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Abstract

Evidence-based decision making often relies on meta-analyzing multiple studies, which enables 

more precise estimation and investigation of generalizability. Integrative analysis of multiple 

heterogeneous studies is, however, highly challenging in the ultra high-dimensional setting. The 

challenge is even more pronounced when the individual-level data cannot be shared across 

studies, known as DataSHIELD contraint. Under sparse regression models that are assumed to 

be similar yet not identical across studies, we propose in this paper a novel integrative estimation 

procedure for data-Shielding High-dimensional Integrative Regression (SHIR). SHIR protects 

individual data through summary-statistics-based integrating procedure, accommodates between-

study heterogeneity in both the covariate distribution and model parameters, and attains consistent 

variable selection. Theoretically, SHIR is statistically more efficient than the existing distributed 

approaches that integrate debiased LASSO estimators from the local sites. Furthermore, the 

estimation error incurred by aggregating derived data is negligible compared to the statistical 

minimax rate and SHIR is shown to be asymptotically equivalent in estimation to the ideal 

estimator obtained by sharing all data. The finite-sample performance of our method is studied 

and compared with existing approaches via extensive simulation settings. We further illustrate 

the utility of SHIR to derive phenotyping algorithms for coronary artery disease using electronic 

health records data from multiple chronic disease cohorts.
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1. Introduction

1.1. Background

Synthesizing information from multiple studies is crucial for evidence-based medicine and 

policy decision making. Meta-analyzing multiple studies allows for more precise estimates 

and enables investigation of generalizability. In the presence of heterogeneity across studies 

and high-dimensional predictors, such integrative analysis however is highly challenging. 

An example of such integrative analysis is to develop generalizable predictive models 

using electronic health records (EHR) data from different hospitals. In addition to high-

dimensional features, EHR data analysis encounters privacy constraints in that individual 

patient data (IPD) typically cannot be shared across local hospital sites, which makes 

the challenge of integrative analysis even more pronounced. Breach of Privacy arising 

from data sharing is in fact a growing concern in general for scientific studies. Recently, 

Wolfson et al. (2010) proposed a generic individual-information protected integrative 

analysis framework, named DataSHIELD, that transfers only summary statistics1 from each 

distributed local site to the central site for pooled analysis. Conceptually highly valued by 

research communities (see, e.g., Jones et al. 2012; Doiron et al. 2013), the DataSHIELD 

facilitates multi-study integrative analysis when IPD pooled meta-analysis is not feasible 

due to ethical and/or legal restrictions (Gaye et al. 2014). In the low-dimensional setting, a 

number of statistical methods have been developed for distributed analysis that satisfy the 

DataSHIELD constraint (see, e.g., Chen et al. 2006; Wu et al. 2012; Liu and Ihler 2014; 

Lu et al. 2015; Huang and Huo 2015; Han and Liu 2016; He et al. 2016; Zöller, Lenz, and 

Binder 2018; Duan et al. 2019, 2020). Distributed high-dimensional regression have largely 

focused on settings without between-study heterogeneity as detailed in Section 1.2. To the 

best of our knowledge, no existing distributed learning methods can effectively handle both 

high-dimensionality and the presence of model heterogeneity across the local sites.

1.2. Related Work

In the context of high-dimensional regression, several recently proposed distributed 

inference approaches can be potentially used for integrative analysis under the DataSHIELD 

constraint. Specifically, Tang, Zhou, and Song (2016), Lee et al. (2017), and Battey et al. 

(2018) proposed distributed inference procedures aggregating the local debiased LASSO 

estimators (Zhang and Zhang 2014; Van de Geer et al. 2014; Javanmard and Montanari 

2014). By including debiasing procedure in their pipelines, the corresponding estimators can 

be used for inference directly. Lee et al. (2017) and Battey et al. (2018) proposed to further 

truncate the aggregated dense debiased estimators to achieve sparsity; see also Maity, Sun, 

and Banerjee (2019). Though this debiasing-based strategy can be extended to fit for our 

heterogeneous modeling assumption, it still loses statistical efficiency due to the failure to 

account for the heterogeneity of the information matrices across different sites. In addition, 

the use of debiasing procedure at local sites incurs additional error for estimation, as detailed 

in Section 4.4.

