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Abstract

In many applications, it is of interest to assess the relative contribution of features (or subsets 

of features) toward the goal of predicting a response — in other words, to gauge the variable 

importance of features. Most recent work on variable importance assessment has focused on 

describing the importance of features within the confines of a given prediction algorithm. 

However, such assessment does not necessarily characterize the prediction potential of features, 

and may provide a misleading reflection of the intrinsic value of these features. To address 

this limitation, we propose a general framework for nonparametric inference on interpretable 

algorithm-agnostic variable importance. We define variable importance as a population-level 

contrast between the oracle predictiveness of all available features versus all features except those 

under consideration. We propose a nonparametric efficient estimation procedure that allows the 

construction of valid confidence intervals, even when machine learning techniques are used. We 

also outline a valid strategy for testing the null importance hypothesis. Through simulations, we 

show that our proposal has good operating characteristics, and we illustrate its use with data from 

a study of an antibody against HIV-1 infection.
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1 Introduction

In many scientific problems, it is of interest to assess the contribution of features toward the 

objective of predicting a response, a notion that has been referred to as variable importance. 

Various approaches for quantifying variable importance have been proposed in the literature. 

In recent applications, variable importance has often been taken to reflect the extent to 

which a given algorithm makes use of particular features in rendering predictions (Breiman, 

2001; Lundberg and Lee, 2017; Fisher et al., 2018; Murdoch et al., 2019). In this case, the 
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goal is thus to characterize a fixed algorithm. While this notion of variable importance can 

help provide greater transparency to otherwise opaque black-box prediction tools (Guidotti 

et al., 2018; Murdoch et al., 2019), it does not quantify the algorithm-agnostic relevance 

of features for the sake of prediction. Thus, a feature that holds great value for prediction 

may be deemed unimportant simply because it plays a minimal role in the given algorithm. 

This motivates the consideration of approaches in which the focus is instead on measuring 

the population-level predictiveness potential of features, which we can refer to as intrinsic 
variable importance. By definition, any measure of intrinsic variable importance should not 

involve the external specification of a particular prediction algorithm.

Traditionally, intrinsic variable importance has been considered in the context of simple 

population models (e.g., linear models) (see, e.g., Grömping, 2006; Nathans et al., 2012). 

For such models, both the prediction algorithm and the associated variable importance 

measure (VIM) are easy to compute from model outputs and straightforward to interpret. 

Common VIMs based on simple models include, for example, the difference in R2 and 

deviance values based on (generalized) linear models (Nelder and Wedderburn, 1972; 

Grömping, 2006). However, overly simplistic models can lead to misleading estimates 

of intrinsic variable importance with little population relevance. In an effort to improve 

prediction performance, complex prediction algorithms, including machine learning tools, 

have been used as a substitute for algorithms resulting from simple population models. 

Many variable importance measures have been proposed for specific algorithms (see, e.g., 

reviews of the literature in Wei et al., 2015, Fisher et al., 2018, and Murdoch et al., 

2019), with a particularly rich literature on variable importance for random forests (see, 

e.g., Breiman, 2001; Strobl et al., 2007; Ishwaran, 2007; Grömping, 2009) and neural 

networks (see, e.g., Garson, 1991; Bach et al., 2015; Shrikumar et al., 2017; Sundararajan 

et al., 2017). Several recent proposals aim to describe a broad class of fixed algorithms 

(LeDell et al., 2015; Ribeiro et al., 2016; Benkeser et al., 2018; Lundberg and Lee, 

2017; Aas et al., 2019). However, while some measures have been recently described for 

algorithm-independent variable importance (see, e.g., van der Laan, 2006; Lei et al., 2017; 

Williamson et al., 2020), there has been limited work on developing broad frameworks for 

algorithm-independent variable importance with corresponding theory for inference using 

machine learning tools.

In this article, we seek to circumvent the limitations of model-based approaches to assessing 

intrinsic variable importance. We provide a unified nonparametric approach to formulate 

variable importance as a model-agnostic population parameter, that is, a summary of the true 

but unknown data-generating mechanism. The VIMs we consider are defined as a contrast 

between the predictiveness of the best possible prediction function based on all available 

features versus all features except those under consideration. We allow predictiveness to be 

defined arbitrarily as relevant and appropriate for the task at hand, as we illustrate in several 

examples. In this framework, once a measure of predictiveness has been selected, estimation 

of VIM values from data can be carried out similarly as for any other statistical parameter of 

interest. This task involves estimation of oracle prediction functions based on all the features 

or various subsets of features, and the use of machine learning algorithms is advantageous 

for maximizing prediction performance for this purpose. Because we consider variable 

importance as a summary of the data-generating mechanism rather than a property of any 
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particular prediction algorithm, its definition and implementation does not hinge on the 

use of any particular prediction algorithm. This perspective contrasts with the model-based 

approach, where the probabilistic population-level mechanism that generates data and the 

algorithm that makes predictions based on data are usually entangled.

In Williamson et al. (2020), we focused on an application of the proposed framework 

to infer about a model-agnostic R2-based variable importance, for which we described a 

nonparametric efficient estimator. We also presented the construction of valid confidence 

intervals and hypothesis tests for features with some importance but found it challenging 

to assess features with zero-importance. Here, we propose a general framework to study 

general predictiveness measures and propose a valid strategy for hypothesis testing. Our 

framework allows us to tackle cases involving complex predictiveness measures (e.g., 

defined in terms of counterfactual outcomes or involving missing data). It can be used 

to describe the importance of groups of variables as easily as individual variables. Our 

framework formally incorporates the use of machine learning tools to construct efficient 

estimators and perform valid statistical inference. We emphasize that the latter is especially 

important if high-impact decisions will be made on the basis of the resulting VIM estimates.

This article is organized as follows. In Section 2, we define variable importance as a contrast 

in population-level oracle predictiveness and provide simple examples. In Section 3, we 

construct an asymptotically efficient VIM estimator for a large class of measures using 

flexibly estimated prediction algorithms (e.g., predictive models constructed via machine 

learning methods) and provide a valid test of the zero-importance null hypothesis. These 

results allow us to analyze nonparametric extensions of common measures, including the 

area under the receiver operating characteristic curve (AUC) and classification accuracy. In 

Section 4, we explore an extension to deal with more complex predictiveness measures. 

In Section 5, we illustrate the use of the proposed approach in numerical experiments and 

detail its operating characteristics. Finally, we study the importance of various HIV-1 viral 

protein sequence features in predicting resistance to neutralization by an antibody in Section 

6, and provide concluding remarks in Section 7. All technical details as well as results from 

additional simulation studies and data analyses can be found in the Supplementary Material.

2 Variable importance

2.1 Data structure and notation

Suppose that observations Z1, …, Zn are drawn independently from a data-generating 

distribution P0 known only to belong to a rich (nonparametric) class ℳ of distributions. 

For concreteness, suppose that Zi = (Xi, Yi), where Xi = (Xi1, …, Xip) ∈ X ⊆ ℝp is a covariate 

vector and Y i ∈ Y ⊆ ℝ is the outcome. Here, X and Y denote the sample spaces of X and Y, 

respectively. Below, we will use the shorthand notation E0 to refer to expectation under P0.

We denote by s ⊆ {1, …, p} the index set of the covariate subgroup of interest, and for any 

p-dimensional vector w, we refer to the elements of w with index in ℓ and not in ℓ as wℓ 
and w−ℓ, respectively. We also denote by Xs and X−s the sample space of Xs and X−s, 

respectively. Finally, we consider a rich class ℱ of functions from X to Y endowed with a 
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norm ∥ ⋅ ∥ℱ, and define the subset ℱs ≔ {f ∈ ℱ : f(u) = f(v) for all u, v ∈ X satisfying u−s 

= v−s} of functions in ℱ whose evaluation ignores elements of the input x with index in s. 

In all examples we consider, we will take ℱ to be essentially unrestricted up to regularity 

conditions. Common choices include the class of all P0-square-integrable functions from 

X to Y endowed with L2(P0)-norm f f 2, P0 ≔ [∫ {f(x)}2dP0(x)]1/2
, and of all bounded 

functions from X to Y endowed with the supremum norm f f ∞, X ≔ supx ∈ X|f(x)|.

