the Genetic 
and	Epigenetic	Signatures	of	Translational	Aging	Laboratory	Testing	
(GESTALT)	 study	 of	 the	 National	 Institute	 on	 Aging	 (NIA),	 NIH	
(Tanaka	et	al.,	2018; Tsitsipatis et al., 2022; Tumasian et al., 2021).	
High-	throughput	 RNA	 sequencing	 (RNA-	seq)	 analysis	 using	 linear	
and	spline	regression	models	uncovered	numerous	mRNAs	as	well	
as	linear	and	circular	lncRNAs	differentially	expressed	as	a	function	
of	participant	age.	Gene	set	enrichment	analysis	(GSEA)	and	LncRNA	
set	enrichment	analysis	(LncSEA)	(J.	Chen	et	al.,	2021;	Subramanian	
et al., 2005)	 identified	several	transcription	factors	(TFs),	 including	
members	of	both	the	forkhead	box	(FOX)	and	homeobox	(HOX)	TF	
families,	 as	well	 as	 splicing	RNA-	binding	 proteins	 (RBPs).	We	pro-
pose	that	these	TFs	and	RBPs	may	foster	changes	in	the	transcrip-
tome	with	age.	Given	the	limited	knowledge	of	lncRNA	functions	in	

human physiology, this study identifies promising molecular factors 
implicated in the aging of skin cells.

2  |  RESULTS

2.1  |  Transcriptomic analysis of primary skin 
fibroblasts from biopsies of GESTALT donors aged 
22– 89 years old

Primary	skin	fibroblasts	were	established	and	expanded	from	biop-
sies	 collected	 from	 82	 healthy	 individuals	 in	 the	GESTALT	 cohort	
(Table 1;	NIA,	NIH).	Total	RNA	was	then	extracted	from	these	skin	fi-
broblasts	and	ribosomal	(r)RNA-	depleted	samples	were	subjected	to	
high-	throughput	paired-	end	RNA	sequencing	(RNA-	seq)	(Figure 1a, 
Sample acquisition)	(Methods);	the	RNA-	seq	data	were	deposited	in	
GSE226189.	Following	alignment	to	the	human	genome,	normaliza-
tion,	 and	 quantification,	 the	 transcriptomic	 profiles	 were	 divided	
into	coding	 [messenger	RNAs	 (mRNAs)]	 and	 linear	or	 circular	 long	
noncoding	 RNAs	 (lncRNAs);	 we	 then	 employed	 linear	 and	 spline	
models	to	identify	differentially	expressed	transcripts,	and	we	used	
the	GSEA	and	LncSEA	methods	(J.	Chen	et	al.,	2021;	Subramanian	
et al., 2005)	to	find	molecules	interacting	with	the	differentially	ex-
pressed	RNAs	(Figure 1a, Bioinformatic Analysis).

Using	a	linear	regression	model,	we	found	that	out	of	the	16,455	
mRNAs	expressed	 in	 this	 cohort,	 1437	 showed	 significant	 change	
with	 age	 (unadjusted	 p-	value	<0.05)	 (Figure 1b	 and	 Appendix	 S1, 
mRNAs— linear model).	 Most	 of	 these	 mRNAs	 increased	 with	 age,	
as	 seen	 for	olfactomedin-	1	 (OLFM1)	mRNA,	which	encodes	a	pro-
tein with enhanced secretion in aged primary skin fibroblasts 
(Waldera	Lupa	et	al.,	2015),	 and	 fibroblast	growth	 factor	9	 (FGF9)	
mRNA,	encoding	a	protein	that	 inhibits	myogenesis	as	well	as	my-
ofibroblast	 differentiation	 in	 idiopathic	 pulmonary	 fibrosis	 (Huang	
et al., 2019;	 Joannes	 et	 al.,	 2016).	Among	 the	 handful	 of	 reduced	
mRNAs,	RING	 finger	 transmembrane	domain-	containing	protein	2	
(RNFT2)	mRNA,	encoding	a	protein	that	represses	interleukin	3	(IL3)	
signaling	(Tong	et	al.,	2020),	and	WNT11	mRNA,	encoding	a	protein	
that	is	less	abundant	in	old	mouse	liver	(Hofmann	et	al.,	2014),	were	

the	transcription	of	subsets	of	differentially	abundant	mRNAs,	while	long	noncoding	
RNA	enrichment	analysis	(LncSEA)	identified	RNA-	binding	proteins	predicted	to	par-
ticipate	in	the	age-	associated	lncRNA	profiles.	In	summary,	we	report	age-	associated	
changes in the global transcriptome, coding and noncoding, from healthy human skin 
fibroblasts and propose that these transcripts may serve as biomarkers and therapeu-
tic targets in aging skin.

K E Y W O R D S
aging,	circular	RNAs,	human	dermal	fibroblasts,	long	noncoding	RNAs,	messenger	RNAs,	
transcriptome
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previously	associated	with	aging	(Figure 1c).	Notably,	a	subset	of	the	
top	 mRNAs	 that	 were	 differentially	 abundant	 with	 age,	 including	
those	 that	 encode	OLFM1,	FGF9,	 annexin	 a2	 receptor	 (ANXA2R),	
and	proprotein	convertase	subtilisin/kexin	type	2	(PCSK2),	followed	
the	 same	 trajectory	 in	 human	 lung	 fibroblasts	WI-	38	 and	 IMR-	90	
rendered	senescent	by	replicative	exhaustion	(Casella	et	al.,	2019).

By	 employing	 the	 spline	 interpolation	 model,	 we	 identified	
1436	mRNAs	differentially	expressed	with	age	using	an	unadjusted	
p-	value	<0.05	 (Appendix	S1, mRNAs— spline model).	While	most	of	
these were also identified by the linear regression model, a hand-
ful	of	these	mRNAs	that	did	not	change	linearly	with	age	were	de-
tected	only	when	using	the	spline	model.	They	included	mRNAs	for	
which	 the	 abundance	 slope	 increased	 after	 50 years	 of	 age	 [e.g.,	
those	encoding	matrix	AAA	peptidase	interacting	protein	1	(MAIP1,	
also	known	as	C2ORF47),	 lymphatic	vessel	endothelial	hyaluronan	
receptor	 1	 (LYVE1),	 and	 RNA-	binding	 motif	 protein	 24	 (RBM24)	
(Figure 1d)]	or	decreased	after	50 years	of	age	[e.g.,	collagen	type	V	
alpha	3	chain	(COL5A3),	axin	2	(AXIN2),	and	dihydroorotate	dehydro-
genase	(DHODH)	mRNAs	(Figure 1e)].

Given that hormones such as estradiol and testosterone can 
modulate the production of major components in skin, such as hy-
droxyproline	 (Brincat	 et	 al.,	 1983),	 we	 sought	 to	 identify	 how	 the	
transcriptome may change separately in females and males as a func-
tion	of	healthy	aging.	Using	the	linear	regression	model,	we	identified	
1425	 and	 476	 differentially	 abundant	 coding	 transcripts	 (mRNAs)	
using an unadjusted p-	value	<0.05	with	age	 in	 females	 (Figure S1a 
and	Appendix	S1, coding— linear— females)	and	males	(Figure S1b and 
Appendix	S1, coding— linear— males),	respectively.	Interestingly,	using	
the	spline	model	 (unadjusted	p-	value	<0.05),	 the	number	of	differ-
entially	abundant	mRNAs	did	not	change	significantly	in	males	(313	
mRNAs;	 Figure S1d	 and	 Appendix	 S1, coding— spline— males),	 but	
it	 increased	 significantly	 in	 females	 (4133	mRNAs;	 Figure S1c and 
Appendix	S1, coding— spline— females).	Notably,	NOG	mRNA,	encoding	
the	secreted	protein	noggin	 (NOG),	which	antagonizes	members	of	
the	transforming	growth	factor-	β	(TGF-	β)	family	(Groppe	et	al.,	2002; 

Massague,	2012),	was	 the	 top	differentially	abundant	mRNA	 in	 fe-
males when using either the linear or the spline regression model.