1Commonly used summary statistics include the locally fitted regression coefficient and itsHessian matrix in the low-dimensional 
parametric regression models (see, e.g., Duan et al. 2019, 2020).
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Lu et al. (2015) and Li et al. (2016) proposed distributed approaches for ℓ2-regularized 

logistic and Cox regression. However, their methods requires equential communications 

between local sites and the central machine, which may be time and resource consuming. 

Chen and Xie (2014) proposed to estimate high dimensional parameters by first adopting 

majority voting to select a positive set and then combining local estimation of the 

coefficients belonging to this set. Wang, Peng, and Dunson (2014) proposed to aggregate 

the local estimators through their median values rather than their mean, shown to be more 

robust to poor estimation performance of local sites with insufficient sample size (Minsker 

2019). More recently, Wang et al. (2017) and Jordan, Lee, and Yang (2019) presented a 

communication-efficient surrogate likelihood framework for distributed statistical learning 

that only transfers the first-order summary statistics, that is, gradient between the local sites 

and the central site. Fan, Guo, and Wang (2019) extended their idea and proposed two 

iterative distributed optimization algorithms for the general penalized likelihood problems. 

However, their framework, as well as others summarized in this paragraph, is restricted to 

homogeneous scenarios and cannot be easily extended to the settings with heterogeneous 

models or covariates.

1.3. Our Contributions

In this article, we fill the methodological gap of high-dimensional distributed learning 

methods that can accommodate cross-study heterogeneity by proposing a novel data-

Shielding High-dimensional Integrative Regression (SHIR) method under the DataSHIELD 

constraints. While SHIR can be viewed as analogous to the integrative analysis of debiased 

local LASSO estimators, it achieves debiasing without having to perform debiasing for the 

local estimators. SHIR solves LASSO problem only once in each local site without requiring 

the inverse Hessian matrices or the locally debiased estimators and only needs one turn 

in communication. Statistically, it serves as the tool for the integrative model estimation 

and variable selection, in the presence of high dimensionality and heterogeneity in model 

parameters across sites. In addition, under the ultra-high dimensional regime where p can 

grow exponentially with the total sample size N, we demonstrate that SHIR can achieve 

the same error rates asymptotically as the ideal estimator based on the IPD pooled analysis, 

denoted by IPDpool, and attain consistent variable selection. Such properties are not readily 

available in the existing literature and some novel technical tools are developed for the 

theoretical verification. We also show theoretically that SHIR is statistically more efficient 

than the approach based on integrating and thresholding locally debiased estimators (see, 

e.g., Lee et al. 2017; Battey et al. 2018). Results from our numerical studies confirm that 

SHIR performs similarly to the ideal IPDpool estimator outperforms the other methods.

1.4. Outline of the Paper

The rest of this article is organized as follows. We introduce the settings in Section 2 

and describe SHIR, our proposed approach in Section 3. Theoretical properties of the 

SHIR estimator are studied in Section 4. We derive the upper bound for its prediction 

and estimation risks, compare it with the existing approach, and show that the errors 

incurred by aggregating derived data is negligible compared to the statistical minimax 

rate. When the true model is ultra-sparse, SHIR is shown to be asymptotically equivalent 

to the IPDpool estimator and achieves sparsistency. Section 5 compares the performance 
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of SHIR to existing methods through simulations. We apply SHIR to derive classification 

models for coronary artery disease (CAD) using EHR data from four different disease 

cohorts in Section 6. Section 7 concludes the paper with a discussion. Technical proofs of 

the theoretical results and additional numerical results are provided in the supplementary 

material.

