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Abstract

Optimal transport (OT) plays an essential role in various areas like machine learning and deep 

learning. However, computing discrete OT for large scale problems with adequate accuracy and 

efficiency is highly challenging. Recently, methods based on the Sinkhorn algorithm add an 

entropy regularizer to the prime problem and obtain a trade off between efficiency and accuracy. 

In this paper, we propose a novel algorithm based on Nesterov’s smoothing technique to further 

improve the efficiency and accuracy in computing OT. Basically, the non-smooth c-transform 

of the Kantorovich potential is approximated by the smooth Log-Sum-Exp function, which 

smooths the original non-smooth Kantorovich dual functional. The smooth Kantorovich functional 

can be efficiently optimized by a fast proximal gradient method, the fast iterative shrinkage 

thresholding algorithm (FISTA). Theoretically, the computational complexity of the proposed 

method is given by O(n
5
2 log n ∕ ϵ), which is lower than current estimation of the Sinkhorn 

algorithm. Experimentally, compared with the Sinkhorn algorithm, our results demonstrate that the 

proposed method achieves faster convergence and better accuracy with the same parameter.

Introduction

Optimal transport (OT) is a powerful tool to compute the Wasserstein distance 

between probability measures and widely used to model various natural and social 

phenomena, including economics (Galichon 2016), optics (Glimm and Oliker 2003), biology 

(Schiebinger et al. 2019), physics (Jordan, Kinderlehrer, and Otto 1998) and in other 

scientific fields. Recently, OT has been successfully applied in machine learning and 

statistics, such as parameter estimation in Bayesian non-parametric models (Nguyen 2013), 

computer vision (Arjovsky, Chintala, and Bottou 2017; Courty et al. 2017; Tolstikhin et al. 

2018; An et al. 2020; Lei et al. 2020), and natural language processing (Kusner et al. 2015; 

Yurochkin et al. 2019). In these areas, the complex probability measures are approximated 

by summations of Dirac measures supported on the samples. To obtain the Wasserstein 

distance between the empirical distributions, we then solve the discrete OT problems.
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Discrete Optimal Transport

In discrete OT problem, where both the source and target measures are discrete, the 

Kantorovich functional becomes a convex function defined on a convex domain. Due 

to the lack of smoothness, conventional gradient descend method can not be applied 

directly. Instead, it can be optimized with the sub-differential method (Nesterov 2005), 

in which the gradient is replaced by the sub-differential. To achieve an approximation 

error less than ε, the sub-differential method requires O(1 ∕ ε2) iterations. Recently, several 

approximation methods have been proposed to improve the computational efficiency. In 

these methods (Cuturi 2013; Benamou et al. 2015; Altschuler, Niles-Weed, and Rigollet 

2017), a strongly convex entropy function is added to the prime Kantorovich problem and 

thus the regularized problem can be efficiently solved by the Sinkhorn algorithm. More 

detailed analysis shows that the computational complexity of the Sinkhorn algorithm is 

O(n2 ∕ ε2) (Dvurechensky, Gasnikov, and Kroshnin 2018) by setting λ = ϵ ∕ 4 log n. Also, 

a series of primal-dual algorithms are proposed, including the APDAGD (adaptive primal-

dual accelerated gradient descent) algorithm (Dvurechensky, Gasnikov, and Kroshnin 2018) 

with computational complexity O(n2.5 ∕ ϵ), the APDAMD (adaptive primal-dual accelerated 

mirror descent) algorithm (Lin, Ho, and Jordan 2019) with O(n2 r ∕ ϵ) where r is a complex 

constant of the Bregman divergence, and the APDRCD (accelerated primal-dual randomized 

coordinate descent) algorithm (Guo, Ho, and Jordan 2020) with O(n2.5 ∕ ϵ). But all of the 

three methods need to build a matrix with space complexity O(n3), making them difficult to 

compute when n is large.

Our Method

In this work, instead of starting from the prime Kantorovich problem like the Sinkhorn 

based methods, we directly deal with the dual Kantorovich problem. The key idea is to 

approximate the original non-smooth c-transform of the Kantorovich potential by Nesterov’s 

smoothing technique. Specifically, we approximate the max function by the Log-Sum-Exp 

function, which has also been used in (Schmitzer 2019; Peyré and Cuturi 2018), such 

that the original non-smooth Kantorovich functional is converted to an unconstrained (n − 1)-

dimensional smooth convex energy. By using the Fast Proximal Gradient Method named 

FISTA (Beck and Teboulle 2009), we can quickly optimize the smoothed energy to get 

a precise estimate of the OT cost. In theory, the method can achieve the approximate 

error ε with the space complexity O(n2) and computational complexity O(n2.5 log n ∕ ε). 
Additionally, we show that the induced approximate OT plan by our algorithm is equivalent 

to that of the Sinkhorn algorithm. The contributions of our work are as follows.

• We convert the dual Kantorovich problem to an unconstrained smooth convex 
optimization problem by approximating the non-smooth c-transform of the 

Kantorovich potential with Nesterov’s smoothing idea.

• The smoothed Kantorovich functional can be efficiently solved by the FISTA 

algorithm with computational complexity O(n2.5 ∕ ε). At the same time, the 

computational complexity of the Kantorovich functional itself is given by 

O(n2.5 ∕ ε).
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• The experiments demonstrate that compared with the Sinkhorn algorithm, the 

proposed method achieves faster convergence and better accuracy with the same 

parameter λ.