2.2  |  Subsets of differentially abundant 
mRNAs in skin fibroblasts from older donors are 
putative transcriptional targets of FOX and HOX 
transcription factors

To begin to investigate if the changes in the transcriptome with aging 
were	reflected	in	changes	in	the	proteome	(adjusted	for	all	covari-
ates),	 we	 compared	 the	 differentially	 abundant	 mRNAs	 identified	
using	 the	 linear	 regression	model	 (unadjusted	p-	value	<0.05)	with	
the	 differentially	 abundant	 proteins	 (unadjusted	 p-	value	 <0.05)	
we previously reported in the same skin fibroblasts from this co-
hort	 (Tsitsipatis	et	al.,	2022).	At	the	overlap	of	these	two	datasets	
(Appendix	 S2),	we	 found	 that	 the	differentially	 expressed	mRNAs	
(beta	 coefficient)	 modestly	 correlated	 with	 the	 differentially	 ex-
pressed	proteins	(age	beta)	as	a	function	of	age	(Figure 2a;	Pearson	
correlation coefficient, r = 0.429).	 We	 expanded	 this	 analysis	 by	
identifying	 differentially	 expressed	 mRNAs	 (unadjusted	 p-	value	
<0.05)	for	which	the	levels	of	the	encoded	proteins	were	not	signifi-
cantly	changed	(unadjusted	p-	value	>0.05);	454	such	mRNAs	were	
increased,	 whereas	 117	 were	 decreased	 (Figure 2b).	 Conversely,	
we	 identified	differentially	expressed	proteins	 (unadjusted	p-	value	
<0.05)	 for	which	 the	 levels	of	 the	encoding	mRNAs	were	not	 sig-
nificantly	 changed	 (unadjusted	p-	value	>0.05);	we	 found	830	 and	
1029 such proteins that either increased or decreased, respectively 
(Figure 2c).

We	 then	 asked	 whether	 the	 transcriptomic	 changes	 may	 be	
jointly	 regulated	by	shared	 transcription	 factors	 (TFs)	 in	 this	para-
digm.	We	used	 the	GSEA	TF	 target	 identification	 feature	 [C3-	TFT	
(all	 transcription	 factor	 targets,	 1,127	 gene	 sets)]	 on	 the	differen-
tially	abundant	mRNAs	 (Figure 1b)	as	a	gene	set	 input,	 in	order	to	
identify	 those	 TFs	 [normalized	 enrichment	 score	 (NES)	 >1.6	 and	
p-	value	 <0.05]	 that	 might	 potentially	 coordinate	 their	 transcrip-
tion. Interestingly, using these criteria, most of these putative reg-
ulatory	 TFs	 were	 members	 of	 either	 the	 forkhead	 box	 (FOX)	 or	
the	 homeobox	 (HOX)	 families	 (Appendix	 S3, enriched TFs— linear 
model).	The	proteins	 in	both	the	FOX	and	HOX	families	are	evolu-
tionarily conserved and govern many processes during embryonic 
development	and	 in	adult	 life	 (Duverger	&	Morasso,	2008; Golson 
&	 Kaestner,	 2016).	 Notably,	 we	 identified	 TFs	 previously	 associ-
ated	with	 longevity,	 such	 as	heat	 shock	 factor	1	 (HSF1),	 forkhead	
box	A	[FOXA;	also	known	as	hepatocyte	nuclear	factor	3	(HNF3)],	
and	paired	box	4	 (PAX4),	 as	 significantly	 enriched	with	 age	 in	our	
healthy	 cohort	 (Figure 2d),	 suggesting	 that	 they	 might	 putatively	
regulate	 transcription	 of	 several	 of	 the	 differentially	 expressed	
mRNAs.	HSF1,	through	its	influence	on	proteostasis,	and	the	ortho-
log	of	FOXA	in	Caenorhabditis elegans,	PHA-	4,	were	shown	to	modu-
late C. elegans	life	span	(Hsu	et	al.,	2003;	Morley	&	Morimoto,	2004; 
Panowski	et	al.,	2007),	whereas	PAX4	was	associated	with	longevity	

TA B L E  1 Demographic	data	of	the	individuals	who	participated	
in the study.

Female Male

Number 35 47

Average	age	(years)a 54 ± 17 52 ± 20

Age	range	(years) 25–	80 22–	89

Race 32 Caucasian 36	Caucasian

1	African	American 10	African	
American

2	Asian 1	Asian

Note: Demographic data for the very healthy individuals in the 
GESTALT	study	[inclusion	criteria	described	in	(Tsitsipatis	et	al.,	2022)]	
who	provided	skin	biopsies	for	this	study.	After	expansion,	the	skin	
fibroblasts	derived	from	these	healthy	individuals	were	used	for	RNA-	
seq	analysis	and	validation.
aAverage	age	(±	SD)	at	time	of	skin	biopsy	collection.



4 of 17  |     TSITSIPATIS et al.

(b)

Skin biopsy

Fibroblasts

RNA 
extraction

Sample acquisition

RNA 
sequencing

Bioinformatic analysis

Raw FastQ files

Alignment to hg19
ensemble v82

RNA quantification and
normalization

mRNAs

2

Normalized RNA abundance

0 1- 2 - 1

OLFM1
ERG
PTPRB
FGF9
KCNJ8
DNASE1L3
PCOLCE2
CDH10
CHN2
C10orf11

PCSK2
BEX4
CNTN4
NEFH
ADCY1
RNFT2
C3orf70
ANXA2R
WNT11
FAM213A

22 23 25 25 26 27 27 28 28 28 29 30 31 31 31 31 31 32 32 35 35 35 37 38 38 38 39 42 42 42 45 45 47 47 48 48 49 51 52 52 52 52 53 54 55 56 57 58 60 61 61 62 63 63 65 66 67 67 67 69 70 70 71 72 72 72 72 72 72 73 76 77 78 80 80 81 81 81 83 85 86 89

Age (years)

(c)

9020 30 40 50 60 70 80
1

5

3

MAIP1

4

9020 30 40 50 60 70 80

-6

0

-4

LYVE1

-2

Age (years)

(d)

9020 30 40 50 60 70 80

2

4

RBM24

6

9020 30 40 50 60 70 80
-8

4

0

ERG

)2goL(
ecnadnuba

A
N

R
m

-4

9020 30 40 50 60 70 80
-8

4
CHN2

0

-4

(e)

Age (years)
9020 30 40 50 60 70 80

1

5

2

3

AXIN2

4

9020 30 40 50 60 70 80

2

1

DHODH

-1

0

9020 30 40 50 60 70 80
-4

4

0

2

NEFH

)2goL(
ecnadnuba

A
N

R
m

-2

9020 30 40 50 60 70 80
-4

4

2

ADCY1

-2

0

9020 30 40 50 60 70 80
-2

6

0

4

COL5A3

-0.10 0.10-0.05 0.00
Beta coefficient

0

7

1

2

-L
og

10
(p

-v
al

ue
)

3

PCSK2

OLFM1

BEX4

DNASE1L3
CNTN4

PTPRB

CDH10

SOCS2

FGF9

0.05

4

6

HTR2A

NEFH

RNFT2
ADCY1

KCNJ8

C10orf11

BAI3

CHN2

ERG

PCOLCE2

GMNC

5

COBLL1

SST
WNT11

C3orf70
ANXA2R

COL23A1

Linear 
lncRNAs

Circular 
lncRNAs

Linear 
model

Spline
model

Linear 
model

Linear 
model

Spline 
model

GSEA LncSEA

(a)

2

2



    |  5 of 17TSITSIPATIS et al.

in	a	Korean	cohort	(Park	et	al.,	2009).	Notably,	interferon	regulatory	
factor	1	(IRF1),	a	TF	which	governs	innate	immune	responses	by	pre-
dominantly	promoting	 the	 transcription	of	 type-	I	 interferon	genes	
and	is	implicated	in	cellular	senescence	(Feng	et	al.,	2021;	Frisch	&	
MacFawn,	2020),	 was	 also	 identified	 as	 a	 putative	 transcriptional	
regulator	of	subsets	of	mRNAs	enriched	with	age	(Figure S2a).

In addition to the aforementioned TFs previously associated 
with	longevity,	we	also	found	several	FOX	members	[FOXJ1,	FOXJ2,	
and	FOXD3	(Figure 2e)],	as	well	as	HOX	members	[HOXA4,	TGFB-	
induced	factor	homeobox	 (TGIF),	pre-	B-	cell	 leukemia	homeobox	1	
(PBX1),	HNF6	(also	known	as	OC-	1),	HNF1A,	MSX-	1,	and	pituitary-	
specific	positive	transcription	factor	1	(PIT1;	also	known	as	POU1F1)	
(Figure 2f and Figure S2b)]	as	predicted	transcriptional	regulators	of	
several	mRNAs	changing	with	age.	Whether	these	TFs	coordinately	
control	 aging-	associated	 gene	 expression	programs	 is	 unknown	at	
present.