2.2 Oracle predictiveness and variable importance

We now detail how we define variable importance as a population parameter. Suppose 

that V(f, P) is a measure of the predictiveness of a given candidate prediction function 

f ∈ ℱ when P is the true data-generating distribution, with large values of V(f, P) implying 

high predictiveness. Examples of predictiveness measures — including those based on R2, 

deviance, the area under the ROC curve, and classification accuracy — are discussed in 

detail in Section 2.3. If the true data-generating mechanism P0 were known, a natural 

candidate prediction function would be any P0-population maximizer f0 of predictiveness 

over the class ℱ:

f0 ∈ argmax
f ∈ ℱ

V (f, P0) . (1)

This population maximizer can be viewed as the oracle prediction function within ℱ under 

P0 relative to V. In particular, the definition of f0 depends on the chosen predictiveness 

measure and on the data-generating mechanism. It can also depend on the choice of function 

class, although in contexts we consider this is not the case as long as ℱ is sufficiently rich. It 

is often true that f0 is the underlying target of machine learning-based prediction algorithms 

or a transformation thereof, which facilitates the integration of machine learning tools in the 

estimation of f0. The oracle predictiveness V(f0, P0) provides a measure of total prediction 

potential under P0. Similarly, defining the oracle prediction function f0,s that maximizes V(f, 
P0) over all f ∈ ℱs, the residual oracle predictiveness V(f0,s, P0) quantifies the remaining 

prediction potential after exclusion of covariate features with index in s.

We define the population-level importance of the variable (or subgroup of variables) Xs 

relative to the full covariate vector X as the amount of oracle predictiveness lost by 

excluding Xs from X. In other words, we consider the VIM value defined as

ψ0, s ≔ V (f0, P0) − V (f0, s, P0) . (2)

By construction, we note that ψ0, s ≥ 0. Whether or not the loss in oracle predictiveness 

is sufficiently large to confer meaningful importance to a given subgroup of covariates 

depends on context. Once more, we emphasize that the definition of ψ0,s involves the oracle 

prediction function within ℱ, and if ℱ is large enough, this definition is agnostic to this 

choice.
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2.3 Examples of predictiveness measures

We now illustrate our definition of variable importance by listing common VIMs that are in 

this framework. As we will see, the conditional mean μ0 : x E0(Y |X = x) plays a prominent 

role in the examples below. This is convenient since μ0 is the implicit target of estimation for 

many standard machine learning algorithms for predictive modeling.

Example 1: R2—The R2 predictiveness measure is defined as 

V (f, P0) ≔ 1 − E0{Y − f(X)}2/σ0
2, where we set σ0

2 ≔ E0{Y − E0(Y )}2 = E0[Y − E0{μ0(X)}]2, the 

variance of Y under P0. This measure quantifies the proportion of variability in Y explained 

by f(X) under P0. Since μ0 is the unrestricted minimizer of the mean squared error mapping 

f E0{Y − f(X)}2, the optimizer of V(f, P0) is given by f0 = μ0 as long as μ0 ∈ ℱ.

Example 2: deviance—When Y is binary, the deviance predictiveness measure is defined 

as

V (f, P0) = 1 − E0[Y log f(X) + (1 − Y )log{1 − f(X)}]
π0 log π0 + (1 − π0)log(1 − π0) ,

where π0 ≔ P0(Y = 1) is the marginal success probability of Y under P0. This measure 

quantifies in a Kullback-Leibler sense the information gain from using X to predict Y 
relative to the null model that does not use X at all. Again, because the conditional mean 

μ0 is the unconstrained population maximizer of the average log-likelihood, we find the 

optimizer of f V (f, P0) to be f0 = μ0 for any rich enough ℱ. This result similarly holds for 

a multinomial extension of deviance.

Example 3: classification accuracy—An alternative predictiveness measure in the 

context of binary outcomes is classification accuracy, defined as V (f, P0) = P0{Y = f(X)}. 

This measure quantifies how often the prediction f(X) coincides with Y, and is commonly 

used in classification problems. As shown in the Supplementary Material, the Bayes 

classifier b0 : x I{μ0(x) > 1/2} is the unconstrained maximizer of f V (f, P0), and so, f0 = 

b0 as long as b0 ∈ ℱ.

Example 4: area under the ROC curve—The area under the receiver operating 

characteristic curve (AUC) is another popular predictiveness measure for use when Y is 

binary. The AUC corresponding to f is given by V (f, P0) = P0{f(X1) < f(X2)|Y 1 = 0, Y 2 = 1}, 

where (X1, Y1) and (X2, Y2) represent independent draws from P0. As shown in the 

Supplementary Material, the unrestricted maximizer of f V (f, P0) is the population mean 

μ0, so that once more f0 = μ0 provided μ0 ∈ ℱ.

In all examples above, the unrestricted oracle prediction function f0 equals or is a simple 

transformation of the conditional mean function μ0. The unrestricted oracle prediction 

function f0,s based on all covariates except those with index in s is obtained similarly but 

with μ0 replaced by μ0, s : x E0(Y |X−s = x−s).
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3 Estimation and inference

3.1 Plug-in estimation

In our framework, the variable importance of Xs relative to X under P0, denoted ψ0,s, is a 

population parameter. Thus, assessing variable importance reduces to the task of inferring 

about ψ0,s from the available data. More formally, our goal is to construct a nonparametric 

(asymptotically) efficient estimator of ψ0,s using independent observations Z1, …, Zn from 

P0. Definition (2) suggests considering the plug-in estimator

ψn, s ≔ V (fn, Pn) − V (fn, s, Pn), (3)

where Pn is the empirical distribution based on Z1, …, Zn, and fn and fn,s are estimators of 

the population optimizers f0 and f0,s, respectively. Often, fn and fn,s are obtained by building 

a predictive model for outcome Y using all features in X or only those features in X−s, 

respectively — this might be done, for example, using tree-based methods, deep learning, 

or other machine learning algorithms, including tuning via cross-validation. Using flexible 

learning techniques to construct fn and fn,s minimizes the risk of systematic bias due to 

model misspecification.

As an illustration of the form of the resulting plug-in estimates, we note that, 

in the case of classification accuracy (Example 3), the VIM estimate is given by 

ψn, s = 1
n ∑i = 1

n I{Y i = fn(Xi)} − 1
n ∑i = 1

n I{Y i = fn, s(Xi)}, where fn and fn,s are estimates of the 

oracle prediction functions f0 and f0,s, respectively. Sensible estimates of f0 and f0,s are given 

by

fn : x I{μn(x) > 0.5} and fn, s : x I{μn, s(x) > 0.5},

where μn and μn,s are estimates of conditional mean functions μ0 and μ0,s, respectively. We 

provide the explicit form of ψn,s for all examples in the Supplementary Material.

The simplicity of the plug-in construction makes it particularly appealing. However, the 

literature on semiparametric inference and targeted learning suggests that such naively 

constructed plug-in estimators may fail to even be consistent at rate n−1/2, let alone efficient, 

if they involve nuisance functions — in this case, f0 and f0,s — that are flexibly estimated. 

This phenomenon is due to the fact that excess bias is often inherited by the plug-in 

estimator from the nuisance estimators. Generally, this fact would motivate the use of 

debiasing procedures, such as the one-step correction or targeted maximum likelihood 

estimation (see, e.g., Pfanzagl, 1982; van der Laan and Rose, 2011). However, in Williamson 

et al. (2020) we noted the intriguing fact that the plug-in estimator of the R2 VIM did not 

require debiasing, being itself already efficient. Below, we show that the same holds true 

for a large class of VIMs. These plug-in estimators therefore benefit from a combination of 

simplicity and statistical optimality.
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3.2 Large-sample properties

We now study conditions under which ψn,s is an asymptotically linear and nonparametric 

efficient estimator of the VIM value ψ0,s, and we describe how to conduct valid inference 

on ψ0,s. Below, we explicitly focus on inference for the oracle predictiveness value 

v0 ≔ V (f0, P0) based on the plug-in estimator vn ≔ V (fn, Pn), since results can readily be 

extended to the residual oracle predictiveness value v0, s ≔ V (f0, s, P0) and thus to the VIM 

value ψ0,s. The behavior of vn can be studied by first decomposing

vn − v0 = {V (f0, Pn) − V (f0, P0)} + {V (fn, P0) − V (f0, P0)} + rn, (4)

where rn ≔ [{V (fn, Pn) − V (fn, P0)} − {V (f0, Pn) − V (f0, P0)}]. Each term on the right-hand side 

of (4) can be studied separately to determine the large-sample properties of vn. The first 

term is the contribution from having had to estimate the second argument value P0. The 

third term is a difference-of-differences remainder term that can be expected to tend to zero 

in probability at a rate faster than n−1/2 under some conditions. We must pay particular 

attention to the second term, which represents the contribution from having had to estimate 

the first argument value f0. A priori, we may expect this term to dominate since the rate at 

which fn – f0 tends to zero (in suitable norms) is generally slower than n−1/2 when flexible 

learning techniques are used. However, because f0 is a maximizer of f V (f, P0) over ℱ, 

we may reasonably expect that

d
dϵV (f0, ϵ, P0) ϵ = 0 = 0

for any smooth path {f0, ϵ : − ∞ < ϵ < + ∞} ⊂ ℱ through f0 at ϵ = 0, and thus that there is 

no first-order contribution of V (fn, P0) − V (f0, P0) to the behavior of vn − v0. Under regularity 

conditions, this indeed turns out to be the case, and thus, if fn − f0 does not tend to zero too 

slowly, the second term will be asymptotically negligible.