Notation

In this work, ℝ ≥ 0 represents the non negative real numbers, 0 and 1 represents the all-zeros 

and all-ones vectors of appropriate dimension. The set of integers {1, 2, …, n} is denoted 

as [n]. And ∣ ⋅ ∣ 1 and ‖ ⋅ ‖ are the ℓ1 and ℓ2 norms, ∣ v ∣ 1 = ∑i ∣ vi ∣ and ‖v‖ = ∑i vi
2, 

respectively. R(C) is the range of the cost matrix C = (cij), namely Cmax − Cmin, where Cmax and 

Cmin represent the maximum and minimum of the elements of C with cij > 0. We use νmin to 

denote the minimal element of ν and ⊘ to denote element wise division.

Related Work

Optimal transport plays an important role in various kinds of fields, and there is a huge 

literature in this area. Here we mainly focus on the most related works. For detailed 

overview, we refer readers to (Peyré and Cuturi 2018).

When both the source and target measures are discrete, the OT problem can be treated 

as a standard linear programming (LP) task and solved by interior-point method with 

computational complexity O(n5 ∕ 2) (Lee and Sidford 2014). But this method requires a 

practical solver of the Laplacian linear system, which is not currently available for large 

dataset. Another interior-point based method to solve the OT problem is proposed by Pele 

and Werman (Pele and Werman 2009) with complexity O(n3). Generally speaking, it is 

unrealistic to solve the large scale OT problem with the traditional LP solvers.

The prevalent way to compute the OT cost between two discrete measures involves adding a 

strongly convex entropy function to the prime Kantorovich problem (Cuturi 2013; Benamou 

et al. 2015). Most of the current solutions for the discrete OT problem follow this strategy. 

Genevay et al. (Genevay et al. 2016) extend the algorithm in its dual form and solve it by 

stochastic average gradient method. The Greenkhorn algorithm (Altschuler, Niles-Weed, and 

Rigollet 2017; Abid and Gower 2018; Chakrabarty and Khanna 2021) is a greedy version 

of the Sinkhorn algorithm. Specifically, Altschuler et al. (Altschuler, Niles-Weed, and 

Rigollet 2017) show that the complexity of their algorithm is O(n2
ϵ3 ). Later, Dvurechensky 

et al. (Dvurechensky, Gasnikov, and Kroshnin 2018) improve the complexity bound of 

the Sinkhorn algorithm to O(n2
ϵ2 ), and propose an APDAGD method with complexity 

O(min{n9 ∕ 4
ϵ , n2

ϵ2 }). Jambulapati et al. (Jambulapati, Sidford, and Tian 2019) introduce a 

parallelelizable algorithm to compute the OT problem with complexity O(n2‖C‖max
ϵ ). Through 

screening the negligible components by directly setting them at that value before entering 

the Sinkhorn problem, the screenkhorn (Alaya et al. 2019) method solves a smaller Sinkhorn 

problem and improves the computation efficiency. Based on a primal-dual formulation and 

a tight upper bound for the dual solution, Lin et al. (Lin, Ho, and Jordan 2019) improve 
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the complexity bound of the Greenkhorn algorithm to O(n2
ϵ2 ), and propose the APDAMD 

algorithm, whose complexity bound is proven to be O(n2 r
ϵ ), where r ∈ (0, n] refers to some 

constants in the Bregman divergence. Recently, a practically more efficient method called 

APDRCD (Guo, Ho, and Jordan 2020) is proposed with complexity O(n2.5 ∕ ϵ). But all these 

three primal-dual based methods need to build a matrix with space complexity O(n3), which 

makes them impractical when n is large. By utilizing Newton-type information, Blanchet et 

al. (Blanchet et al. 2018) and Quanrud (Quanrud 2018) propose algorithms with complexity 

O(n2
ϵ ). However, the Newton-based methods only give the theoretical upper bound and 

provide no practical algorithms.

Besides the entropy regularizer based methods, Blondel et al. (Blondel, Seguy, and Rolet 

2018) use the squared 2-norm and group LASSO (least absolute shrinkage and selection 

operator) to regularize the prime Kantorovich problem and then use the quasi-Newton 

method to accelerate the algorithm. Xie et al. (Xie et al. 2019b) develop an Inexact Proximal 

point method for exact optimal transport. By utilizing the structure of the cost function, 

Gerber and Maggioni (Gerber and Maggioni 2017) optimize the transport plan from coarse 

to fine. Meng et al. (Meng et al. 2019) propose the projection pursuit Monge map, which 

accelerates the computation of the original sliced OT problem. Xie et al. (Xie et al. 2019a) 

also use the generative learning based method to model the optimal transport. But the 

theoretical analysis of these algorithms is still nascent.

In this work, we introduce a method based on Nesterov’s smoothing technique, which is 

applied to the dual Kantorovich problem with computational complexity O(n2.5 log n ∕ ε) (or 

equivalently O(n2.5 ∕ ε) and approximation error bound 2λ log n.

Optimal Transport Theory

In this section, we introduce some basic concepts and theorems in the classical optimal 

transport theory, focusing on Kantorovich’s approach and its generalization to the discrete 

settings via c-transform. The details can be found in Villani’s book (Villani 2008).

Optimal Transport Problem

Suppose X ⊂ ℝd, Y ⊂ ℝd are two subsets of the Euclidean space ℝd, μ, ν are two probability 

measures defined on X and Y  with equal total measure, μ(X) = ν(Y ).