Nonetheless,	while	these	TFs	belong	to	two	major	families,	FOX	
(Figure 2g)	and	HOX	(Figure 2h),	each	factor	has	unique	transcrip-
tional	targets	based	on	the	GSEA	method	(Appendix	S4),	supporting	
the	view	that	a	broad	subset	of	differentially	expressed	transcripts	
is	required	for	healthy	aging.	When	employing	the	exclusive	subset	
of	 differentially	 expressed	 transcripts	 (unadjusted	 p-	value	 <0.05)	
identified by the spline model, similar TFs were preferentially en-
riched	based	on	the	GSEA	method	(Appendix	S3, enriched TFs— spline 
model).	Notably,	 lymphoid	enhancer-	binding	factor	1	 (LEF1),	which	
shares	homology	with	 the	high	mobility	group	protein-	1	 (HMGB1)	
(Giese	et	al.,	1991),	was	among	the	most	preferentially	enriched	TFs	
in	our	analysis	(Figure S2c).

2.3  |  Linear lncRNAs following age- dependent 
expression patterns are predicted targets of 
splicing RBPs

Given	the	rising	interest	in	lncRNAs	associated	with	aging	and	age-	
related	diseases	(Grammatikakis	et	al.,	2014;	J.	Kim	et	al.,	2016),	we	
first	identified	linear	lncRNAs	showing	strong	correlations	with	age	
in	our	study.	Using	a	cutoff	length	of	>200 nucleotides, we identified 
a	total	of	11,570	lncRNAs	in	this	cohort;	among	them,	800	were	dif-
ferentially abundant with advancing age using the linear regression 
model and an unadjusted p-	value	<0.05	(Figure 3a	and	Appendix	S5, 

linear lncRNAs— linear model).	The	top	differentially	expressed	linear	
lncRNAs	 (linear	model)	 as	 a	 function	 of	 age	 are	 poorly	 character-
ized	(Figure 3b).	Using	the	same	length	cutoff	criterion	in	the	spline	
regression	model,	728	lncRNAs	were	differentially	abundant	(unad-
justed p-	value	<0.05)	with	age	(Appendix	S5, linear lncRNAs—spline 
model).	Here	too,	most	 lncRNAs	were	differentially	abundant	with	
age whether we used linear or spline regression analysis; for a few of 
them,	the	slope	increased	(Figure 3c)	or	decreased	(Figure 3d)	after	
50 years	of	age	and	thus	were	detected	only	using	spline	regression	
analysis.

As	studied	for	mRNAs	 (Figure S1),	we	sought	to	 identify	 if	 the	
abundance	of	 linear	 lncRNAs	 changed	 in	 female	 and	male	 partici-
pants	with	advancing	age.	By	linear	regression	analysis	(unadjusted	
p-	value	<0.05),	we	identified	730	and	475	differentially	expressed	
linear	 lncRNA	 with	 age	 in	 females	 (Figure S3a	 and	 Appendix	 S5, 
lncRNAs—linear—females),	 and	males	 (Figure S3b	 and	Appendix	 S5, 
lncRNAs—linear—males),	respectively.	As	observed	for	mRNAs,	with	
the	 spline	 model	 the	 number	 of	 differentially	 expressed	 linear	
lncRNAs	 (unadjusted	 p-	value	 <0.05)	 increased	 markedly	 to	 1723	
in	 females	 (Figure S3c	and	Appendix	S5, lncRNAs—spline—females),	
whereas	 only	 279	 linear	 lncRNAs	were	 differentially	 expressed	 in	
males	(Figure S3d	and	Appendix	S5, lncRNAs—spline—males).

To	better	understand	why	these	 linear	 lncRNAs	were	differen-
tially	expressed	as	a	function	of	age	(adjusted	for	all	covariates,	unad-
justed p-	value	<0.05),	we	sought	to	identify	preferentially	enriched	
TFs interacting predominantly with the promoter region of these 
linear	 lncRNAs	using	the	LncSEA	method	 (transcription	factor	fea-
ture).	Utilizing	 the	differentially	 abundant	 linear	 lncRNAs	detected	
using	the	linear	regression	model	(Appendix	S5, linear lncRNAs—linear 
model),	we	 identified	 a	 number	of	 zinc-	binding	TFs,	 including	 snail	
family	 transcriptional	 repressor	2	 (SNAI2),	GATA-	binding	protein	3	
(GATA3),	 zinc	 finger	 protein	 362	 (ZNF362),	 CCCTC-	binding	 factor	
(CTCF),	 and	 p53	 (Cassandri	 et	 al.,	2017; Nicolai et al., 2015),	 pre-
dicted	to	bind	to	the	promoter	regions	of	 these	 lncRNAs	 (p < 0.05;	
Appendix	 S6, enriched TFs— linear model).	 Surprisingly,	members	 of	
the	FOX	family	(FOXA1	and	FOXA2)	were	once	again	preferentially	
enriched in our analysis, thus highlighting the potential importance of 
FOX	TFs	in	healthy	aging	(p < 0.05;	Appendix	S6, enriched TFs— linear 
model).	Notably,	 these	TFs	shared	 lncRNA	targets,	 thus	potentially	
implying	that	these	linear	lncRNAs	are	transcriptionally	regulated	by	
multiple	TFs	as	a	function	of	age	(Figure 4a).	Strikingly,	although	most	

F I G U R E  1 Differentially	expressed	coding	transcripts	(mRNAs)	with	advanced	aging.	(a)	Workflow	of	sample	acquisition	and	preparation	
(blue)	and	bioinformatic	analysis	(green)	followed	in	this	study.	(b)	Volcano	plot	showing	beta	coefficients	of	mRNAs	expressed	with	age	
(per	year).	Transcripts	showing	significantly	increased	(red	dots)	or	decreased	(blue	dots)	levels	with	age	(p < 0.05,	adjusted	for	covariates)	
are	indicated.	Gray	dots	show	transcripts	that	did	not	change	significantly	with	age	(p > 0.05).	(c)	Heatmap	of	the	top	10	significantly	
elevated	mRNAs	(top)	and	top	10	significantly	reduced	mRNAs	(bottom)	with	age	based	on	a	linear	regression	model	(unadjusted	p-	values).	
(d,e)	Graphs	of	mRNAs	showing	differentially	increased	(d)	or	decreased	(e)	slopes	after	50 years	of	age	based	on	a	spline	regression	model	
(unadjusted	p-	values).	In	(b),	the	R2 values for the reported transcripts increasing with advancing age are as follows: R2 = 0.25	for	OLFM1 
mRNA;	R2 = 0.14	for	ERG	mRNA;	R2 = 0.21	for	PTPRB	mRNA;	R2 = 0.14	for	FGF9	mRNA;	R2 = 0.16	for	KCNJ8	mRNA;	R2 = 0.081	for	DNASE1L3 
mRNA;	R2 = 0.16	for	PCOLE2	mRNA;	R2 = 0.16	for	CDH10	mRNA;	R2 = 0.13	for	CHN2	mRNA;	and	R2 = 0.14	for	C10orf11	mRNA.	Similarly,	for	
the reported transcripts decreasing with advancing age, the R2 values are as follows: R2 = 0.13	for	PCSK2	mRNA;	R2 = 0.18	for	BEX4	mRNA;	
R2 = 0.11	for	CNTN4	mRNA;	R2 = 0.15	for	NEFH	mRNA;	R2 = 0.11	for	ADCY1	mRNA;	R2 = 0.15	for	RNFT2	mRNA;	R2 = 0.18	for	C3orf70	mRNA;	
R2 = 0.18	for	ANAX2R	mRNA;	R2 = 0.081	for	WNT11	mRNA;	and	R2 = 0.13	for	FAM213A	mRNA.
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TFs were shared regardless of the regression model used to detect 
differentially	abundant	linear	lncRNAs,	the	TF	MYC	was	more	deeply	
enriched	when	using	the	subset	of	 linear	 lncRNAs	detected	by	the	
spline	regression	model	(Appendix	S6, enriched TFs— spline model).