Our first result will make use of several conditions requiring additional notation. 

Below, we define the linear space ℛ ≔ {c(P1 − P2) : c ∈ [0, ∞), P1, P2 ∈ ℳ} of finite signed 

measures generated by ℳ. For any R ∈ ℛ, say R = c(P1 – P2), we refer to the 

supremum norm R ∞ ≔ c ⋅ supz|F1(z) − F2(z)|, where F1 and F2 are the distribution functions 

corresponding to P1 and P2, respectively. Furthermore, we denote by V̇ (f, P0; ℎ) the Gâteaux 

derivative of P V (f, P ) at P0 in the direction ℎ ∈ ℛ, and define the random function 

gn : z V̇ (fn, P0; δz − P0) − V̇ (f0, P0; δz − P0), where δz is the degenerate distribution on {z}. 

For any P ∈ ℳ, we also denote by fP any P-population maximizer of f V (f, P ) over ℱ. 

Finally, we define the following sets of conditions, classified as being either deterministic 

(A) or stochastic (B) in nature:

(A1) (optimality) there exists some constant C > 0 such that, for each sequence 

f1, f2, ⋯ ∈ ℱ such that fj − f0 ℱ 0, |V (fj, P0) − V (f0, P0)| ≤ C fj − f0 ℱ
2  for each 

j large enough;
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(A2) (differentiability) there exists some constant δ > 0 such that for each sequence 

ϵ1, ϵ2, … ∈ ℝ and ℎ, ℎ1, ℎ2, … ∈ ℛ satisfying that ϵj 0 and ℎj − ℎ ∞ 0, it holds 

that

sup
f ∈ ℱ: f − f0 ℱ < δ

V (f, P0 + ϵjℎj) − V (f, P0)
ϵj

− V̇ (f, P0; ℎj) 0 ;

(A3) (continuity of optimization) fP0 + ϵℎ − f0 ℱ = O(ϵ) for each ℎ ∈ ℛ;

(A4) (continuity of derivative) f V̇ (f, P0; ℎ) is continuous at f0 relative to ∥ ⋅ ∥ℱ for 

each ℎ ∈ ℛ;

(B1) (minimum rate of convergence) fn − f0 ℱ = oP(n−1/4);

(B2) (weak consistency)∫ {gn(z)}2dP0(z) = oP(1);

(B3) (limited complexity) there exists some P0-Donsker class G0 such that 

P0(gn ∈ G0) 1.

Theorem 1. If conditions (A1)–(A2) and (B1)–(B3) hold, then vn is an asymptotically linear 
estimator of v0 with influence function equal to ϕ0 : z V̇ (f0, P0; δz − P0), that is,

vn − v0 = 1
n ∑

i = 1

n
V̇ (f0, P0; δZi − P0) + oP(n−1/2)

under sampling from P0. If conditions (A3)–(A4) also hold, then ϕ0 coincides with the 
nonparametric efficient influence function (EIF) of P V (fP, P ) at P0, and so, vn is 

nonparametric efficient.

This result implies, in particular, that the plug-in estimator vn of v0 is often consistent 

as well as asymptotically normal and efficient. A similar theorem applies to the study 

of the estimator vn, s ≔ V (fn, s, Pn) of residual oracle predictiveness v0,s upon replacing 

instances of fn, f0 and ℱ by fn,s, f0,s and ℱs in the conditions above, and denoting the 

resulting influence function by ϕ0,s. Thus, under the collection of all such conditions, 

the estimator ψn,s of the VIM value ψ0,s is asymptotically linear with influence function 

φ0, s : z V̇ (f0, P0; δz − P0) − V̇ (f0, s, P0; δz − P0) and nonparametric efficient. If ψ0, s > 0 and 

0 < τ0, s
2 ≔ E0{φ0, s

2 (Z)} < ∞, this suggests that the asymptotic variance of n1/2(ψn, s − ψ0, s) can 

be estimated by

τn, s
2 ≔ 1

n ∑
i = 1

n
V̇ (fn, Pn; δZi − Pn) − V̇ (fn, s, Pn; δZi − Pn)

2
,

and that (ψn, s − z1 − α/2τn, sn−1/2, ψn, s + z1 − α/2τn, sn−1/2) is an interval for ψ0,s with asymptotic 

coverage 1−α, where z1−α/2 denotes the (1−α/2)th quantile of the standard normal 

distribution. This procedure is summarized in Algorithm 1. We discuss settings in which 

ψ0,s = 0 (and therefore τ0, s
2 = 0) in Section 3.4.
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Algorithm 1

Inference on VIM value ψ0,s (valid in non-null settings)

  1: construct estimators fn of f0 and fn,s of f0,s;

  2: construct empirical distribution estimator Pn of P0;

  3: compute estimator ψn, s ≔ V (fn, Pn) − V (fn, s, Pn) of ψ0,s;

  4: compute estimator

        τn, s
2 ≔ 1

n ∑i = 1
n V̇ (fn, Pn; δZi − Pn) − V̇ (fn, s, Pn; δZi − Pn)

2

of the asymptotic variance τ0, s
2

 of n1/2(ψn, s − ψ0, s).

Condition (A1) ensures that there is no first-order contribution that results from estimation 

of f0. As indicated above, this condition can generally be established as a consequence of 

the optimality of f0. However, in each particular problem, appropriate regularity conditions 

on P0 and ℱ must be determined for this condition to hold. We have provided details for 

Examples 1–4 in the Supplementary Material, though we summarize our findings here. In 

Example 1, we have that |V (f, P0) − V (f0, P0)| = E0{f(X) − f0(X)}2/σ0
2 as long as μ0 ∈ ℱ, and 

so, condition (A1) holds with C = 1/σ0
2 and ∥ ⋅ ∥ℱ taken to be either the L2(P0) or supremum 

norm. In Example 2, provided that all elements of ℱ are bounded between γ and 1 − γ 
for some γ ∈ (0, 1) and that μ0 ∈ ℱ, then condition (A1) holds with C = {γ log(1 − γ)}−1 and 

∥ ⋅ ∥ℱ taken to be either the L2(P0) or supremum norm. In Example 3, condition (A1) holds 

for C = 4κ and ∥ ⋅ ∥ℱ the supremum norm provided the classification margin condition 

P0{|μ0(X) − 0.5| ≤ t} ≤ κt holds for some 0 < κ < ∞ and all t small. Similarly, in Example 4, 

condition (A1) holds for C = 2κ/{π0(1 − π0)} with π0 : = P0(Y = 1) and ∥ ⋅ ∥ℱ the supremum 

norm provided the margin condition P0{|μ0(X1) − μ0(X2)| ≤ t} ≤ κt holds for some 0 < κ < ∞ 
and all t small, where X1 and X2 are independent draws from P0.

Condition (A2) is a form of locally uniform Hadamard differentiability of P V (f0, P ) at 

P0 in a neighborhood of f0. It can be readily verified in Examples 1–4; in fact, in Examples 

1–3, this condition holds for any δ > 0. Condition (A3) requires that the optimizer fP 

vary smoothly in P around P0, and is often straightforward to verify when fP has a closed 

analytic form. Condition (A4) instead requires that the Hadamard derivative of P V (f, P )
at P0 vary smoothly in f around f0. Condition (B1) requires that f0 be estimated at a 

sufficiently fast rate in order for second-order terms to be asymptotically negligible, while 

condition (B2) states that a particular parameter-specific functional of fn must tend to the 

corresponding evaluation of f0, and is thus implied by consistency of fn with respect to some 

norm under which this functional is continuous. Condition (B3) restricts the complexity of 

the algorithm used to generate fn. We note that conditions (B1)–(B3) depend not only on 

the predictiveness measure chosen and on the true data-generating mechanism but also on 

properties of the estimator of the oracle prediction function.
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3.3 Implementation based on cross-fitting

Condition (B3) puts constraints on the complexity of the algorithm used to generate fn. 

This condition is prone to violations when flexible machine learning tools are employed, as 

discussed in Zheng and van der Laan (2011) and Chernozhukov et al. (2018), for example. 

However, it can be eliminated by dividing the entire dataset into two parts (say, training 

and testing sets), estimating f0 using the training data, and then evaluating the predictiveness 

measure on the test data. This readily extends to K-fold cross-fitting. To construct a cross-

fitted estimator in the current context, we begin by randomly partitioning the dataset into K 
subsets of roughly equal size. Setting aside one such subset, we construct an estimator fk,n of 

f0 based on the bulk of the data, and then store vk, n ≔ V (fk, n, Pk, n), where Pk,n is the empirical 

distribution estimator based on the data set aside. We note that fk,n and Pk,n are therefore 

estimated using non-overlapping subsets of the data. After repeating this operation for each 

of the K subsets, we finally construct the cross-fitted estimator vn
∗ ≔ 1

K ∑k = 1
n vk, n of v0.