Kantorovich’s Approach

Depending on the cost functions and the measures, the OT map between (X, μ) and (Y , ν) 

may not exist. Thus, Kantorovich relaxed the transport maps to transport plans, and defined 

joint probability measure π :X × Y ℝ ≥ 0, such that the marginal probability of π equals to 

μ and ν, respectively. Formally, let the projection maps be ρx(x, y) = x, ρy(x, y) = y, then we 

define
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π(μ, ν) ≔ {P :X × Y ℝ ≥ 0 : (ρx)#P = μ, (ρy)#P = ν} . (1)

Problem 1 (Kantorovich Problem). Given the transport cost function X × Y ℝ, find the 
joint probability measure P :X × Y ℝ that minimizes the total transport cost

Mc(μ, ν) = min
P ∈ π(μ, ν)∫X × Y

c(x, y)dP (x, y) (2)

Problem 2 (Dual Kantorovich Problem). Given two probability measures μ and ν supported 
on X and Y , respectively, and the transport cost function c :X × Y ℝ, the Kantorovich 

problem is equivalent to maximizing the following Kantorovich functional:

Mc(μ, ν) = max −∫
X

ϕdμ + ∫
Y

ψdν (3)

where ϕ ∈ L1(X, μ) and ψ ∈ L1(Y , ν) are called Kantorovich potentials and 
−ϕ(x) + ψ(y) ≤ c(x, y). The above problem can be reformulated as the following minimization 
form with the same constraints:

Mc(μ, ν) = − min ∫
X

ϕdμ − ∫
Y

ψdν (4)

Definition 3 (c-transform). Let ϕ ∈ L1(X, μ) and ψ ∈ L1(Y , ν), we define

ϕ(x) = ψc(x) = sup
y ∈ Y

ψ(y) − c(x, y) .

With c-transform, Eqn. (4) is equivalent to solving the following optimization problem:

Mc(μ, ν) = − min ∫
X

ψc(x)dμ(x) − ∫
Y

ψ(y)dν(y) (5)

where ψ ∈ L1(Y , ν). When μ = ∑i = 1
m μiδ(x − xi) and ν = ∑j = 1

n νjδ(y − yj), ψ = (ψ1, ψ2, …, ψn)T , 

Eqn. (5) gives the unconstrained convex optimization problem:

Mc(μ, ν) = − min
ψ

E(ψ) = − min
ψ

{ ∑
i = 1

m
μiψc(xi) − ∑

j = 1

n
νjψj} (6)

where the c-transform of ψ is given by:

ψc(xi) = max
j

{ψj − cij} (7)
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where cij = c(xi, yj). Suppose ψ∗ is the solution to Eqn. (6), then it has the following 

properties:

1. If the cost function is c(x, y) = c(x, y) − k, where k is a constant, the 

corresponding optimal solution is ψ∗, then ψ∗ = ψ∗. At the same time, we have 

Mc(μ, ν) = Mc(μ, ν) + k.

2. ψ∗ + k1 is also an optimal solution for Eqn. (6).

In order to make the solution unique, we add a constraint ψ ∈ H using the indicator 

function IH, where H = {ψ ∣ ∑j = 1
n ψj = 0}, and modify the Kantorovich functional E(ψ) in 

Eqn. (6) as:

E(ψ) = E(ψ) + IH(ψ), IH(ψ) = 0 ψ ∈ H
∞ ψ ∉ H (8)

Then solving Eqn. (6) is equivalent to finding the solution to:

Mc(μ, ν) = − min
ψ

E(ψ)

= − min
ψ

∑
i = 1

m
μiψc(xi) − ∑

j = 1

n
νjψj + IH(ψ)

(9)

which is essentially an (n − 1)-dimensional unconstrained convex problem. According to the 

definition of c-transform in 7), ψc is non-smooth with respect to ψ.

Nesterov’s Smoothing of Kantorovich functional

Following Nesterov’s original strategy (Nesterov 2005), which has also been applied in the 

OT field (Peyré and Cuturi 2018; Schmitzer 2019), we smooth the non-smooth discrete 

Kantorovich functional E(ψ). We approximate ψc(x) with the Log-Sum-Exp function to get 

the smooth Kantorovich functional Eλ(ψ). Then through the FISTA algorithm (Beck and 

Teboulle 2009), we can easily induce that the computation complexity of our algorithm 

is O(n2.5 log n ∕ ε), with E(ψt) − E(ψ∗) ≤ ϵ. By abuse of notation, in the following we 

call both E(ψ) and E(ψ) the Kantorovich functional and both Eλ(ψ) and Eλ(ψ) the smooth 

Kantorovich functional.

Definition 4 ((α, β)-smoothable). A convex function f is called (α, β)-smoothable if, for any 
λ > 0, ∃ a a convex function fλ such that

fλ(x) ≤ f(x) ≤ fλ(x) + βλ
fλ(y) ≤ fλ(x) + 〈∇fλ(x), y − x〉 + α

2λ (y − x)T ∇2fλ(x)(y − x)

Here fλ is called a 1
λ-smooth approximation of f with parameters (α, β).
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In the above definition, the parameter λ defines a trade-off between the approximation 

accuracy and the smoothness, where the smaller the λ, the better approximation and the less 

smoothness we obtain.