Given that there is virtually no information on the roles of most 
linear	 lncRNAs	 differentially	 expressed	 in	 our	 healthy	 cohort	 and	
that	RBP-	lncRNA	interactions	are	closely	linked	to	lncRNA	function	
(Herman	 et	 al.,	 2022),	 we	 sought	 to	 identify	 enriched	 interacting	
RBPs	 by	 using	 the	RBP	 feature	 in	 the	 LncSEA	platform.	 Focusing	
on	the	linear	lncRNAs	differentially	abundant	with	age	by	linear	re-
gression	analysis	(unadjusted	p-	value	<0.05),	we	found	several	pro-
teins	 implicated	 in	 RNA	 splicing,	 including	 poly(C)-	binding	 protein	
(PCBP2),	 heterogeneous	 nuclear	 ribonucleoprotein	 C	 (HNRNPC),	
and	RNA-	binding	motif	protein	15	(RBM15)	(Georgiadou	et	al.,	2021; 
Zarnack	et	al.,	2013;	L.	Zhang	et	al.,	2015),	as	being	preferentially	
enriched	by	the	LncSEA	method	(p < 0.05)	with	age	(Figure 4b and 
Appendix	 S7, enriched RBPs— linear model).	 Notably,	 after	 applying	
the	 differentially	 expressed	 transcripts	 detected	 by	 the	 spline	 re-
gression	model	to	the	same	analysis,	we	identified	other	RBPs	that	
also	affected	RNA	splicing,	including	FAS-	activated	serine/threonine	
kinase	D2	(FASTKD2),	which	governs	mitochondrial	RNA	processing	
and	 translation	 (Popow	et	al.,	2015)	 (Figure S3e	and	Appendix	S7, 
enriched RBPs— spline model).

The	 top	 elevated	 and	 reduced	 lncRNAs	 (from	 Appendix	 S5)	
known	 to	 interact	 with	 the	 RBPs	 in	 Figure 4b	 and	 Appendix	 S7 
based	 on	 crosslinking	 analysis	 available	 through	 the	 LncSEA	 plat-
form	are	indicated	(Figure 4c,d).	RT-	qPCR	analysis	was	used	to	vali-
date	the	levels	of	five	annotated	lncRNAs	that	increased	(Figure 4e; 
SOCS2- AS1, LINC00595, ZFHX4- AS1, A2M- AS1, and INHBA- AS1)	 or	
decreased	 (Figure 4f; MIAT, THBS4- AS1, MIR600HG, KDM4A- AS1, 
and LINC00926)	in	old	(>70 years	old,	y.o.)	relative	to	young	individ-
uals	(<35	y.o.).

2.4  |  Differentially expressed circRNAs as a 
function of donor age in human skin fibroblasts

To	complete	the	characterization	of	differentially	expressed	RNAs,	
we	assessed	the	differential	expression	of	circular	lncRNAs	(circR-
NAs)	with	age.	Excluding	small	 circRNAs	 (<200	nts)	 from	 further	
analysis,	we	detected	46,120	circRNAs	with	at	 least	one	junction	
count	 in	 any	 donor.	 After	 including	 the	 additional	 requirement	

that at least seven donors within any age group should have at 
least	 one	 junction	 count	 for	 each	 specific	 circRNA,	 we	 focused	
on	 2345	 circRNAs	 (Appendix	 S8).	 In	 this	 circRNA	 pool,	 super-
vised	 partial	 least	 square	 (PLS)	 analysis	 revealed	 distinct	 separa-
tion	 across	 the	 age	 groups	 based	 on	 circRNA	 signatures	 in	 our	
cohort	 (Figure 5a).	 Linear	 regression	 analysis	of	 this	 set	 revealed	
47	elevated	and	37	decreased	circRNAs	(unadjusted	p- value <0.05)	
across	aging	 (Figure 5b);	notably,	 two	of	 the	 increased	circRNAs,	
chr3:128516879_128526460 and chr7:91621471_91632549, were 
considered novel as their junctions have not been reported in the 
major	databases.	After	considering	 the	 relative	abundance	 (base-
Mean	>1.5),	 significance	 (p < 0.01),	 and	beta	 coefficient	with	 age	
(|beta	 coefficient|	>0.01),	we	 then	 focused	 on	 validating	 the	 top	
five	circRNAs	in	each	group,	as	well	as	the	cognate	linear	mRNAs	
sharing	the	same	precursor	transcripts,	in	young	(<35	y.o.)	and	old	
(>70	 y.o.)	 donors	 using	 RT-	qPCR	 analysis;	 the	 nomenclatures	 of	
these	circRNAs	(Figure 5c)	are	based	on	CircInteractome	(Dudekula	
et al., 2016)	and	a	new	guide	to	naming	eukaryotic	circRNAs	(L.	L.	
Chen et al., 2023).	We	used	the	nomenclature	guide	and	predicted	
circRNA	body	composition	based	on	short-	read	sequencing.

Among	those	circRNAs	elevated	in	older	individuals,	we	success-
fully	validated	 three	 transcripts	with	age-	dependent	 increased	ex-
pression, hsa_circ_0055019, hsa_circ_0067682, and hsa_circ_0128535 
(Figure 5d),	 whereas	 hsa_circ_0078226, hsa_circ_0001610, hsa_
circ_0000591, and hsa_circ_0071106 were significantly lower in 
older	 donors	 (Figure 5e);	 interestingly,	 none	 of	 the	 tested	 linear	
cognate	mRNAs	changed	significantly	with	age.	Given	 the	modest	
changes	observed	in	the	validated	circRNAs,	analyzing	pools	of	cir-
cRNAs,	rather	than	individual	circRNAs,	may	be	more	informative	in	
this	paradigm.	When	assessing	the	sex	differences	in	the	expression	
of	circRNAs,	we	only	found	29	increased	and	43	decreased	circRNAs	
in	females	(unadjusted	p-	value	<0.05; Figure S4a	and	Appendix	S8, 
circular lncRNAs—females),	and	only	41	increased	and	14	decreased	
in	males	 (unadjusted	p-	value	<0.05; Figure S4b	and	Appendix	 S8, 
circular lncRNAs—males)	as	a	function	of	age.

3  |  DISCUSSION

There has been a recent surge of interest in identifying the mo-
lecular	gene	expression	programs	(RNAs	and	proteins)	that	govern	
aging physiology and disease. The analysis of human tissues and 

F I G U R E  2 Transcription	factors	(TFs)	putatively	driving	the	expression	of	differentially	abundant	mRNAs	with	age	based	on	a	linear	
regression	model.	(a)	Correlations	between	differentially	abundant	mRNAs	(unadjusted	p-	value <0.05)	and	differentially	abundant	proteins	
(unadjusted	p-	value <0.05; Tsitsipatis et al., 2022)	from	the	same	cohort	as	a	function	of	age.	Proteins	and	mRNAs	changing	in	the	same	
direction	are	indicated	with	red	dots	(both	increased)	or	blue	dots	(both	decreased),	while	proteins	and	mRNAs	changing	in	opposite	
directions	are	indicated	in	purple	dots	(Pearson	correlation	coefficient,	r = 0.429).	Gray	dots	represent	instances	in	which	either	the	
mRNA	levels	or	the	protein	levels	did	not	change	significantly	(unadjusted	p-	value >0.05).	(b)	Overlap	of	differentially	abundant	mRNAs	
(unadjusted	p-	value <0.05)	for	which	the	levels	of	encoded	proteins	were	not	significantly	changed	(unadjusted	p-	value >0.05).	(c)	Overlap	
of	differentially	abundant	proteins	(unadjusted	p-	value <0.05)	encoded	by	mRNAs	that	did	not	show	significant	changes	in	abundance	
(unadjusted	p-	value >0.05).	(d)	TFs	HSF1,	FOXA,	and	PAX4	(above	the	graphs),	previously	associated	with	longevity,	capable	of	transcribing	
mRNAs	that	were	enriched	with	age	by	the	GSEA	method.	(e,f)	TFs	in	the	FOX	(e)	or	HOX	(f)	families	whose	transcribed	mRNAs	were	
preferentially	elevated	in	older	individuals	by	the	GSEA	method.	(g,h)	Network	of	differentially	expressed	mRNAs,	predicted	to	be	
transcriptionally	induced	by	the	FOX	(e)	or	HOX	(f)	transcription	factors.
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primary cells from healthy individuals can be particularly informa-
tive about the mechanisms that modulate healthy aging, with the 
ultimate	goal	of	improving	mean	and	maximum	life	span	and	health	
span.	We	recently	employed	an	ex	vivo	model	of	primary	skin	fibro-
blasts to identify altered pathways across the life span in a healthy 
human	cohort	 (GESTALT,	NIA,	NIH)	 (Tsitsipatis	et	al.,	2022).	Here,	
we	sought	to	expand	our	understanding	of	these	cells	by	analyzing	
their transcriptomes.

