Skip to main content
. Author manuscript; available in PMC: 2024 Jan 1.
Published in final edited form as: J Am Stat Assoc. 2022 Jan 5;118(543):1645–1658. doi: 10.1080/01621459.2021.2003200

Algorithm 2.

Cross-fitted inference on VIM value ψ0,s (valid in non-null settings)

  1: generate Bn{1,,K}n by sampling uniformly from {1, …, K} with replacement, and for j = 1, …, K, denote by Dj the subset of observations with index in Sj{i:Bn,i=j};
  2: for k = 1, …, K do
  3: using only data in ∪jkDj, construct estimators fk,n of f0 and fk,n,s of f0,s;
  4: using only data in Dk construct empirical distribution estimator Pk,n of P0;
  5: with nki=1nI{iSk}, compute ψk,n,s:=V(fk,n,Pk,n)V(fk,n,s,Pk,n) and
     τk,n,s21nkiSk{V˙(fk,n,Pk,n;δZiPk,n)V˙(fk,n,s,Pk,n;δZiPk,n)}2;
  6: end for
  7: compute estimator ψn,s1Kk=1Kψk,n,s of ψ0,s;
  8: compute estimator τn,s,2:=1Kk=1Kτk,n,s2 of the asymptotic variance τ0,s2 of n1/2(ψn,s*ψ0,s).