Lemma 5 (Nesterov’s Smoothing). Given f :ℝn ℝ, f(x) = max{xj : j = 1, …, n}, for any 

λ > 0, we have its 1
λ-smooth approximation with parameters (1, log n)

fλ(x) = λ log ∑
j = 1

n
exj ∕ λ − λ log n, (10)

Proof. We have ∀x ∈ Rn,

fλ(x) ≤ λ log(n max
j

exj ∕ λ) − λ log(n) = f(x)

f(x) = λ logmax
j

exj ∕ λ < λ log ∑
j = 1

n
exj ∕ λ = fλ(x) + λ log n

Furthermore, it is easy to prove that fλ(x) is 1
λ-smooth. Therefore, fλ(x) is an approximation 

of f(x) with parameters (1, log n).

Recalling the definition of c-transform of the Kantorovich potential in Eqn. (7), we obtain 

the Nesterov’s smoothing of ψc by applying Eqn. (10)

ψλ
c = λ log ∑

j = 1

n
e(ψj − cij) ∕ λ − λ log n . (11)

We use ψλ
c to replace ψc in Eqn. (9) to approximate the Kantorovich functional. Then the 

Nesterov’s smoothing of the Kantorovich functional becomes

Eλ(ψ) = λ ∑
i = 1

m
μi log ∑

j = 1

n
e(ψj − cij) ∕ λ − ∑

j = 1

n
νjψj − λ log n (12)

and its gradient is given by

∂Eλ

∂ψj
= ∑

i = 1

m
μi

e(ψj − cij) ∕ λ

∑k = 1
n e(ψk − cik) ∕ λ − νj, ∀ j ∈ [n] (13)

Furthermore, we can directly compute the Hessian matrix of Eλ(ψ). Let Kij = e−cij ∕ λ and 

vj = eψj ∕ λ, and set Eλ
i ≔ λ log∑j = 1

n Kijvj, ∀ i ∈ [m]. Direct computation gives the following 

gradient and Hessian matrix:
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∇Eλ = diag(v)KT(μ ⊘ Kv) − ν

∇2Eλ = ∑
i = 1

m
μi ∇2Eλ

i ,

∇2Eλ
i = 1

λ
1

1TV i

Λi − 1
(1TV i)

2V iV i
T

(14)

where V i = (Ki1v1, Ki2v2, …, Kinvn)T , and Λi = diag(Ki1v1, Ki2v2, …, Kinvn). By the Hessian matrix, 

we can show that Eλ is a smooth approximation of E.

Lemma 6. Eλ(ψ) is a 1
λ-smooth approximation of E(ψ) with parameters (1, log n).

Proof. From Eqn. (14), we see ∇2Eλ
i  has K = {k1 :k ∈ ℝ} as its null space. In the orthogonal 

complementary space of K, ∇2Eλ
i  is diagonal dominant, therefore strictly positive definite.

Weyl’s inequality (Horn and Johnson 1991) states that the eigen value of A = B + C is no 

greater than the maximal eigenvalue of B minus the minimal eigenvalue of C, where B is an 

exact matrix and C is a perturbation matrix. Hence the maximal eigenvalue of ∇2Eλ
i , denoted 

as σi, has an upper bound,

0 ≤ σi ≤ 1
λ

1
1TV i

max
j

{Kijvj} ≤ 1
λ .

Thus the maximal eigenvalue of ∇2Eλ(ψ) is no greater than ∑i = 1
n μiσi ≤ 1

λ . It is easy to find 

that Eλ(ψ) ≤ E(ψ) ≤ Eλ(ψ) + λ log n. Thus, Eλ(ψ) is a 1
λ-smooth approximation of E(ψ) with 

parameters (1, log n).

Lemma 7. Suppose Eλ(ψ) is the 1
λ-smooth approximation of E(ψ) with parameters 1, log n, ψλ

∗

is the optimizer of Eλ(ψ), then the approximate OT plan is unique and given by

(Pλ
∗)ij = μi

e((ψλ
∗)j − cij) ∕ λ

∑k = 1
n e((ψλ

∗)k − cik) ∕ λ = μiKijvj
∗

Kiv∗ (15)

where Ki is the itℎ row of K and v∗ = eψλ
∗ ∕ λ.

Proof. By the gradient formula Eqn. (13) and the optimizer ψλ
∗, we have

∂Eλ(ψ∗)
∂ψj

= ∑
i = 1

m
(Pλ

∗)ij − νj = 0 ∀ j = 1, ⋯, n .

On the other hand, by the definition of Pλ
∗, we have
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∑
j = 1

n
(Pλ

∗)ij = μi, ∀ i = 1, …, m,

Combing the above two equations, we obtain that Pλ
∗ ∈ π(μ, ν) and it is the approximate OT 

plan.

Similar to the discrete Kantorovich functional in Eqn. (6), the optimizer of the smooth 

Kantorovich functional in Eqn. (12) is also not unique: given an optimizer ψλ
∗, then ψλ

∗ + k1, 

k ∈ ℝ is also an optimizer. We can eliminate the ambiguity by adding the indicator function 

as Eqn. (8), Eλ(ψ) = Eλ(ψ) + IH(ψ),

Eλ(ψ) = λ ∑
i = 1

m
μi log ∑

j = 1

n
e(ψj − cij) ∕ λ

− ∑
j = 1

n
νjψj − λ log n + IH(ψ)

(16)

This energy can be optimized effectively through the following FISTA iterations (Beck and 

Teboulle 2009).

zt + 1 = ΠηtIH (ψt − ηt ∇Eλ(ψt))
ψt + 1 = zt + 1 + θt − 1

θt + 1
(zt + 1 − zt) (17)

with initial conditions ψ0 = v0 = 0, θ0 = 1, ηt = λ and θt + 1 = 1
2 1 + 1 + 4θt

2 . Here 

ΠηtIH(z) = z − 1
n ∑j = 1

n zj is the projection of z to H (the proximal function of IH(x) (Parikh 

and Boyd 2014). Similar to the Sinkhorn’s algorithm, this algorithm can be parallelized, 

since all the operations are row based.