Using	 high-	throughput	 RNA-	seq	 analysis,	 we	 identified	 the	
lncRNAs	 (linear	 and	 circular)	 and	 mRNAs	 that	 were	 differentially	
abundant as a function of age in this healthy cohort employing both 
linear	 and	 spline	 regression	 models.	 Although	 most	 differentially	
abundant	mRNAs	 and	 lncRNAs	were	 detected	 using	 both	models	
(Appendixes	S1,	S5,	and	S8),	a	subset	of	these	RNAs	was	only	found	
using the spline model. This trend was even more evident when we 
analyzed	 separately	 female	 and	male	 participants	 (Figures S1	 and	
S3a–	d).	As	shown,	in	females	substantially	more	mRNAs	and	linear	
lncRNAs	were	identified	by	the	spline	model	than	the	linear	model	
(Figures S1c	and	S3c),	whereas	in	males	the	number	of	mRNAs	and	
linear	lncRNAs	was	comparable,	whether	we	used	the	linear	or	spline	
model	(Figures S1d	and	S3d).	This	observation	is	in	line	with	reports	
suggesting	 possible	 nonlinear	 changes	 in	 skin	 thickness	 (Shuster	
et al., 1975),	the	secretome	(Lehallier	et	al.,	2019),	and	DNA	meth-
ylation	(Vershinina	et	al.,	2021)	with	age,	further	suggesting	that	in-
tegrating both linear and spline models is important when studying 
age-	related	changes.	Notably,	several	reports	suggest	that	changes	
in skin are associated with hormonal imbalances fostered by meno-
pause	(Rahrovan	et	al.,	2018;	Windhager	et	al.,	2019),	which	in	turn	
can	lead	to	nonlinear	changes	(Brincat	et	al.,	1983).	We	thus	sought	
to identify how the transcriptome may change separately in females 
and males as a function of healthy aging.

A	 comparison	 between	 changes	 in	 the	 proteome	 (Tsitsipatis	
et al., 2022)	and	the	coding	transcriptome	(mRNAs)	of	the	same	co-
hort	with	age	revealed	modest	correlations	between	altered	mRNA	
and	protein	 levels	as	a	function	of	age	 (Figure 2a).	 It	 is	worth	not-
ing that many proteins were differentially abundant with age with-
out	 corresponding	 changes	 in	 the	 levels	 of	 the	 encoding	 mRNAs	
(Figure 2c)	and,	conversely,	many	mRNAs	showed	altered	abundance	
without	 corresponding	 changes	 in	 protein	 levels	 (Figure 2b).	 Such	
discrepancies can be attributed to highly regulated processes like 
alternative	splicing	to	produce	mRNA	variants,	as	well	as	to	changes	
in translation efficiency, protein processing, protein stability, protein 

secretion, etc., which warrant consideration when assessing changes 
in	 the	 levels	of	proteins	and	corresponding	mRNAs	 (Koussounadis	
et al., 2015;	 Mertins	 et	 al.,	 2016).	 These	 discrepancies	 also	 un-
derscore	 the	 caution	 that	must	 be	 exercised	when	 assuming	 that	
changes	in	mRNA	levels	are	a	surrogate	for	changes	in	the	levels	of	
the encoded proteins or the functional pathways governed by such 
proteins.

Strikingly,	many	of	the	most	prominent	mRNAs	were	predicted	
to	be	transcriptionally	regulated	by	TF	members	of	the	FOX	and	
HOX	families	 (Figure 2d–	h	and	Appendix	S2).	Future	studies	are	
required	 to	 evaluate	whether	 these	 TFs	 play	 prominent	 roles	 in	
skin aging, although there is information to suggest that they 
may	be	broadly	 involved	 in	aging.	For	example,	FOXJ1	has	a	key	
role	in	regulating	the	expression	of	genes	important	for	ciliogen-
esis	 in	 primary	 human	 and	mouse	 airway	 epithelial	 cells	 (Didon	
et al., 2013;	You	et	al.,	2004).	Growing	evidence	suggests	a	prom-
inent role for primary cilia as receiving or releasing organelles for 
extracellular	 vesicles	 (EVs)	 and	 as	 sensors	 of	 transduced	 signals	
(Hosio	et	al.,	2020;	Ikegami	&	Ijaz,	2021).	With	emerging	interest	in	
the	role	of	EVs	in	aging	and	age-	related	diseases	(Takasugi,	2018; 
Yin	et	al.,	2021),	whether	FOXJ1	elicits	a	similar	role	in	regulating	
ciliogenesis in skin fibroblasts and in turn affects the uptake or 
release	of	EVs	with	age,	warrants	 further	 investigation.	Another	
interesting TF that was among the most preferentially enriched 
TFs	 in	our	analysis,	 LEF1,	 shares	homology	with	HMGB1,	a	pro-
tein	that	translocates	from	the	nucleus	to	the	extracellular	space,	
has	a	role	in	cellular	senescence,	and	fine-	tunes	the	skin	macroen-
vironment	to	enhance	wound	healing	(Davalos	et	al.,	2013;	Phan	
et al., 2020;	Sofiadis	et	al.,	2021).	Whether	LEF1	may	have	a	role	
in senescence or wound healing remains to be studied. Notably, 
the	levels	of	these	TFs	and	RBPs	did	not	significantly	change	with	
age in our previous proteomic analysis, likely indicating that mech-
anisms	affecting	 their	 activity	 (not	necessarily	 their	 levels),	 such	
as posttranslational modifications or shuttling across the nuclear 
envelope, may be more prominent in these cells.

We	 identified	 a	 number	 of	 differentially	 expressed	 linear	
lncRNAs	 (Figure 3)	 that	were	not	previously	 identified	 as	being	
associated	with	 advanced	 aging;	 among	 the	 validated	 lncRNAs,	
SOCS2- AS1	 was	 proposed	 to	 sponge	 microRNAs	 in	 tumor	 pro-
gression	models	(Jian	et	al.,	2021;	Zheng	et	al.,	2020),	and	MIAT 
controls	the	development	of	the	atherosclerotic	lesion	and	plaque	
destabilization	in	atherosclerosis	 (Fasolo	et	al.,	2021).	Strikingly,	

F I G U R E  3 Differentially	expressed	linear	lncRNAs	as	a	function	of	age.	(a)	Volcano	plot	showing	beta	coefficients	of	linear	lncRNAs	
expressed	with	age	(per	year).	Transcripts	showing	significantly	increased	(red	dots)	or	decreased	(blue	dots)	levels	with	age	(p < 0.05,	
adjusted	for	covariates)	are	indicated.	Gray	dots	show	transcripts	that	did	not	change	significantly	with	age	(p > 0.05).	(b)	Heatmap	of	the	
top	10	significantly	elevated	linear	lncRNAs	(top)	and	top	10	significantly	reduced	lncRNAs	(bottom)	with	age	based	on	a	linear	regression	
model	(unadjusted	p-	values).	(c,d)	Regression	graphs	of	linear	lncRNAs	differentially	increased	(c)	or	decreased	(d)	with	advanced	aging	
based	on	a	spline	regression	model	(unadjusted	p-	values).	In	(b),	the	R2	values	for	the	reported	lncRNAs	increasing	with	advancing	age	
are as follows: R2 = 0.17	for	RP11- 588H23.3; R2 = 0.095 for ABCB10P1; R2 = 0.11	for	ABCB10P3; R2 = 0.12	for	SOCS2- AS1; R2 = 0.18	for	
RP11-13 N12.1; R2 = 0.17	for	XX- CR54.3; R2 = 0.16	for	RP11- 578F21.12; R2 = 0.1	for	ABCB10P4; R2 = 0.15	for	LINC00595; and R2 = 0.17	for	
LINC01018.	Similarly,	for	the	reported	transcripts	decreasing	with	advancing	age,	the	R2 values are as follows: R2 = 0.049	for	HCG4P7; 
R2 = 0.22	for	AF131215.2; R2 = 0.19	for	CACNA2D3- AS1; R2 = 0.02	for	HLA- W; R2 = 0.12	for	LRRC37A4P; R2 = 0.11	for	RP11- 248C1.3; R2 = 0.14	
for AC017083.2; R2 = 0.12	for	KIF28P; R2 = 0.085	for	RP11-21 L19.1; and R2 = 0.21	for	AF131215.9.
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the levels of SOCS2 and INHBA	 mRNAs,	 transcribed	 from	 loci	
near	those	of	the	respective	lncRNAs,	were	significantly	elevated	
with age, whereas the levels of THBS4	 mRNA	 were	 reduced,	

potentially suggesting that SOCS2- AS, INHBA- AS, and THBS4- AS 
may act as cis-	regulatory	 elements.	 FOXA1	 and	 FOXA2,	 two	
members	of	the	FOX	family,	were	predicted	by	LncSEA	to	interact	

LINC00595

RNA-binding
proteins

PCBP2
HLTF

HNRNPC
DROSHA
CDC40

RNA-binding
proteins

SUB1
SUPV3L1

BCCIP
HNRNPM

SRSF1

2298 ntSOCS2-AS1 3816 nt

RNA-binding
proteins

CSTF2
PCBP2
HLTF

HNRNPC
DROSHA

ZFHX4-AS1 2251 nt

RNA-binding
proteins

HNRNPC
QKI

UCHL5
LSM11
LARP4

A2M-AS1 2187 nt

RNA-binding
proteins

U2AF2

INHBA-AS1 5417 nt

THBS4-AS1

RNA-binding
proteins

HNRNPC
DROSHA
NCBP2
U2AF2
SF3B4

RNA-binding
proteins

TAF15

3233 ntMIAT 11590 nt

RNA-binding
proteins

U2AF2
TAF15

MIR600HG 5984 nt

RNA-binding
proteins

CSTF2
HLTF

DROSHA
NCBP2

QKI

KDM4A-AS1 1931 nt

RNA-binding
proteins

CSTF2
PCBP2
HLTF

HNRNPC
QKI

LINC00926 3124 nt

< 35 y.o.