To describe the large-sample behavior of vn
*, we require an adaptation of the previously 

defined conditions (B1) and (B2) to the context of cross-fitted estimators. Below, the random 

function gk,n is defined identically as gn but with fn replaced by fk,n.

(B1’) (minimum rate of convergence) fk, n − f0 ℱ = oP(n−1/4) for each k ∈ {1, …, K};

(B2’) (weak consistency) ∫ {gk, n(z)}2dP0(z) = oP(1) for each k ∈ {1, …, K}.

The resulting cross-fit estimator vn
* enjoys desirable large-sample properties under weaker 

conditions than those imposed on vn, as the theorem below states. In particular, condition 

(B3), which in practice limits the complexity of machine learning tools used to estimate f0, 

is no longer required.

Theorem 2. If conditions (A1)–(A2) and (B1’)–(B2’) hold, then vn
* is an asymptotically 

linear estimator of v0 with influence function equal to ϕ0 : x V̇ (f0, P0; δz − P0), that is,

vn
∗ − v0 = 1

n ∑
i = 1

n
V̇ (f0, P0; δZi − P0) + oP(n−1/2)

under sampling from P0. If conditions (A3)–(A4) also hold, then vn
* is nonparametric 

efficient.

The cross-fitted construction can be used to obtain an improved estimator vn, s
*  of v0,s as 

well, thereby resulting in a cross-fitted estimator ψn, s
∗ ≔ vn

∗ − vn, s
∗  of the VIM value ψ0,s. Cross-

fitting can also be used to obtain an improved estimator τn, s, ∗
2  of the asymptotic variance 

τ0, s
2 . We summarize this construction in Algorithm 2, and provide the explicit form of ψn, s

*

for Examples 1–4 in the Supplementary Material. As before, Theorem 2 readily provides 

conditions under which vn, s
*  is an asymptotically linear and nonparametric efficient estimator 

of v0,s, and so, under which ψn, s
*  is an asymptotically linear and nonparametric efficient 

estimator of the VIM value ψ0,s. Based on these theoretical results as well as numerical 
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experiments, we recommend this implementation whenever machine learning tools are used 

to estimate f0 and f0,s.

Algorithm 2

Cross-fitted inference on VIM value ψ0,s (valid in non-null settings)

  1: generate Bn ∈ {1, …, K}n by sampling uniformly from {1, …, K} with replacement, and for j = 1, …, K, 
denote by Dj the subset of observations with index in Sj ≔ {i : Bn, i = j};

  2: fork = 1, …, Kdo

  3: using only data in ∪j≠kDj, construct estimators fk,n of f0 and fk,n,s of f0,s;

  4: using only data in Dk construct empirical distribution estimator Pk,n of P0;

  5: with nk ≔ ∑i = 1
n I{i ∈ Sk}, compute ψk, n, s: = V (fk, n, Pk, n) − V (fk, n, s, Pk, n) and

     τk, n, s
2 ≔ 1

nk
∑i ∈ Sk {V̇ (fk, n, Pk, n; δZi − Pk, n) − V̇ (fk, n, s, Pk, n; δZi − Pk, n)}2;

  6: end for

  7:
compute estimator ψn, s

∗ ≔ 1
K ∑k = 1

K ψk, n, s of ψ0,s;

  8:
compute estimator τn, s, ∗

2 : = 1
K ∑k = 1

K τk, n, s
2

 of the asymptotic variance τ0, s
2

 of n1/2(ψn, s
* − ψ0, s).

3.4 Inference under the zero-importance null hypothesis

When ψ0,s = 0, in which case the variable group considered has null importance, the 

influence function of ψn,s is identically zero. In these cases, even after standardization, ψn,s 

generally does not tend to a non-degenerate law. As such, deriving an implementable test of 

the null hypothesis ψ0,s = 0 or a confidence interval valid even when ψ0,s = 0 is difficult. 

In such cases, standard Wald-type confidence intervals and tests based on τn, s
2  will typically 

have incorrect coverage or type I error, as illustrated in numerical simulations reported in 

Williamson et al. (2020) While in parametric settings n-rate inference is possible under this 

type of degeneracy, this is not expected to be the case in nonparametric models, because the 

second-order contribution from estimation of f0 and f0,s will generally have a rate slower 

than n−1.

We note that, although ψn,s has degenerate behavior under the null, each of vn and vn,s 

are asymptotically linear with non-degenerate (but possibly identical) influence functions. 

Except for extreme cases in which the entire set of covariates has null predictiveness, we 

may leverage this fact to circumvent null degeneracy via sample-splitting. Indeed, if vn and 

vn,s are constructed using different subsets of the data, then the resulting estimator ψn,s is 

asymptotically linear with a non-degenerate influence function even if ψ0,s = 0 so that a 

valid Wald test of the strict null H0 : ψ0,s = 0 versus H1 : ψ0,s > 0 can be constructed 

using ψn,s and an estimator of the standard error of ψn,s. Of course, the same holds for 

the corresponding cross-fitted procedures, as we consider below. We emphasize here that 

sample-splitting and cross-fitting are distinct operations with distinct goals. Sample-splitting 

is used to ensure valid inference under the zero-importance null hypothesis, whereas cross-

fitting is used to eliminate the need for Donsker class conditions, which otherwise limit 

how flexible the learning strategies for estimating the oracle prediction functions can be. 
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Sample-splitting and cross-fitting can be used simultaneously — Figure 1 provides an 

illustration of the subdivision of a dataset when equal subsets are used for sample-splitting 

and six splits are used for cross-fitting.

In practice, a group of variables may be considered scientifically unimportant even when 

ψ0,s is nonzero but small, yet such grouping would be deemed statistically significant in 

large enough samples. For this reason, given a threshold β > 0, it may be more scientifically 

appropriate to consider testing the β-null H0 : ψ0,s ∈ [0, β] versus its complement alternative 

H1 : ψ0,s > β. The β-null approaches the strict null as β decreases to 0. The idea of sample-

splitting also allows us to tackle β-null testing. Suppose that mutually exclusive portions of 

the dataset, say of respective sizes n—ns and ns, are used to construct vn
* and vn, s

* . Suppose 

further that ηn
2 and ηn, s

2  are consistent estimators of η0
2 ≔ E0{ϕ0(Z)}2 and η0, s

2 ≔ E0{ϕ0, s(Z)}2, 

respectively. Then, provided v0 > 0, we may consider rejecting the β-null hypothesis H0 in 

favor of its complement H1 if and only if

tn ≔ ωn, s
−1/2 (vn

∗ − vn, s
∗ − β) > z1 − α, (5)

where ωn, s ≔ ηn
2/(n − ns) + ηn, s

2 /ns and z1−α is the (1 − α)th quantile of the standard normal 

distribution. The implementation of the resulting test, including computation of the 

corresponding p-value, is summarized in Algorithm 3. Its validity is guaranteed under 

conditions of Theorem 2 directly applied on the split used to estimate v0 and modified 

appropriately (by replacing instances of fn, f0 and ℱ by fn,s, f0,s and ℱs in all conditions) to 

the split used to estimate v0,s. We note that, although there is no degeneracy under the β-null 

whenever ψ0,s ∈ (0, β), sample-splitting is still required for proper type I error control since 

the strict null ψ0,s = 0 is contained in the β-null and must therefore be guarded against. We 

emphasize here that the use of distinct subsets of the data is critical for constructing vn
* and 

vn, s
∗ . If instead ψ0,s = 0 and vn

* and vn, s
*  were constructed using the same data, the behavior 

of any testing procedure based on an estimator κn,s of the standard error of ψn,s would 

depend on the relative rates of convergence to zero of both ψn,s and κn,s. In particular, this 

would lead to either uncontrolled type I error or type I error tending to zero depending on 

the procedures used to obtain fn and fn,s. Inference based on a cross-fitted version of this 

sample-split procedure is described in Algorithm 3.