Theorem 8. Given the cost matrix C = (cij), the source measure μ ∈ R+
m and target measure 

ν ∈ R+
n with ∑i = 1

m μi = ∑j = 1
n νj = 1, ψ∗ is the optimizer of the discrete dual Kantorovich 

functional E(ψ), and ψλ
∗ is the optimizer of the smooth Kantorovich functional Eλ(ψ). Then 

the approximation error is

∣ E(ψ∗) − Eλ(ψλ
∗) ∣ ≤ 2λ log n

Proof. Assume ψ∗ and ψλ
∗ are the minimizers of E(ψ) and Eλ(ψ) respectively. Then by the 

inequality in Eqn. (10)

Eλ(ψ∗) ≤ E(ψ∗) ≤ E(ψλ
∗) ≤ Eλ(ψλ

∗) + λ log n
Eλ(ψλ

∗) ≤ Eλ(ψ∗) ≤ E(ψ∗) ≤ Eλ(ψ∗) + λ log n

This shows ∣ Eλ(ψ∗) − Eλ(ψλ
∗) ∣ ≤ λ log n. Removing the indicator functions, we can get
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∣ E(ψ∗) − Eλ(ψλ
∗) ∣

= ∣ E(ψ∗) − Eλ(ψλ
∗) ∣

≤ ∣ E(ψ∗) − Eλ(ψ∗) ∣ + ∣ Eλ(ψ∗) − Eλ(ψλ
∗) ∣

≤ 2λ log n

This also shows that E(ψλ
∗) converges quickly to E(ψ∗) as the decrease of λ. The convergence 

analysis of FISTA is given as follows:

Theorem 9 (Thm 4.4 of (Beck and Teboulle 2009)). Assume (1) g(x) is convex and 

differentiable with dom(g) = ℝn, ∇g is Lipschitz continuous with Lipschitz constant L > 0; 

and (2) ℎ(x) is convex and its proximal function can be evaluated. Then from the 

minimization of f(x) = g(x) + ℎ(x) by FISTA with fixed step size ηt = 1
L , we can get

f(xt) − f(x∗) ≤ 2L
(t + 1)2‖x0 − x∗‖2

(18)

Corollary 10. Suppose λ is fixed and ψ0 = 0, then for any t ≥ 2‖ψλ
∗‖2

λε , we have

Eλ(ψt) − Eλ(ψλ
∗) ≤ ε, (19)

where ψλ
∗ is the optimizer of Eλ(ψ).

Proof. Under the settings of the smoothed Kantorovich problem Eqn. (12), Eλ(ψ) is 

convex and differentiable with ∇2Eλ(ψ) ≺ 1
λI, IH(ψ) is convex and its proximal function 

is given by ΠH(v). Thus, directly applying Thm. 9 and setting L = 1
λ , we can get 

Eλ(ψt) − Eλ(ψλ
∗) ≤ 2

λ(t + 1)2
‖ψλ

∗ − ψ0‖2. Set ψ0 = 0 and 2
λ(t + 1)2

‖ψλ
∗‖2 ≤ ε, then we get that, 

when t ≥ 2‖ψλ
∗‖2

λε , we have Eλ(ψt) − Eλ(ψλ
∗) ≤ ε.

With the above analysis of the convergence of the smooth Kantorovich functional Eλ(ψt), in 

the following we give the convergence analysis of the original Kantorovich functional E(ψt)
in Eqn. (9), where ψt is obtained by FISTA.

Theorem 11. If λ = ε
2 log n , then for any t ≥ 8‖C̄‖2n log n

ϵ , with C̄ = Cmax − λ log νmin, we have

E(ψt) − E(ψ∗) < ε, (20)

where ψt is the solver of Eλ(ψ) after t steps in the iterations in Alg. 1, and ψ∗ is the optimizer 

of E(ψ). Then the total computational complexity is O(n2.5 log n
ε ).
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Algorithm 1: Accelerated gradient descent for OT

1: Input:The cost matrix C = (cij), the corresponding source
weights μ and target weights ν, the approximate parameter λ,
and the step length η .

2: Output:The smoothed Kantorovich functional ψλ .
3: Initialize ψ = (ψ1, ψ2, …, ψn) (0, 0, …, 0) .
4: Initialize z (0, 0, …, 0) .
5: Initialize K = e−C ∕ λ, θ0 = 1
6: repeat

7: vt = eψt ∕ λ .

8: ∇Eλ(ψt) = diag(v)KT (μ ∣ ⊘ Kv) − ν .
9: zt + 1 = ψt − η∇Eλ(ψt)
10: zt + 1 = zt + 1 − mean(zt + 1) .

11: ψt + 1 = zt + 1 + θt − 1
θt + 1

(zt + 1 − zt) .

12: θt + 1 = 1
2(1 + 1 + 4θt

2) .

13: t = t + 1
14: until Converge
15: The OT cost E(ψt) = ∑i + 1

m μiψc(xi) − ∑j = 1
n ψj

tνj .

