Skip to main content
. Author manuscript; available in PMC: 2024 Jan 1.
Published in final edited form as: J Am Stat Assoc. 2022 Jan 5;118(543):1645–1658. doi: 10.1080/01621459.2021.2003200

Algorithm 3.

Sample-split, cross-fitted inference on VIM value ψ0,s

  1: generate Bn{1,,2K}n by sampling uniformly from {1, …, 2K} with replacement, and for j = 1, …, 2K, denote by Dj the set of observations with index in Sj{i:Bn,i=j} and nj|Dj|;
  2: for k = 1, …, 2K do
  3: using only data in jkDj, construct estimators fk,n of f0 and fk,n,s of f0,s;
  4: using only data in Dk, construct estimator Pn,k of P0;
  5: if k is odd, compute ηk,n21nkiSkV˙(fk,n,Pk,n;δZiPk,n)2 and vk,nV(fk,n,Pk,n);
  6: if k is even, compute ηk,n,s21nkiSkV˙(fk,n,s,Pk,n;δZiPk,n)2 and vk,n,sV(fk,n,s,Pk,n);
  7: end for
  8: compute vn*1Kk=1Kv2k1,n, vn,s*1Kk=1Kv2k,n,s and estimator ψn,s*vn*vn,s* of ψ0,s;
  9: compute ηn21Kk=1Kη2k1,n2, ηn,s21Kk=1Kη2k,n,s2 and estimator ωn,sηn2/(nns)+ηn,s2/ns of the variance of ψn,s*;
10: to test H0:ψ0,s[0,β] vs H1:ψ0,s>β at level 1−α, reject H0 in favor of H1 iff pn1Φ(tn)<α with tnωn,s1/2(ψn,s*β) and Φ the standard normal distribution function.