The above testing procedure can be readily inverted to yield a one-sided confidence interval 

for ψ0,s. Specifically, under regularity conditions and provided v0 > 0 the random interval 

(vn
* − vn, s

* − z1 − αωn, s
1/2, + ∞) contains ψ0,s with probability no less than 1 − α asymptotically, 

even when ψ0,s = 0. Then, rejecting the null hypothesis H0 is equivalent to verifying that 

zero is contained in this one-sided interval. A two-sided confidence interval is instead 

given by (vn
∗ − vn, s

∗ − z1 − α/2ωn, s
1/2, vn

∗ − vn, s
∗ + z1 − α/2ωn, s

1/2). While the latter interval has the advantage 

of giving both a lower and upper bound on possible values for ψ0,s supported by the data, 

using it for testing purposes necessarily results in a reduction in power since the null value 

of ψ0,s is at the edge of the parameter space.
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4 Extensions to more complex settings

In all examples studied thus far, the primary role P plays in V(f, P) is to indicate the 

population with respect to which a particular measure of prediction performance should be 

averaged. In these

Algorithm 3

Sample-split, cross-fitted inference on VIM value ψ0,s

  1: generate Bn ∈ {1, …, 2K}n by sampling uniformly from {1, …, 2K} with replacement, and for j = 1, …, 2K, 
denote by Dj the set of observations with index in Sj ≔ {i : Bn, i = j} and nj ≔ |Dj|;

  2: fork = 1, …, 2Kdo

  3: using only data in ∪j ≠ kDj, construct estimators fk,n of f0 and fk,n,s of f0,s;

  4: using only data in Dk, construct estimator Pn,k of P0;

  5:
if k is odd, compute ηk, n

2 ≔ 1
nk

∑i ∈ Sk V̇ (fk, n, Pk, n; δZi − Pk, n)2 and vk, n ≔ V (fk, n, Pk, n);

  6:
if k is even, compute ηk, n, s

2 ≔ 1
nk

∑i ∈ Sk V̇ (fk, n, s, Pk, n; δZi − Pk, n)2 and vk, n, s ≔ V (fk, n, s, Pk, n);

  7: end for

  8:
compute vn

* ≔ 1
K ∑k = 1

K v2k − 1, n, vn, s
* ≔ 1

K ∑k = 1
K v2k, n, s and estimator ψn, s

* ≔ vn
* − vn, s

*
 of ψ0,s;

  9:
compute ηn

2 ≔ 1
K ∑k = 1

K η2k − 1, n
2

, ηn, s
2 ≔ 1

K ∑k = 1
K η2k, n, s

2
 and estimator ωn, s ≔ ηn

2/(n − ns) + ηn, s
2 /ns of the 

variance of ψn, s
*

;

10: to test H0 : ψ0, s ∈ [0, β] vs H1:ψ0, s > β at level 1−α, reject H0 in favor of H1 iff pn ≔ 1 − Φ(tn) < α with 

tn ≔ ωn, s
−1/2(ψn, s

* − β) and Φ the standard normal distribution function.

cases, P V (f, P ) is well-defined on discrete probability measures and sufficiently smooth 

so that V (f0, Pn) − V (f0, P0) is in first order a linear estimator in view of the functional 

delta method. However, there are other examples in which this requirement may not be 

true. In these examples, V(f, P) involves P in a complex manner beyond some form of 

averaging, rendering V(f, P) undefined for discrete P, let alone Hadamard differentiable. 

Complex predictiveness measures often arise when the sampling mechanism precludes from 

observation the ideal data unit on which a (possibly simpler) predictiveness measure is 

defined, and identification formulas must therefore be established to express predictiveness 

in terms of the observed data-generating distribution.

As a concrete illustration, we begin with an example from the causal inference literature. 

As before, we denote by Y and X the outcome of interest and a covariate vector, 

respectively. We suppose that larger values of Y correspond to better clinical outcomes, 

and consider a binary intervention A ∈ {0, 1}. A given treatment rule f : X {0, 1} for 

assigning the value of A based on X can be adjudicated, for example, on the basis of 

the population mean outcome that would arise if everyone in the population were treated 

according to f. We can consider the ideal data structure to be ℤ ≔ (X, A, Y (0), Y (1)) ∼ ℙ0, 

where for each a ∈ {0, 1}, Y(a) denotes the counterfactual outcome corresponding to the 

intervention that deterministically sets A = a. The ideal-data predictiveness of f is then 

V(f, ℙ0) ≔ Eℙ0{Y (f(X))}. In contrast, the observed data structure is Z ≔ (X, A, Y) ~ P0, and 
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we must find some observed-data predictiveness measure V such that V (f, P0) = V(f, ℙ0) to 

establish identification and proceed with estimation and inference. Defining the outcome 

regression QP(a, x) ≔ EP(Y |A = a, X = x), it is not difficult to verify that

V (f, P ) ≔ EP [QP(f(X), X)]

provides a valid identification of V(f, ℙ) under standard causal identification conditions. We 

note that this predictiveness measure involves P through more than simple averaging, as 

the outcome regression QP also appears in the definition of V(f, P). Unless the distribution 

of X is discrete under P, QP is ill-defined on the empirical distribution Pn, thus violating 

conditions (A1) and (A4) defined in Section 3. We also remark that, in this example, the 

moniker ‘prediction function’ is not entirely fitting for f, which represents a treatment 

rule and maps into the treatment (rather than outcome) space. Nevertheless, the proposed 

framework for variable importance remains applicable, underscoring the fact that it is 

sufficiently flexible to unify a large swath of variable importance problems. Restrictions 

imposed on the data structure and on the properties of the prediction function in Section 2 

were largely for the sake of concreteness.

The simple plug-in approach described in Section 3 may fail in applications with more 

complex predictiveness measures. In such cases, we can instead employ a more general 

strategy based on nonparametric debiasing techniques to make valid inference about V(f0, 

P0). For each P ∈ ℳ, we denote by fP any optimizer of f V (f, P ) over ℱ, and define the 

parameter mapping V ∗ : P V (fP, P ) so that v0 can be expressed as V ∗(P0). If P n ∈ ℳ is 

an estimator of P0, the plug-in estimator V ∗(P n) generally fails to be asymptotically linear 

unless P n was purposefully constructed to ensure that it is indeed so. This happens because 

the plug-in estimator V ∗(P n) generally suffers from excessive bias whenever flexible learning 

techniques have been used, for example, because V*(P0) involves local features of P0 (e.g., 

the conditional mean or density function) — see Pfanzagl (1982) and van der Laan and Rose 

(2011). This fact renders the use of debiasing approaches necessary. In contrast, the one-step 

estimator

vn, OS ≔ V ∗(P n) + 1
n ∑

i = 1

n
ϕn(Zi),

where ϕn is the nonparametric EIF of V* at P n, is nonparametric efficient (Pfanzagl, 1982) 

under regularity conditions. Alternatively, the framework of targeted minimum loss-based 

estimation describes how to convert P n into a revised estimator P n
∗
 such that V ∗(P n

∗) is itself 

nonparametric efficient without the need for further debiasing (van der Laan and Rose, 

2011). Similarly as in Section 3, cross-fit versions of these debiasing procedures (see, 

e.g., Zheng and van der Laan, 2011; Chernozhukov et al, 2018) can be used to improve 

performance when flexible estimation algorithms are used.

The generic approach above relies on deriving the nonparametric EIF of V*. The definition 

of V* involves P in various ways, including through the P-optimal prediction function fP. 
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While in our examples fP has a simple closed-form expression, this may not always be so. 

This fact can greatly complicate the derivation of the required EIF. However, as we shall see, 

the optimality of fP often implies that fP does not contribute to the nonparametric EIF of 

P V (fP, P ).

Before stating a formal result to this effect, we introduce a regularity condition. Below, 

L2
0(P0) refers to the subset of all functions in L2(P0) that have mean zero under P0.

(A5) There exists a dense subset ℋ of L2
0(P0) such that, for each ℎ ∈ ℋ and regular 

univariate parametric submodel {P0, ϵ} ⊂ ℳ through P0 at ϵ = 0 and with score 

for ϵ equal to h at ϵ = 0 (see, e.g., Bickel et al, 1998), the following conditions 

hold, with f0,ϵ denoting fP0,ϵ:

(A5a) (second-order property of predictiveness perturbations) 

V (f0, ϵ, P0, ϵ) − V (f0, ϵ, P0) = V (f0, P0, ϵ) − V (f0, P0) + o(ϵ) holds;

(A5b) (differentiability) the mapping ϵ V (f0, ϵ, P0) is differentiable in a 

neighborhood of ϵ = 0;

(A5c) (richness of function class) the optimizer f0,ϵ is in ℱ for small enough 

ϵ.

Condition (A5a) essentially requires the pathwise derivative of P V (f, P ) at P0 to be 

insensitive to infinitesimal perturbations of f around f0. In such case, the difference-in-

differences term appearing in the condition can indeed be expected to be second-order in ϵ. 

Condition (A5b) will generally hold provided the functionals f V (f, P0) and P fP are 

sufficiently smooth around f0 and P0, respectively. Finally, condition (A5c) requires that ℱ
be sufficiently rich around f0 so that, for a dense collection of paths through P0, ℱ contains 

f0,ϵ for small enough ϵ.

Theorem 3. Provided condition (A5) holds, if P V (f0, P ) is pathwise differentiable at P0 

relative to the nonparametric model ℳ, then so is P V (fP, P ), and the two parameters have 

the same EIF.