Proof. We set the initial condition ψ0 = 0. For any given ε > 0, we choose iteration step t, 

such that 2
λ(t + 1)2

‖ψλ
∗‖2 ≤ ε

2 , t ≥ 8‖ψλ
∗‖2 log n
ϵ , where ψλ

∗ is the optimizer of Eλ(ψ). By theorem 

9, we have

Eλ(ψt) − E(ψ∗) ≤ Eλ(ψt) − Eλ(ψ∗)
≤ Eλ(ψt) − Eλ(ψλ

∗)
≤ 2

λ(t + 1)2
‖ψλ

∗‖2

≤ ε
2

By Eqn. (16), we have

E(ψt) − E(ψ∗) = E(ψt) + IH(ψt) − E(ψ∗) − IH(ψ∗)
= (E(ψt) − Eλ(ψt)) + (Eλ(ψt) + IH(ψt))

− (E(ψ∗) + IH(ψ∗))
≤ ∣ E(ψt) − Eλ(ψt) ∣ + (Eλ(ψt) − E(ψ∗))
≤ λ log n + ε

2
= ε

Next we show that ‖ψλ
∗‖2 ≤ n‖C̄‖2 by proving ∣ (ψλ

∗)j ∣ ≤ C̄ ∀j ∈ [n]. According to Eq. (15),
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νj = ∑
i = 1

m
μi

e((ψλ
∗)j − cij) ∕ λ

∑k = 1
n e((ψλ

∗)k − cik) ∕ λ

= ∑
i = 1

m
μi

e(ψλ
∗)j ∕ λ

∑k = 1
n e(ψλ

∗)k ∕ λe(cij − cik) ∕ λ

(21)

Assume (ψλ
∗)max is the maximal element of ψλ

∗, we have 

∑k = 1
n e(ψλ

∗)k ∕ λe(cij − cik) ∕ λ ≥ e(ψλ
∗)max ∕ λe−Cmax ∕ λ, where Cmax is the maximal element of the 

matrix C. Thus,

νj ≤ ∑
i = 1

n
μi

e(ψλ
∗)j ∕ λ

e(ψλ
∗)max ∕ λe−Cmax ∕ λ

= e(ψλ
∗)j ∕ λ

e(ψλ
∗)max ∕ λe−Cmax ∕ λ

Then, (ψλ
∗)max ≤ (ψλ

∗)j + Cmax − λ log vj and

(ψλ
∗)max ≤ 1

n ∑
j = 1

n
{(ψλ

∗)j + Cmax − λ log νj}

≤ Cmax − λ log μmin

(22)

According to the inequality of arithmetic and geometric means, we have 

∑k = 1
n e(ψλ

∗)k ∕ λ ≥ ne
1
n (∑k = 1

n (ψλ
∗)k ∕ λ) = n. Thus, νj ≤ e(ψλ

∗)j ∕ λ

ne−Cmax ∕ λ .

(ψλ
∗)j ≥ λ log n − Cmax + λ log νj

≥ λ log νmin − Cmax
(23)

Combine Eqn. (22) and (23), we have ∣ (ψλ
∗)j ∣ ≤ Cmax − λ log νmin = C̄. Hence, we obtain that 

when t ≥ 8‖C̄‖2n log n
ϵ , E(ψt) − E(ψ∗) < ε.

For each iteration in Eqn. (17), we need O(n2) times of operations, thus total the 

computational complexity of the proposed method is O(n2.5 log n
ε ).

Relationship with Softmax

If there exists an OT map from μ to ν, then each sample xi of the source distribution 

is classified into the corresponding yj = T (xi). If there does not exist an OT map, we can 

only get the OT plan, which can be treated as a soft classification problem: each weighted 

sample xi with weight μi will be sent to the corresponding yjs with weight μi
P ij

∑k = 1
n P ik

 where 

P ij > 0. Here P ij = μi
P ij

∑k = 1
n P ik

 gives the OT plan from the source to the target distribution. 
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The smoothed OT plan given by minimizing the smooth Kantorovich functional can be 

further treated as a relaxed OT plan. Instead of sending the weights of a specific sample 

to several target samples, the smooth solver tends to send each source sample to all of the 

target samples weighted by e(ψj
∗ − cij) ∕ λ

∑k = 1
n e(ψk

∗ − cik) ∕ λ . Sample xj weighted by μi will be sent to yj with 

weight μi
e(ψj

∗ − cij) ∕ λ

∑k = 1
n e(ψk

∗ − cik) ∕ λ .

Relationship with entropy regularized OT problem

The Sinkhorn algorithm is deduced from minimizing the entropy regularized OT problem 

(Cuturi 2013): 〈P , C〉 + λKL(P ∣ μ ⊗ ν) with P ∈ π(μ, ν). Its dual is given by (Genevay et al. 

2016):

W λ(μ, ν) = − min
ψ

{λ ∑
i = 1

m
μi log ∑

j = 1

n
νje(ψj − cij)λ

− ∑
j = 1

n
νjψj + λ}

(24)

with gradient ∂W λ
∂ψj

= ∑i = 1
m μi

νje(ψj − cij) ∕ λ

∑k = 1
n νke(ψk − cik) ∕ λ − νj. With the optimal solver ψ∗, the 

approximate OT plan is given by P ij = μi
νje(ψj − cij) ∕ λ

∑k = 1
n νke(ψk − cik) ∕ λ . We can compare them with 

our gradient Eqn. (13) and approximated OT plan Eqn. (15) to see the subtle differences. 

Actually, by setting ψ ≔ ψ − log ν, the minimizing problem in Eqn. (24) is equivalent to our 

smoothed semi-discrete problem of Eqn. (16) with a different constant term.