> 70 y.o.
6

8

R
el

.R
N

A
le

ve
ls

(n
or

m
al

iz
ed

to
 B

2M
m

R
N

A)

0

4

S
O

C
S

2-
A

S
1

LI
N

C
00

59
5

2

ZF
H

X
4-

A
S

1

A
2M

-A
S

1

IN
H

B
A-

A
S

1

***

*** ***

***

*** < 35 y.o.

> 70 y.o.

3

R
el

.R
N

A
le

ve
ls

(n
or

m
al

iz
ed

to
 B

2M
m

R
N

A)

0

M
IA

T

TH
B

S
4-

A
S

1

2

1

M
IR

60
0H

G

KD
M

4A
- A

S
1

LI
N

C
00

92
6

***
***

*** ***
***

CSTF2

0 5 10 15

PCBP2

HLTF

HNRNPC

DROSHA

NCBP2

QKI

ILF3

TAF15

RBM15

-Log10 (p-value)

RP11-282O18.6

CTA-357J21.1

RP11-666A1.5

RP11-517I3.1

AE000658.22

A2M-AS1
XX-CR54.3

LINC00595

RP11-588H23.3

CACNA2D3-AS1

RP11-13N12.1

RP11-21L19.1

AF131215.2
AF131215.9

LINC01018

ZFHX4-AS1

LINC00702

SOCS2-AS1

p53

FOXA2

FOXA1
ZNF362

SNAI2

CTCF

GATA3

(a)

(c)

(d)

(e) (f)

(b)



    |  11 of 17TSITSIPATIS et al.

with	the	promoters	of	the	differentially	expressed	linear	lncRNAs	
(Figure 4a),	supporting	the	notion	that	FOX	TFs	may	foster	pro-
grams	 underlying	 healthy	 aging	 by	 regulating	 the	 expression	 of	
both	 coding	 and	 long	 noncoding	 transcripts.	 Besides	 FOX	 TFs,	
TF	members	of	 the	 zinc	 finger	 family	were	 identified	as	prefer-
entially interacting with the promoters of a wide subset of differ-
entially	expressed	linear	lncRNAs	showing	age-	related	changes	in	
expression	in	our	analysis.	Given	the	emergence	of	zinc	finger	TFs	
as	prominent	antiaging	targets	(Fischer	et	al.,	2022;	Zimmermann	
et al., 2019),	activating	the	transcription	of	lncRNAs	may	be	part	
of	the	healthy	aging	program	elicited	by	zinc	finger	TFs.	Notably,	
many	 of	 the	 differentially	 expressed	 linear	 lncRNAs	were	 pref-
erentially	 associated	 with	 RBPs	 implicated	 in	 RNA	 splicing	
(Figure 4b and Figure S3e).	With	 escalating	 interest	 in	 the	 po-
tential	role	of	splicing	in	healthy	aging	and	longevity	(Angarola	&	
Anczukow,	2021;	Bhadra	et	al.,	2020),	whether	 the	 interactions	
of	the	linear	lncRNAs	or	mRNAs	with	the	RBPs	predicted	in	our	
analysis have a prominent role in healthy aging warrants further 
investigation.

While	the	roles	of	the	vast	majority	of	circRNAs	are	poorly	under-
stood,	a	few	of	the	validated	circRNAs	in	our	study	were	previously	
associated	with	age-	related	declines	or	disease.	For	example,	hsa_
circ_0000591 and hsa_circ_0071106 were previously linked to knee 
osteoarthritis	and	type	2	diabetes,	respectively	 (Jiang	et	al.,	2021; 
Yingying	et	al.,	2021),	whereas	delivery	of	hsa_circ_0001610	via	EVs	
from	tumor-	associated	macrophages	reduced	radiosensitivity	in	en-
dometrial	 cancer	 (Gu	et	al.,	2021).	Notably,	we	 identified	 the	RBP	
interleukin	enhancer-	binding	factor	3	(ILF3)	as	interacting	with	linear	
lncRNAs	that	changed	with	age	(Figure 4b),	and	ILF3	coordinates	the	
biogenesis	of	some	circRNAs	during	viral	infection	(Li	et	al.,	2017).	
In	light	of	emerging	interest	in	the	expression	of	circRNAs	in	healthy	
aged	individuals,	supervised	PLS	analysis	of	differentially	abundant	
circRNAs	showed	a	prominent	age-	dependent	distribution	in	this	co-
hort	(Figure 5a).	The	fact	that	linear	RNAs	revealed	a	less	apparent	
distribution	with	age	(not	shown)	suggests	that	circRNAs	may	track	
better	with	human	age,	particularly	when	jointly	analyzing	groups	of	
circRNAs.	Similar	studies	are	needed	to	test	if	circRNA	analysis	can	
be	informative	in	instances	of	age-	associated	diseases.

To conclude, it is worth noting that the study design may cause 
spurious correlations and that the stringent criteria to recruit healthy 
individuals	inevitably	reduced	the	size	of	our	cohort.	Although	some	
of the observed changes were validated using molecular biology 
techniques	(Figure 4e,f and Figure 5d,e),	future	studies	that	include	
larger	 numbers	 of	 participants	 are	 needed	 to	 validate	 and	 extend	
the	 current	 findings.	Also,	 given	 that	 the	 cultured	primary	 skin	 fi-
broblasts do not faithfully recapitulate all traits of the aging human 
skin,	where	 cells	 are	 typically	 quiescent	 and	 exposed	 to	 different	

endogenous factors, it will be important to complement our stud-
ies	with	 single-	cell	RNA-	seq	analysis	 (Sole-	Boldo	et	al.,	2020;	Zou	
et al., 2021)	and	spatial	transcriptomic	analysis	of	aging	skin.	While	
these approaches enable the study of skin cells closer to their na-
tive state without artifacts arising from cell culture, they mainly 
detect	the	most	abundant	RNAs.	With	growing	appreciation	of	the	
key	 roles	 of	 low-	abundance	 linear	 and	 circular	 lncRNAs	 in	 driving	
protein	programs	and	cell	fate	(Herman	et	al.,	2022),	improving	and	
integrating	methods	of	analysis	of	all	RNA	molecules	changing	with	
advancing age will lead to a better understanding of the molecular 
mechanisms that drive healthy aging.