This theorem indicates that, under a regularity condition, the computation of the 

nonparametric EIF ϕ0 can be done treating fP as fixed at f0, thereby simplifying considerably 

this calculation. This fact is also useful because for a fixed prediction function f the 

parameter P V (f, P ) will often have already been studied in the literature, thereby 

circumventing the need for any novel derivation. Armed with this observation, we revisit 

the motivating example we presented in this section, and also consider an additional example 

involving missing data.

Example 5: mean outcome under a binary intervention rule

As described above, in this example, the ideal-data parameter of interest, 

V(f, ℙ) ≔ Eℙ{Y (f(X))}, can be identified by the observed-data parameter 

V (f, P ) = EP{QP(f(X), X)} when the observed data unit consists of Z = (X, A, Y ) ∼ P . The 

map f V (f, P0) is maximized over the unrestricted class ℱ by the intervention rule 
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f0 : x I{Q0(1, x) > Q0(0, x)}, and over its subset ℱs by f0, s : x I{Q0, s(1, x) > Q0, s(0, x)}, 

where we define Q0,s pointwise as Q0, s(a, x) ≔ E0{Q0(a, X)|X−s = x−s}. Furthermore, the 

parameter P V (f0, P ) is pathwise differentiable at a distribution P0 if, for example, 

Q0(1, W ) − Q0(0, W ) ≠ 0 occurs P0-almost surely. The nonparametric EIF of P V (f0, P ) at 

P0 is given by

ϕ0 : z I{a = f0(x)}
g0(f0(x), x) {y − Q0(f0(x), x)} + Q0(f0(x), x) − V (f0, P0),

where we define the propensity score g0(a, x) ≔ P0(A = a|X = x) for each a ∈ {0, 1}. Thus, 

under regularity conditions, the one-step debiased estimator

vn, OS ≔ 1
n ∑

i = 1

n I{Ai = fn(Xi)}
gn(fn(Xi), Xi) {Y i − Qn(fn(Xi), Xi)} + Qn(fn(Xi), Xi)

of v0 is nonparametric efficient, where Qn and gn are estimators of Q0 and g0, respectively, 

and fn is defined pointwise as fn(x) ≔ I{Qn(1, x) > Qn(0, x)}. The one-step debiased estimator 

of v0,s is defined similarly, with fn replaced by any appropriate estimator of f0,s, such 

as fn, s(x) ≔ I{Qn, s(1, x) > Qn, s(0, x)} with Qn,s(a, x) obtained by flexibly regressing outcome 

Qn(a, x) onto X−s for each a ∈ {0, 1}.

Example 6: Classification accuracy under outcome missingness

Suppose the ideal-data structure consists of ℤ ≔ (X, Y ) ∼ ℙ and the predictiveness measure 

of interest based on this ideal data structure is the classification accuracy measure, 

V(f, ℙ) ≔ ℙ{Y = f(X)}, described in Example 3. Suppose that the outcome Y is subject 

to missingness, so that the observed data structure is Z ≔ (X, Δ, U), where Δ is the indicator 

of having observed the outcome Y, and we have defined U ≔ ΔY. The observed-data 

predictiveness measure

V (f, P ) ≔ EP[P{U = f(X)|Δ = 1, X}]

equals the ideal-data accuracy measure provided that (a) Δ and Y are independent given 

X, and (b) P (Δ = 1|X = x) > 0 for P-almost every value x. In other words, the provided 

identification holds provided the outcome is missing at random (relative to X), and there is 

no subpopulation of patients (as defined by the value of X) for which the outcome can never 

be observed. Defining π0(x) ≔ P0(U = 1|Δ = 1, X = x), the unrestricted optimizers f0 and 

f0,s are given pointwise by f0(x) = I{π0(x) > 0.5} and f0, s(x) = I{E0{π0(X)|X−s = x−s} > 0.5}. 

Finally, the nonparametric EIF of P V (f0, P ) at P0 is given by

ϕ0 : z δ
g0(x) [I{u = f0(x)} − Q0(x)] + Q0(x) − V (f0, P0),

where we now have defined the nuisance parameters g0(x) ≔ P0(Δ = 1|X = x) and 

Q0(x) ≔ P0{Y = f0(x)|Δ = 1, X = x} = f0(x)π0(x) + {1 − f0(x)}{1 − π0(x)}, so that Q0(x) is no 
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more than a simple transformation of π0(x). Under regularity conditions, the one-step 

debiased estimator

vn, OS ≔ 1
n ∑

i = 1

n Δi
gn(Xi) [I{Ui = fn(Xi)} − Qn(Xi)] + Qn(Xi)

of v0 is nonparametric efficient, where gn and πn are consistent estimators of 

g0 and π0, and we define fn and Qn pointwise as fn(x) ≔ I{πn(x) > 0.5} and 

Qn(x) ≔ fn(x)πn(x) + {1 − fn(x)}{1 − πn(x)} = max{πn(x), 1 − πn(x)}. The one-step debiased 

estimator of v0,s is defined identically except that all instances of fn are replaced by fn,s, 

which we define pointwise as fn(x) ≔ I{πn, s(x) > 0.5}, with πn,s representing an appropriate 

estimator of π0, s ≔ E0{π0(X)|X−s = x−s}, obtained, for example, by flexibly regressing outcome 

πn(X) onto X−s.

5 Numerical experiments

5.1 Simulation setup

We now present empirical results describing the performance of our proposed plug-in VIM 

estimator. In all cases, our simulated dataset included independent replicates of (X, Y), 

where X is a covariate vector with independent components X1, …, Xp each following a 

standard normal distribution and a binary outcome Y following a Bernoulli distribution with 

success probability Φ(β01x1 + … + β0pxp) conditional on X = x, where Φ is the standard 

normal distribution function. In Scenario 1, we set p = 2 and β0 = (2.5, 3.5), whereas in 

Scenario 2, we took p = 4 and β0 = (2.5, 3.5, 0, 0); thus, in all cases, the first two features 

had nonzero importance and the remaining features (if any) had zero importance. In this 

specification, Y follows a probit model. For each scenario considered, we generated 1000 

random datasets of size n ∈ {100, 500, 1000, …, 4000}, and considered the importance 

of both X1 and X2 in Scenario 1 and the importance of X2 and X3 in Scenario 2. In 

each scenario, we considered VIMs based on classification accuracy (Example 3) and the 

area under the ROC curve (Example 4). The true values of these VIMs implied by the 

data-generating mechanisms considered under Scenarios 1 and 2 are provided in Table 1. 

All analyses were performed using our R package vimp and may be reproduced using code 

available online (see details in the Supplementary Material). Since results were similar for 

accuracy and AUC, we only display results for accuracy here but provide results for AUC in 

the Supplementary Material.

In Scenario 1, we investigate the finite-sample properties of our proposal in a setting in 

which all features are truly important. We also use this setting to explore the effect of 

cross-fitting when using flexible estimators of f0 and f0,s. Specifically, we compare the 

performance of our estimation procedure with and without five-fold cross-fitting when using 

the following estimators of f0 and f0,s: a correctly specified (parametric) probit regression 

model; a generalized additive model (GAM; Hastie and Tibshirani, 1990, implemented in 

the R package mgcv); random forests (RF; Breiman, 2001, implemented in the R package 

ranger); and the Super Learner (SL; van der Laan et al, 2007, implemented in the R package 

SuperLearner). The latter estimator is a particular implementation of stacking (Wolpert, 
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1992) with favorable finite-sample and asymptotic performance guarantees (van der Laan 

et al., 2007). For the Super Learner, we used a library consisting of gradient boosted trees 

(Friedman, 2001, implemented in the R package xgboost), GAMs (implemented in the 

R package gam), and random forests, each with the default tuning parameter choices, in 

addition to parametric probit regression, with five-fold cross-validation to determine the 

optimal convex combination of these learners that minimizes the cross-validated negative 

log-likelihood risk. The resulting optimal convex combination of these individual algorithms 

is the Super Learner-based conditional mean estimator we adopt in any case where the 

Super Learner was fit. The tuning parameters considered for each algorithm are provided 

in the Supplementary Material. We do not use sample-splitting, since the results of Section 

3 are valid under the alternative. We use Algorithm 2 to compute the cross-fitted point 

and standard error estimators for the importance of X1 and X2, from which we computed 

nominal 95% Wald-type confidence intervals. We then computed the empirical bias scaled 

by n1/2, the empirical variance scaled by n, the empirical coverage of confidence intervals, 

and the width of these intervals.

In Scenario 2, we study the properties of our proposal under the null hypothesis. In this 

case, we used sample-splitting since the importance of X3 and X4 is zero. We again ran 

both cross-fitted and non-cross-fitted implementations, and considered the same learning 

strategies as in Scenario 1, with one exception: in this case, we added the lasso (Tibshirani, 

1996, implemented in the R package glmnet) to the library of candidate learners in the Super 

Learner. As before, we computed point estimates and nominal 95% Wald-type confidence 

intervals but also obtained p-values for the null hypothesis using the sample-splitting 

procedure of Algorithm 3. We then computed the empirical bias scaled by n1/2, the empirical 

variance scaled by n, the empirical coverage of confidence intervals, and the rejection 

probability for the proposed hypothesis test.