Furthermore, if we set u = (u1, u2, …, um)T  with ui = μi
Kiv  in Eqn. (15), the computed 

approximate OT plan can be rewritten as Pλ = diag(u)Kdiag(v), which is the same as the 

form of the Sinkhorn solution (Cuturi 2013). Since the solution of the Sinkhorn algorithm is 

unique, we conclude that the induced approximate optimal transport plan Eqn. (15) by our 

algorithm is equivalent to that of the Sinkhorn.

Experiments

In this section, we investigate the performance of the proposed algorithm under different 

parameters, and then compare it with the Sinkhorn algorithm (Cuturi 2013). In the 

following, we first introduce the various settings of the experiments including the 

parameters, the cost matrix and the evaluation metrics. Then we show the experimental 

results. All of the codes were written in MATLAB with GPU acceleration, including the 

proposed method and the Sinkhorn algorithm (Cuturi 2013). The experiments are also 

conducted on a Windows laptop with Intel Core i7-7700HQ CPU, 16 GB memory and 

NVIDIA GTX 1060Ti GPU.
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Parameters

There are two parameters involved in the proposed algorithm, λ and ηt. The former is used to 

control the approximate accuracy between the Log-Sum-Exp function and the Kantorovich 

potential ψc in Eqn. (11), and the latter controls the step size of the FISTA algorithm in Eqn. 

(17). Basically, smaller λ gives better approximation.

In our experiments, to get λ as small as possible, based on the Property 1 of the Eqn. (6), we 

set the median of the cost matrix C equal to zero, so that the full range of the exponential 

of the floating-point numbers can be used, instead of only the negative part1. Thus we set 

C = C − Cmax + Cmin
2  and call it the translation trick. If the range of C is denoted as R, then 

the accuracy parameter is set to be λ = R
T , where T  is a positive constant. For the FISTA 

algorithm, the ideal step size should be ηt = 1
σmax

, where σmax is the maximal eigenvalue of the 

Hessian matrix ∇2Eλ(ψ) in Eqn. (14). By Nesterov smoothing, we know σmax ≤ 1
λ , so we set 

the step length ηt = ηλ, where η is a constant2. In practice we use (T , η) as control parameters 

instead of (λ, ηt).

Cost Matrix

In the following experiments, we test the performance of the algorithm with 

different parameters under different metrics. Specifically, we set μ = ∑i = 1
m μiδ(x − xi), 

ν = ∑j = 1
n νjδ(y − yj). Note that after the settings of μis and νjs, they are normalized by 

μi = μi

∑k = 1
m μk

 and νj = νj

∑k = 1
n νk

. To build the cost matrix, we use the Euclidean distance, squared 

Euclidean distance, spherical distance, and random cost matrix.

• For Euclidean distance (ED) and the squared Euclidean distance (SED) 

experiments, in experiment 1, xi’s are randomly generated from the Gaussian 

distribution N(31d, Id) and yj’s are randomly sampled from the uniform 

distribution Uni([0, 1]d) − 5. Both μi and νj are randomly generated from the 

uniform distribution Uni([0, 1]). Experiment 3 also uses a similar sampling 

strategy to build the discrete source and target measures. In experiment 2, 

like (Altschuler, Niles-Weed, and Rigollet 2017), we randomly choose one pair 

of images from the MNIST dataset (LeCun and Cortes 2010), and then add 

negligible noise 0.01 to each background pixel with intensity 0. μi and xi (νj and 

yj) are set to be the value and the coordinate of each pixel in the source (target) 

image. Then the Euclidean distance and squared Euclidean distance between xi

and yj are given by c(xi, yj) = ‖xi − yj‖ and c(xi, yj) = ‖xi − yj‖2, respectively.

1For example, if double-precision floating-point format is used in 64-bit processors, the range of the number is about 

2.2251e−308 ∼ 1.7977e+308 when using MATLAB.
2For one thing, if λ is relatively large, only with small step size, the algorithm may run out of the precision range of the processor 

and thus get ’Inf’ or ’NAN’. Thus, η may be far less that 1. For the other thing, we have H ≤ 1
λ maxi(maxiKijvj

K1v ) ≤ 1
λ , we may also 

choose η > 1 when λ itself is small.
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• For the spherical distance (SD) experiment, both μj νj are randomly generated 

from the uniform distribution Uni([0, 1]). xi’s are randomly generated from the 

Gaussian distribution N(31d, Id) and yj’s are randomly generated from the uniform 

distribution Uni([0, 1]d). Then we normalize xi and yj by xi = xi
‖xi‖2

 and yj = yj
‖yj‖2

. 

As a result, both xi’s and yj’s are located on the sphere. The spherical distance is 

given by c(xi, yj) = arccos(〈xi, yj〉).

• For the random distance (RD) matrix experiment, both μi and νj are randomly 

generated from the uniform distribution Uni([0, 1]). Also, to build C, we 

randomly sample cij from the Gaussian distribution N(0, 1), then C is defined 

as C = C − Cmin + 1.0.

Evaluation Metrics

We use two metrics to evaluate the proposed method: the first one is the transport cost, 

which is defined by Eqn. (6) and is given by −E(ψ); and the second is the L1 distance from 

the computed transport plan Pλ to the admissible distribution space π(μ, ν) defined in Eqn. 

(1), and the distance is defined as D(Pλ) = ‖Pλ1 − μ‖1 + ‖Pλ
T1 − ν‖1.