4  |  METHODS

4.1  |  Skin biopsies and culture of skin fibroblasts

Skin	 biopsies	 and	 expanded	 fibroblast	 cultures	 were	 obtained	
as	 previously	 described	 (Tsitsipatis	 et	 al.,	2022).	 Briefly,	 punch	
skin	biopsies	 (4 mm2)	were	obtained	 from	 the	non-	sun-	exposed	
skin	of	the	 inner	upper	arm,	 just	below	the	axilla,	of	82	healthy	
GESTALT	 participants	 (Table 1)	 following	 a	 stringent	 clini-
cal	 protocol	 that	 minimized	 the	 risk	 of	 infections	 and	 side	 ef-
fects	 (Tanaka	 et	 al.,	2018).	 The	 enrolled	 participants	were	 free	
of any major diseases, did not take any prescribed medication 
except	 a	 single	monotherapy	 for	hypertension,	 had	no	physical	
or cognitive impairments, did not train professionally, and had a 
body	mass	 index	 (BMI) less	 than 30 kg/m2. The inclusion criteria 
were	 assessed	 during	 a	 6-	h	 evaluation	 at	 the	Clinical	 Research	
Unit	 (NIA	 IRP)	 based	 on	 medical	 history,	 physical	 exams,	 and	
blood	 tests	 interpreted	 by	 an	 experienced	 nurse	 practitioner	
(Roy	 et	 al.,	 2022;	 Schrack	 et	 al.,	 2014).	 Collected	 skin	 biop-
sies were minced into smaller pieces and distributed into three 
wells	 of	 6-	well,	 collagen-	coated	 plates.	 The	 minced	 biopsies	
were	 incubated	 in	Dulbecco's	Modified	 Eagle	Medium	 (DMEM,	
Gibco)	 supplemented	with	 20%	 fetal	 bovine	 serum	 (Gibco),	 1%	
penicillin–	streptomycin	(Gibco),	and	1%	nonessential	amino	acids	
(Gibco)	at	37°C	in	a	humidified	atmosphere	for	2 weeks;	then	in	
DMEM	supplemented	with	10%	FBS,	1%	penicillin–	streptomycin,	
and	1%	nonessential	amino	acids	 for	1–	2 weeks	until	 confluent.	
The	established	primary	human	dermal	 fibroblasts	 (HDFs)	were	
further	 expanded	 to	 three	 100-	mm	 culture	 plates,	 grown	 until	
confluency,	 and	 frozen	 until	 use.	 The	 GESTALT	 protocol	 is	 ap-
proved	by	 the	 Intramural	Research	Program	of	 the	US	National	
Institute	 on	 Aging	 and	 the	 Institutional	 Review	 Board	 of	 the	
National	 Institutes	of	Health.	All	 participants	provided	written,	
informed consent at every visit.

F I G U R E  4 TFs	capable	of	transcribing	and	RBPs	capable	of	binding	to	linear	lncRNAs	differentially	abundant	with	age	based	on	a	linear	
regression	model.	(a)	TFs	FOX	(pink)	or	zinc-	finger	(purple)	putatively	interacting	with	top	differentially	expressed	linear	lncRNAs	(p < 0.05)	
based	on	the	LncSEA	method.	(b)	RBPs	putatively	interacting	with	linear	lncRNAs	based	on	LncSEA.	(c,d)	List	of	RBPs	predicted	to	interact	
with	differentially	increased	(c)	or	decreased	(d)	lncRNAs	in	our	LncSEA.	(e,f)	Validation	of	differentially	increased	(e)	or	decreased	(f)	linear	
lncRNAs	using	RT-	qPCR	analysis.	Data	were	normalized	to	B2M	mRNA,	encoding	a	housekeeping	protein.	Significance	was	established	using	
Student's	t test. *** p < 0.001.



12 of 17  |     TSITSIPATIS et al.

(a)

-0.06 0.060.03-0.03 0.00
Beta coefficient

0

1

2

-L
og

10
 (p

-v
al

ue
)

3

hsa_circ_0032047

chr7:91621471-
91632549

hsa_circ_0078226

hsa_circ_0001971

hsa_circ_0061658
hsa_circ_0128535

hsa_circ_0029633

hsa_circ_0132300

hsa_circ_0067682

hsa_circ_0035249

hsa_circ_0137306

hsa_circ_0092433

hsa_circ_0035796

hsa_circ_0071106

hsa_circ_0001610

chr3:128516879-
128526460

hsa_circ_0000591hsa_circ_0006404

hsa_circ_0055019

hsa_circ_0009144

(c)

(b)

(d)

CircRNA nomenclature
Host Gene

CircInteractome Guide (short-read sequencing)

hsa_circ_0055019 circAPLF(2,3,4,5,6) APLF

hsa_circ_0032047 circEXOC5(2,3,4,5,6,7,8,9,10,11,12) EXOC5

hsa_circ_0067682 circPLOD2(2,3,4,5,6,7) PLOD2

chr7:91621471_91632549 circAKAP9(4,5,6,7,8) AKAP9

hsa_circ_0128535 circMYO10(5,6,7,8,9) MYO10

< 35 y.o.

> 70 y.o.3
4
5

noisserpxe A
N

R .le
R

 ot dezila
mron(

B
2M

m
R

N
A)

hs
a_

ci
rc

_0
05

50
19

A
P

LF
 m

R
N

A

***

0

2

1

hs
a_

ci
rc

_0
03

20
47

E
X

O
C

5
m

R
N

A

hs
a_

ci
rc

_0
06

76
82

P
LO

D
2

m
R

N
A

ch
r7

:9
16

21
47

1-
91

63
25

49

A
K

A
P

9
m

R
N

A

hs
a_

ci
rc

_0
12

85
35

M
Y

O
10

 m
R

N
A

**** ****

(e)

< 35 y.o.

> 70 y.o.

noisserpxe A
N

R .le
R

 ot dezila
mron(

B
2M

m
R

N
A)

hs
a_

ci
rc

_0
07

82
26

LA
TS

1 
m

R
N

A

***

2.0

2.5

0.0

1.5

1.0

0.5

hs
a_

ci
rc

_0
03

57
96

H
E

R
C

1
m

R
N

A

hs
a_

ci
rc

_0
00

16
10

TN
FR

S
F2

1
m

R
N

A

hs
a_

ci
rc

_0
00

05
91

M
G

A
m

R
N

A

hs
a_

ci
rc

_0
07

11
06

A
R

H
G

A
P

10
 m

R
N

A

*

***
**

CircRNA nomenclature
Host Gene

CircInteractome Guide (short-read sequencing)

hsa_circ_0078226 circLATS1(3,4,5,6,7) LATS1

hsa_circ_0035796 circHERC1(22,23,24,25,26,27) HERC1

hsa_circ_0001610 circTNFRSF21(2,3) TNFRSF21

hsa_circ_0000591 circMGA(2) MGA

hsa_circ_0071106 circARHGAP10(5,6,7,8,9,10) ARHGAP10

Age

80

60

40

20



    |  13 of 17TSITSIPATIS et al.

4.2  |  RNA isolation, library preparation, and 
RNA sequencing

After	 thawing,	 HDFs	 were	 cultured	 in	 DMEM	 supplemented	
with	 10%	 FBS,	 1%	 penicillin–	streptomycin,	 and	 1%	 nonessen-
tial	 amino	 acids	 at	 37°C	 in	 a	 humidified	 atmosphere	 until	 they	
reached confluency and were used within four passages. Cells 
were harvested, washed once with 1×	 PBS,	 and	 total	 RNA	was	
isolated	using	the	Direct-	zol™	RNA	MiniPrep	kit	(Zymo	Research)	
following	 the	 manufacturer's	 instructions.	 Following	 RNA	 isola-
tion,	quality	was	assessed	on	an	Agilent	Bioanalyzer,	and	500 ng	
of	total	RNA	was	subjected	to	Ribo-	RNA	depletion	with	Low	Input	
RiboMinus	Eukaryote	System	v2	(Thermo	Fisher	Scientific).	Ribo-	
RNA-	depleted	samples	were	 then	used	 for	cDNA	synthesis	with	
Ovation®	 RNA-	Seq	 System	 V2	 (Nugen)	 following	 the	 manufac-
turer's	 protocol.	 Briefly,	 the	 first	 cDNA	 strand	 was	 synthesized	
from	 Ribo-	RNA-	depleted	 samples	 using	 a	 unique	 first	 strand	
DNA/RNA	 chimeric	 primer	 mix	 and	 reverse	 transcriptase	 (RT)	
included	 in	 the	 kit,	 followed	 by	 synthesis	 of	 the	 second	 cDNA	
strand.	After	purification	with	Agencourt	RNA	CleanUp	XP	beads,	
the	 double-	stranded	 cDNA	 products	 were	 amplified	 with	 the	
Single	primer	 isothermal	 amplification	 (SPIA)	 included	 in	 the	kit.	
The	amplified	products	were	then	purified	with	QIAGEN	QIAquick	
PCR	Purification	Kit	 (QIAGEN)	 and	 checked	 on	 an	Agilent	 2100	
Bioanalyzer	with	 a	DNA	1000	kit	 (Agilent)	 and	 fragmented	by	 a	
Bioruptor.	 Fragmented	 cDNAs	 were	 checked	 again	 on	 Agilent	
2100	Bioanalyzer	with	a	DNA	1000	kit.