5.2 Primary empirical results

In Figure 2, we display the results of the experiment conducted under Scenario 1, in which 

both features have nonzero importance. For ease of visualization, we only display the results 

for X2; the results for X1 are similar and available in the Supplementary Material. In the 

top-left panel, we observe that the bias of the proposed estimators decreases to zero at rate 

faster than n1/2 for all non-cross-fitted estimators except those based on random forests and 

Super Learner, whereas it does so for all cross-fitted estimators. This reflects the need for 

cross-fitting in cases where the Donsker class conditions of Theorem 1 may fail to hold. 

The top-right panel shows that the variance of all estimators is approximately proportional to 

n. In the bottom-left panel, we observe that coverage of nominal 95% confidence intervals 

increases to the nominal level with increasing sample size for all cases except the non-cross-

fitted estimators based on random forests and Super Learner. In the bottom-right panel, we 

see that the width of these intervals decreases with increasing sample size, as expected.

In Figure 3, we display the results pertaining to null feature X3 in the experiments conducted 

under Scenario 2. Here, it appears that the bias vanishes at a rate faster than n−1/2 for both 

the cross-fitted and non-cross-fitted estimators (top-left panel), but that the variance of the 

non-cross-fitted estimators tends to increase with increasing sample size, especially for the 
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more flexible learning algorithms (top-right panel). We observe that empirical coverage is 

near the nominal level at all sample sizes (bottom-left panel). Finally, we see that the type 

I error of the proposed hypothesis test is controlled at the nominal level for all cross-fitted 

procedures, but not so for their non-cross-fitted counterparts, yielding an inflated type I error 

in that case (bottom-right panel). In the Supplementary Material, we present results for the 

non-null feature X2, which show that power of the proposed test is large for all sample sizes 

considered here.

This simulation study suggests that the estimation and inferential procedures proposed, 

including our null testing approach, have good practical performance and are properly 

calibrated, as suggested by theory. Our findings suggest that cross-fitting is critical when 

flexible algorithms are used, in which case the estimation procedure without cross-fitting 

performs poorly while its cross-fitted counterpart instead shows good performance. This is 

the case both for point and interval estimation, as we explicitly show in the Supplementary 

Material. When correctly-specified parametric regression models are implemented, both 

procedures (with and without cross-fitting) perform similarly well. This reflects the fact that 

when parametric estimators are used, condition (B3) is typically satisfied and cross-fitting is 

then not needed.

5.3 Additional empirical results

In the Supplementary Material, we present results for additional features under Scenarios 

1 and 2, observing similar patterns to those presented in Figures 2 and 3. We also 

consider pairing a non-cross-fitted standard error estimator with the cross-fitted estimation 

procedure, observing reduced coverage compared to the cross-fitted standard error estimator 

of Algorithm 2. Finally, we present results from additional investigations scrutinizing 

the performance of our proposal in higher dimensions, both with and without correlated 

features. We found, in small samples, that the presence of many independent null features 

results in an increased bias in the estimation of the importance of non-null features, 

with a corresponding decrease in empirical interval coverage. However, this inflated bias 

and undercoverage dissipate as the sample size increases. A similar pattern was seen in 

the presence of correlated null features. This suggests that greater dimensionality indeed 

increases the difficulty of the statistical problem at hand, but that correlation between 

features does not exacerbate this challenge beyond rendering more difficult the interpretation 

of the population VIM values.

6 Studying an antibody against HIV-1 infection

Broadly neutralizing antibodies (bnAbs) against HIV-1 neutralize a large fraction of genetic 

variants of HIV-1. Two harmonized, placebo-controlled randomized trials were conducted 

to evaluate VRC01, a promising bnAb, for its ability to prevent HIV-1 infection (Corey et 

al, 2021). A secondary objective was to assess how VRC01 prevention efficacy depends on 

amino acid (AA) sequence features of HIV-1. Because there are thousands of AA features, 

the statistical analysis plan for addressing this objective requires first restricting attention 

to a subset of AA features that putatively affect prevention efficacy. Given the underlying 

assumption that VRC01 prevents infection via in vivo neutralization, a useful approach may 
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be to rank AA features based on their estimated VIM for predicting in vitro neutralization — 

whether or not an HIV-1 virus is sensitive to neutralization by VRC01 — and select only the 

top-ranked features for further analyses.

In an effort to determine these important AA features, we analyzed the HIV-1 envelope 

(Env) AA sequence features of 611 publicly-available HIV-1 Env pseudoviruses made 

from blood samples of HIV-1 infected individuals (Magaret et al, 2019). All analyses 

accounted for the geographic region of the infected individuals. Among AA sequence 

features, approximately 800 individual features and 13 groups of features were of interest, 

e.g., polymorphic AA positions in Env AA that comprise the VRC01 antibody footprint 

to which VRC01 binds. These groups of features are described more fully in the Methods 

section of Magaret et al. (2019). There, we focused on a definition of variable importance 

as the difference in nonparametric R2, and used as outcome an indicator of whether or not 

the 50% inhibitory concentration (IC50, defined as the concentration of VRC01 necessary 

to neutralize 50% of viruses in vitro, with large values of the IC50 indicating that the virus 

was resistant to neutralization; Montefiori, 2009) was right-censored. However, the AMP 

trials have identified the 80% inhibitory concentration (IC80) as a possible biomarker of 

prevention efficacy, with 75.4% estimated efficacy against the most sensitive viruses (IC80 

< 1). Since many observations in our dataset are missing IC80 values, we use as outcome 

the binary indicator that IC50 < 1. Here, analyzing the same data set, we compare results 

based on the outcome of Magaret et al. (2019) with a variable importance analysis based 

on classification accuracy and AUC and the AMP-based outcome IC50 < 1. We consider a 

marginal VIM value, evaluating the intrinsic importance of each feature group of interest 

relative to geographic confounding variables – this can be achieved by considering the full 

feature vector in (2) to be simply the geographic confounders plus the feature group of 

interest. We provide a replication of Magaret et al. (2019) using a harmonized outcome in 

the Supplementary Material.

We used the Super Learner with a large library of candidate learners to estimate the involved 

regression functions. These learners included the lasso, random forests, and boosted decision 

trees, each with varying tuning parameters. Details on our library of learners are described 

in the Supplementary Material. Our resulting estimator is the convex combination of the 

candidate estimators, where we used five-fold cross-validation to determine the convex 

combination that minimized the negative log-likelihood risk. Finally, to make inference on 

the VIM values considered, we used the sample-split cross-fitted method (Algorithm 3) 

studied in the simulations under Scenario 2.

In Figure 4, we display the results of this analysis and the feature groups of interest. The 

top-ranked feature groups do not differ much between different VIMs but the magnitude 

of both importance and p-values depends greatly on the measure chosen. Both VIMs result 

suggest that the CD4 binding sites, the VRC01 binding footprint, sites with sufficient 

exposed surface area (ESA sites), sites with residues that co-vary with the VRC01 binding 

footprint (co-varying sites), and sites for indicating N-linked glycosylation (glycosylation 

sites) are the five most important groups. The finding that CD4 binding sites are in the most 

important groups across VIMs matches our expectations from basic science experiments that 

have identified AA substitutions at CD4 binding sites that altered VRC01 neutralization 
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sensitivity. This result is in line with Magaret et al. (2019). Based on our proposed 

hypothesis test, we computed p-values for a test of the strict null hypothesis (that is, β 
= 0) for each group. We found that AA features in the CD4 binding sites (group 2), 

VRC01 binding footprint (group 1), ESA sites (group 3), co-varying sites (group 5), and 

glycosylation sites (group 8) had p-values of 6.98 × 10−9, 8.14 × 10−9, 1.69 × 10−7, 4.66 

× 10−6, and 8.07 × 10−6, respectively, based on AUC (denoted by stars in Figure 4). Based 

on these analyses, AA features in these groups may be prioritized for the forthcoming trial 

data analyses. Additionally, taking the set of top-ranked features above a minimum threshold 

may help to narrow the set of gp160 AA sequence features to pre-specify for the analysis 

of the AMP trial data sets. Our recommendation, nonetheless, is to analyze all feature sets 

in secondary or supporting analysis of the AMP trial data sets to ensure that the results 

generated are comprehensive.

7 Discussion

We have proposed a general model-agnostic framework for statistical inference on 

population-level VIMs. These measures are summaries of the true data-generating 

mechanism, defined as a contrast between the predictiveness of the best possible prediction 

function based on all available features versus all features but those under consideration. 