Experiment 1: The influence of different parameters

We test the performance of the proposed algorithm with different parameters under the SED 

and SD with m = n = 100 and d = 5, as shown in Fig. 1. The left column shows the results 

for SED and the right column is the result for SD. The top row illustrates the transport costs 

over iterations, and the bottom row is the distance D(Pλ).

In the top row of Fig. 1, the black lines give the groundtruth transport costs, which are 

computed by linear programming. It is obvious that for the same η, by increasing T
(decreasing λ, see the different types of the lines with the same color), the approximate 

accuracy is improved, and the convergence rate is increased; if T  (equivalently λ) is fixed, 

by increasing η (see the different colors of the lines with the same type), we increase the 

convergence speed.

Experiment 2: Faster Convergence

For the experiments with ED and SED, the distributions come from the MNIST dataset 

(LeCun and Cortes 2010), as illustrated in the Cost Matrix. For the the experiments with 

SD and RD, we set m = n = 500 and d = 5. Then we compare with the Sinkhorn algorithm 

(Cuturi 2013) with respect to both the convergence rate and the approximation accuracy. We 

manually set T = 500 to get a good estimate of the OT cost, and then adjust η to get the 

best convergence speed of the proposed algorithm. For the purpose of fair comparison, we 

use the same cost matrix with the same translation trick and the same λ for the Sinkhorn 

algorithm, where we treat each update of v as one step. We summarize the results in Fig. 2, 

where the green curves represent the groundtruth computed by linear programming, the blue 

curves are for the Sinkhorn algorithm, and the red curves give the results of our method. It 

is obvious that in all of the four experiments, our method achieves faster convergence than 
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the Sinkhorn algorithm. Note that the computed approximate transport plan of the Sinkhorn 

algorithm is intrinsically equivalent to our induced transport plan in Eqn. (15).

In Tab. 1, we report the running time of our method, Sinkhorn (Cuturi 2013), its 

variants algorithms, including Greenkhorn (Altschuler, Niles-Weed, and Rigollet 2017) 

and Screenkhorn (Alaya et al. 2019), and APDAMD (Lin, Ho, and Jordan 2019) for 

the four experiments shown in Fig. 2 with T = 700. The stop condition is set to be 

∣ E(ψt + 1) − E(ψt) ∣ ∕ ∣ E(ψt) ∣ ≤ 10−3. For all of the experiments, we can see that our 

proposed method achieves the fastest convergence.

Experiment 3: Better Accuracy

From Fig. 2, we can observe that −E(ψλ
∗) gives a comparable or better approximate of the OT 

cost than 〈Pλ
∗, C〉 with the same small λ, especially for the Lp cost function c(x, y) = ‖x − y‖p

with p > 1, see the second column of Fig. 2 for an example of p = 2. To achieve ϵ precision, 

〈Pλ
∗, C〉 (equivalent to the Sinkhorn result) needs to set λ = ϵ

4 log n  (Dvurechensky, Gasnikov, 

and Kroshnin 2018), which is smaller than our requirement of λ = ϵ
2 log n  according to Thm. 

11. Thus, with the same λ, the results of our algorithm should be more accurate than the 

Sinkhorn solutions. To verify this point, we give more examples in Tab. 2 with p = 1.5, 2, 

3 and 4. Here we use the discrete measures similar to the squared Euclidean distance as 

stated in the Cost Matrix part, and set m = n = 500, d = 5. From the table, we can see that our 

method obtains more accurate results than Sinkhorn.

Conclusion

In this paper, we propose a novel algorithm based on Nesterov’s smoothing technique 

to improve the accuracy for solving the discrete OT problem. The c-transform of the 

Kantorovich potential is approximated by the smooth Log-Sum-Exp function, and the 

smoothed Kantorovich functional can be solved by FISTA efficiently. Theoretically, the 

computational complexity of the proposed method is given by O(n2.5 log n ∕ ε), which 

is lower than current estimation of the Sinkhorn method. Experimentally, our results 

demonstrate that the proposed method achieves faster convergence and better accuracy than 

the Sinkhorn algorithm.
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Figure 1: 
The performance of the proposed algorithm with different parameters.
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Figure 2: 
Comparison with the Sinkhorn algorithm (Cuturi 2013) under different cost matrix.
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Table 1:

Running time (s) of our method, Sinkhorn (Sink) (Cuturi 2013), Greenkhorn (Green) (Altschuler, Niles-Weed, 

and Rigollet 2017), Screenkhorn (Screen) (Alaya et al. 2019) and APDAMD (Lin, Ho, and Jordan 2019).

Sink Green Screen APDAMD Ours

ED 0.0596 0.0923 0.0541 3.76 0.0404

SED 0.0431 0.0870 0.0328 3.21 0.0197

SD 0.0564 0.0862 0.0400 2.29 0.0142

RD 0.0374 0.0726 0.0313 2.88 0.0227
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Table 2:

Comparison among the OT cost (GT) by linear programming, the Sinkhorn results (Cuturi 2013) denoted 

as ’Sink’ and the results of the proposed method denoted as ’Ours’ with T = 500 and different p.

p GT Sink Ours ∣ Sink‐GT ∣ ∣ Ours‐GT ∣
1.5 103.33 103.51 103.27 0.18 0.06

2 281.7 282.5 281.6 0.8 0.1

3 2189.8 2197.1 2187.5 7.3 2.3

4 16951.4 17038.5 16932.0 87.1 19.4
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