The	fragmented	cDNAs	were	used	for	library	preparation	with	
Illumina	TruSeq	ChIP	Library	Preparation	Kit	 (Illumina)	according	
to	the	manufacturer's	protocol.	Briefly,	the	cDNAs	were	subjected	
to end repair, the 3′ end adenylation, and adapter ligation, and 
were	then	purified	with	AMPure	beads	(Beckman).	The	products	
were	 size-	selected	 with	 SPRIselect	 beads	 (Beckman),	 and	 then	
the	 selected	 cDNAs	 were	 amplified	 by	 PCR	 and	 purified	 again	
with	 SPRIselect	 beads	 to	 generate	 final	 libraries.	 Paired-	end	 se-
quencing	was	performed	by	Quick	Biology	(Pasadena),	aiming	for	
250	 million	 reads	 per	 sample	 using	 an	 Illumina	 NovaSeq	 6000	
instrument.

4.3  |  Reverse transcription (RT) followed by 
real- time quantitative (q)PCR analysis

Following	 RNA	 isolation,	 1 μg	 of	 total	 RNA	 was	 used	 for	 reverse	
transcription	 (RT)	 followed	 by	 real-	time	 quantitative	 PCR	 (qPCR)	

analysis.	For	qPCR	analysis,	0.1 μL	cDNA	was	used	with	250 nM	of	
primers	 (Appendix	 S9)	 and	 KAPA	 SYBR®	 FAST	 qPCR	Kits	 (KAPA	
Biosystems)	 as	described	 (Tsitsipatis	 et	 al.,	2021).	Divergent	prim-
ers	spanning	the	circRNA	junctions	of	interest	were	designed	using	
CircInteractome	(Dudekula	et	al.,	2016).	RT-	qPCR	analysis	was	car-
ried	out	on	a	QuantStudio	5	Real-	Time	PCR	System	(Thermo	Fisher	
Scientific)	 with	 a	 cycle	 setup	 of	 3 min	 at	 95°C,	 40 cycles	 of	 5 s	 at	
95°C,	 and	20 s	 at	60°C.	Relative	RNA	 levels	were	calculated	after	
normalizing	 to	 beta-	2-	microglobulin	 (B2M)	mRNA	using	 the	 2−ΔΔCt 
method;	among	the	examined	mRNAs	encoding	housekeeping	pro-
teins, B2M	mRNA	levels	showed	the	least	variability	across	partici-
pants	(not	shown).

4.4  |  Bioinformatic and statistical analyses

Binary	Base	Call	 (BCL)	 files	were	demultiplexed	 and	 converted	 to	
FASTQ	files	using	bcl2fastq	program	(v2.20.0.422).	FASTQ	files	were	
trimmed	 for	 adapter	 sequences	using	Cutadapt	 version	 v1.18	 and	
aligned	to	human	genome	hg19	Ensembl	v82	using	STAR	software	
v2.4.0j	(Dobin	et	al.,	2013);	featureCounts	(v1.6.4)	(Liao	et	al.,	2014)	
were	used	to	create	gene	counts	from	the	samples	for	 linear	RNA	
analysis.	 The	 chimeric	 junction	 file	 obtained	 from	 STAR	 software	
was	 parsed	 for	 fusion	 junctions	 and	 analyzed	 using	 CIRCexplorer	
v1.1.10	(X.	O.	Zhang	et	al.,	2014)	to	obtain	the	circularizing	junction	
counts	 for	 circRNA	analysis	 as	well	 as	 for	 circRNA	annotation.	To	
filter	out	RNAs	with	very	low	counts	across	the	cohort	we	divided	
the	82	samples	 into	four	groups,	each	enclosing	approximately	20	
age-	consecutive	samples.	We	required	at	least	seven	samples	in	any	
group	to	have	10	or	more	counts	for	linear	RNA	analysis,	whereas	for	
the	circRNA	analysis	one	or	more	counts	for	a	specific	circRNA	was	
required.	Age-	related	differential	expression	analysis	for	both	linear	
and	circular	RNAs	was	conducted	using	 the	R	Bioconductor	pack-
age,	DESeq2,	 version	1.36.0	 (Love	et	 al.,	2014)	 after	 adjusting	 for	
gender and collection batches. The linear regression model was run 
using	default	parameters.	Briefly,	we	applied	default	DESeq(),	which	
uses	the	median	ratio	method,	to	estimate	the	size	factors.	Next,	the	
dispersion was estimated assuming a negative binomial distribution 
for	count,	the	model	was	fitted,	and	the	Wald	test	was	employed	for	
significance	testing	(Anders	&	Huber,	2010).	Significance	was	deter-
mined using p-	value	<0.05 for all transcripts. For the spline model, 
we	used	natural	spline	with	degree	of	freedom	equal	to	three,	and	
the spline model was run using the likelihood ratio test. The full 
model	included	the	three	spline	covariates,	along	with	batch	and	sex,	
while	the	reduced	model	included	only	batch	and	sex.	The	data	on	

F I G U R E  5 Differentially	expressed	circular	lncRNAs	as	a	function	of	age.	(a)	PLS	analysis	of	age-	associated	circular	lncRNAs.	(b)	Volcano	
plot	showing	beta	coefficients	of	circular	lncRNAs	expressed	with	age	(per	year).	Transcripts	showing	significantly	enhanced	(red	dots)	
or	reduced	(blue	dots)	levels	with	age	(p < 0.05,	adjusted	for	covariates)	are	indicated.	Gray	dots	show	transcripts	that	did	not	change	
significantly	with	age	(p > 0.05).	(c)	Nomenclatures	of	increased	(left table)	or	decreased	(right table)	circular	lncRNAs	and	the	respective	
cognate	linear	mRNAs.	(d,e)	Validation	by	RT-	qPCR	analysis	of	differentially	increased	(d)	or	decreased	(e)	circular	lncRNAs.	Data	were	
normalized	to	B2M	mRNA,	encoding	a	housekeeping	protein.	Significance	was	established	using	Student's	t test. * p < 0.05,	**	p < 0.01,	***	
p < 0.001.
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differentially	abundant	mRNAs	and	(linear	or	circular)	lncRNAs	as	a	
function	of	age	are	summarized	in	Appendixes	S1,	S4,	and	S7.

For downstream plot generation, including heatmap and re-
gression	 plots,	 we	 normalized	 and	 log-	transformed	 the	 count	
matrix	using	edgeR's	(version	3.38.4)	(Robinson	et	al.,	2010)	calc-
NormFactors	and	cpm	functions.	Next,	adjusted	count	data	were	
generated	via	 the	 function	 “removeBatchEffect”	 in	 the	 LIMMA	
package	(version	3.52.4)	 (Ritchie	et	al.,	2015).	For	PLS	plotting,	
we	 used	 adjusted	 data	 and	 the	 packages	 pls	 (version	 2.8–	1)	 as	
well	as	plotly	 (4.10.1).	Count	data	 for	downstream	plot	genera-
tion,	 including	PLS	plot	and	heatmap,	was	created	via	the	func-
tion	“removeBatchEffect”	in	the	LIMMA	package	(version	3.52.4)	
and	Package	plotly	 (4.10.1)	was	used	for	PLS	plotting.	GSEA	of	
“transcription	factor	targets”	gene	set	from	Molecular	Signature	
Database	 (https://www.gsea-	msigdb.org)	 was	 performed	 with	
GSEA_4.2.3	software	(Subramanian	et	al.,	2005)	on	C3-	TFT	(all	
transcription	 factor	 targets,	 1127	 gene	 sets)	 feature	 using	 dif-
ferentially	expressed	mRNAs	(p < 0.05),	whereas	LncSEA	(http://
bio.liclab.net/LncSE	A/)	 was	 run	 with	 either	 the	 “Transcription	
Factor”	or	the	“RNA	Binding	Protein”	feature	using	differentially	
expressed	 linear	 lncRNAs	 (p < 0.05)	 (J.	 Chen	 et	 al.,	 2021).	 The	
data	generated	by	GSEA	are	summarized	 in	Appendixes	S2	and	
S3,	and	the	data	from	LncSEA	are	summarized	in	Appendixes	S5	
and	S6.

For	 RT-	qPCR	 analysis,	 quantitative	 data	 were	 represented	 as	
the means ±	SD	of	the	number	of	samples	 indicated	 in	each	case;	
statistical	 significance	 was	 established	 using	 unpaired	 Welch's	 t 
test	 in	 GraphPad	 Prism	 (9.0).	 A	 p-	value	 of	<0.05 was considered 
statistically significant; significance was indicated in the figures as 
* p < 0.05,	 **	p < 0.01,	 ***	p < 0.001.	Graphs	were	 generated	 using	
GraphPad	Prism	(9.0).
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