We found that plug-in estimators of these VIMs are asymptotically linear and nonparametric 

efficient under regularity conditions. Through examples, we showed that many simple and 

commonly used VIMs fall within this framework. We found in numerical experiments 

that our proposed cross-fitted VIM estimator enjoys good operating characteristics, and 

that these characteristics match our theoretical expectations. More complex predictiveness 

measures and sampling scenarios, including missing data, may also be analyzed within 

our proposed framework, though these cases typically require more effort, including the 

computation of an influence function. Interpretation of the estimated VIMs depends on the 

application, and may include considering the ranked VIM values, or considering features 

with VIM values above some scientifically meaningful threshold.

Defining the importance of individual features in cases with large amounts of correlation is 

challenging. In practice, we recommend making use of any available background scientific 

knowledge either to group variables that are expected to be highly correlated or to develop 

an appropriate causal model. In settings where this knowledge is lacking, it may be useful 

to consider, for example, unsupervised methods to cluster variables before assessing variable 

importance; however, further work is needed to determine how to preserve inferential 

validity with any such procedure. One alternative approach to handling correlated features 

is to consider marginal importance, wherein each feature in turn could be considered as 

the ‘full set of covariates’ and its importance could be assessed relative to the null feature 

vector; if there are concerns about confounding factors, these can constitute the ‘null feature 

vector’ and each feature could be added to the potential confounders. A second alternative 

approach is to use measures like the Shapley Population VIM (SPVIM; Williamson and 

Feng, 2020). Since SPVIM is defined as the average increase in predictive power from 

including a particular feature in all possible subsets of the remaining features, use of this 

approach comes at the cost of significantly increased complexity.
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The inferential procedures following Theorems 1 and 2 can be used whenever it is known a 

priori that the features of interest have non-zero importance. We note that, as an alternative, 

a nonparametric bootstrap scheme could be used in which f0 and f0,s are not re-estimated 

over bootstrap samples but rather fixed at their original estimates. The use of this bootstrap 

is illustrated in the Supplementary Material, where it is shown to yield similar results as 

the inferential procedures described in this paper. If the features of interest may have zero 

importance, inference should generally be conducted using sample-splitting, as described in 

Section 3.4. There, we propose confidence intervals valid even when a feature of interest 

has zero importance and a test of the zero-importance hypothesis. Our numerical results 

suggest that the resulting test controls type I error rate at the desired level. However, 

since our procedure involves sample-splitting without data reuse, it does not fully exploit 

the information available in the data, and may possibly be improved upon. Use of the 

bootstrap in this context is complicated by the need to re-estimate f0 and f0,s. Developing 

a more powerful test of the null importance hypothesis is an important unresolved need. 

This objective could be achieved, on one hand, by considering modifications of our current 

approach, including averaging results over multiple splits of the dataset or choosing split 

sizes more judiciously, or on the other hand, by utilizing more complex analytical tools, 

including approximate higher-order influence functions. These ideas are being pursued in 

ongoing research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Special case: standardized V-measures

Beyond smoothness requirements, the results presented in Section 3 do not impose much 

structure on the predictiveness measure. However, as is often the case that the predictiveness 

measure has the form V (f, P ) = a + V 1(f, P )/V 2(P ) with

V 1(f, P ) ≔ EP{G((Y 1, f(X1)), …, (Y m, f(Xm)))}

for some symmetric function G : (Y × Y)m ℝ, where a ∈ ℝ is a fixed constant, 

V 2 : ℳ ℝ is Hadamard differentiable, and the expectation defining V1 is over the 

distribution of independent draws (X1, Y1), …, (Xm, Ym) from P. In this case, the plug-in 

estimator V1(fn, Pn) of V1(f0, P0) is a V-statistic of degree m (Hoeffding, 1948), whereas the 

denominator V2(P0) does not depend on f0 and typically serves as a normalization constant. 

As such, we refer to any predictiveness measure of this form as a standardized V-measure. 

We note that each example presented in Section 2.3 is a standardized V-measure, defined 

respectively by:
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1. a = 1, G((u, v)) = − (u − v)2, V 2(P ) = varP(Y ), m = 1;

2. a = 1, G((u, v)) = − {u log v + (1 − u)log(1 − v)}, 

V 2(P ) = P (Y = 1)log P (Y = 1) + P (Y = 0)log P (Y = 0), m = 1;

3. a = 0, G((u, v)) = I(u = v), V2(P) = 1, m = 1;

4. a = 0, G((u1, v1), (u2, v2)) = {I(u1 = 0, u2 = 1, v1 < v2) + I(u2 = 0, u1 = 1, v2 < v1)}/2, 

V2(P) = P (Y = 1) P (Y = 0), m = 2.

This is useful to note because whenever V is a standardized V-measure, the influence 

function ϕ0 of V(fn, Pn) can be described more explicitly. Specifically, its pointwise 

evaluation ϕ0(z) at a given observation value z = (x, y) is given by

m E0{G((y, f0(x)), (Y 2, f0(X2)), …, (Y m, f0(Xm)))}
V 2(P0) − V (f0, P0) − V̇ 2(P0; δz − P0)

V 2(P0) V (f0, P0)

with V̇ 2(P0; δz − P0) denoting the Gâteaux derivative of V2 at P0 in the direction h = δz − P0. 

Except for the influence function of the normalization estimator V2(Pn), which is typically 

straightforward to compute, this is an explicit form. In Examples 1–4, the influence function 

of V(fn, Pn) can thus be derived respectively as:

1. ϕ0(z) = −{y − μ0(x)}2/σ0
2 + v0 {2 − (y − μ0)2/σ0

2};

2. ϕ0(z) = −2[y log μ0(x) + (1 − y)log{1 − μ0(x)}]/π0 + v0[2log{π0/(1 − π0)}(y − π0)/π0 − 1]
;

3. ϕ0(z) = yI{μ0(x) > 0.5} + (1 − y)I{μ0(x) ≤ 0.5} − v0;

4. ϕ0(z) = (1 − y)P0{μ0(X) > μ0(x) ∣ Y = 1}/(1 − π0) + yP0 {μ0(x) > μ0(X) ∣ Y = 0}/π0
− v0[2 + (1 − 2π0)(y − π0)/{π0(1 − π0)}],

where here we have used the shorthand notation μ0(x) ≔ E0(Y |X = x), μ0 ≔ E0(Y ), σ0
2 ≔ var0(Y ), 

π0 ≔ P0(Y = 1), and π0 ≔ π0 log π0 + (1 − π0)log(1 − π0). Furthermore, for standardized V-

measures, condition (A2) is often easier to verify. For example, if m = 1, then it holds 

trivially since V1(f, P), the only component of V(f, P) involving f, is linear in P.
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Figure 1: 
Illustration of dataset subdivision when sample-splitting and cross-fitting are used 

simultaneously for valid inference under the zero-importance hypothesis (sample-splitting) 

without requiring Donsker class conditions (cross-fitting). Each row represents the entire 

dataset with a different subset singled out (in grey) as testing set. To estimate v0, the top 

three rows are used. In each such row, f0 is estimated using data in the white cells, and v0 is 

estimated using the resulting estimate of f0 and data in the grey cells. Row-specific estimates 

of v0 are then averaged. The process is repeated for estimating v0,s but instead using the 

bottom three rows and estimating f0,s rather than f0.
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Figure 2: 
Performance of plug-in estimators for estimating (non-zero) importance of X2 in terms of 

accuracy under Scenario 1 (all features have non-zero importance). Clockwise from top left: 

empirical bias of the proposed plug-in estimator scaled by n1/2; empirical variance scaled 

by n; empirical coverage of nominal 95% confidence intervals; and average width of these 

intervals. Circles, triangles, squares and plus symbols denote estimators based on the use 

of generalized additive models (GAMs), probit regression (GLM), random forests (RF), and 

the Super Learner (SL), respectively. Blue and green symbols denote non-cross-fitted and 

cross-fitted estimators, respectively.
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Figure 3: 
Performance of plug-in estimators for estimating (zero) importance of X3 in terms of 

accuracy under Scenario 2. Clockwise from top left: empirical bias of the proposed plug-in 

estimator scaled by n1/2; empirical variance scaled by n; empirical coverage of nominal 95% 

confidence intervals; and empirical type I error of the proposed hypothesis test. Circles, 

triangles, squares and plus symbols denote estimators based on the use of generalized 

additive models (GAMs), probit regression (GLM), random forests (RF), and the Super 

Learner (SL), respectively. Blue and green symbols denote non-cross-fitted and cross-fitted 

estimators, respectively.
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Figure 4: 
Variable importance measured by accuracy (panel A) and AUC (panel B) for the groups 

defined in panel C. Stars denote importance deemed statistically significantly different from 

zero at the 0.0038 (0.05 / 13) level.
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Table 1:

Approximate values of ψ0,s in the numerical experiments.

Feature of interest

Importance measure X 1 X 2 X 3 X 4

Accuracy 0.136 0.236 0 0

Area under the ROC curve 0.105 0.221 0 0
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