2. Problem Statement

Throughout, for any integer d, [d] = 1, …, d . For any vector x = x1, x2, …, xd
⊤ ∈ ℝd and 

index set S = j1, …, jk: j1 < ⋯ < jk ⊆ [d], xS = xj1, …, xjk
⊤, x−1 = x2, …, xd

⊤, x q denotes the 

ℓq norm of x and x ∞ = maxj ∈ [d] xj . Suppose there are M independent studies and nm subjects 

in the mth study, for m = 1, …, M. For the ith subject in the mth study, let Y i
(m) and Xi

(m), 

respectively, denote the response and the p-dimensional covariate vector, Di
(m) = Y i

(m), Xi
(m) ⊤ ⊤, 

Y(m) = Y 1
(m), …, Y nm

(m) ⊤, and X(m) = X1
(m), X2

(m), …, Xnm
(m) ⊤. We assume that the observations in 

study m, D(m) = Di
(m), i = 1, …, nm , are independent and identically distributed. Without loss 

of generality, assume that Xi
(m) includes 1 as the first component and Xi, − 1

(m)  has mean 0. Define 

the population parameters of interests as

β0
(m) = argmin

β(m)
Lm β(m) , where

Lm β(m) = E f β(m) ⊤ Xi
(m), Y i

(m) ,

β(m) = β1
(m), β2

(m), …, βp
(m) ⊤

for some specified loss function f. Let βj = βj
(1), …, βj

(M) ⊤, β( • ) = β(1) ⊤ , …, β(M) ⊤ ⊤
, and 

β0j, β0
( • ) denote the true values of βj, β( • ). We consider the ultra-high dimensional setting, 

where the covariate dimension p could grow in an exponential rate of the sample size 

N = ∑m = 1
M nm.

For each j, we follow the typical meta-analysis to decompose βj
(m) as βj

(m) = μj + αj
(m) with 

αj = αj
(1), …, αj

(M) ⊤ and we set 1M × 1
⊤ αj = 0 for identifiability. Here, μj represents average effect 

of the covariate Xj and αj captures the between-study heterogeneity of the effects. Let 

μ = μ1, …, μp
⊤, α( • ) = α(1) ⊤ , …, α(M) ⊤ ⊤, α−1

( • ) = α−1
(1) ⊤ , …, α−1

(M) ⊤ ⊤, and μ0 and α0
( • ) be the 

true values of μ and α( • ), respectively. Consider the empirical global loss function

L β( • ) = N−1 ∑
m = 1

M
nmLm β(m) , where
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Lm β(m) = nm
−1 ∑

i = 1

nm
f β(m) ⊤ Xi

(m), Y i
(m) , m = 1, …, M

Minimizing L β( • )  is obviously equivalent to estimating β(m) using D(m) only. To improve 

the estimation of β0
( • ) by synthesizing information from D( • ) and overcome the high 

dimensionality, we employ penalized loss functions, L β( • ) + λρ β( • ) , with the penalty 

function ρ( ⋅ ) designed to leverage prior structure information on β0
( • ). Under the prior 

assumption that μ0 is sparse and α0, − 1
(1) , …, α0, − 1

(M)  are sparse and share the same support, we 

impose a mixture of LASSO and group LASSO penalty: ρ β( • ) = ∑j = 2
p μj + λg∑j = 2

p αj 2, 

where λg ≥ 0 is a tuning parameter. Similar penalty has been used in Cheng, Lu, and Liu 

(2015). Our construction differs slightly from that of Cheng, Lu, and Liu (2015) where 

αj, − 1 2 was used instead of αj 2. This modified penalty leads to two main advantages: (i) 

the estimator is invariant to the permutation of the indices of the M studies; and (ii) it yields 

better theoretical estimation error bounds for the heterogeneous effects. Then an idealized 

IPDpool estimator for β0
( • ) can be obtained as

β IPDpool
( • ) = argmin

β( • )
Q β( • ) , where

Q β( • ) = L β( • ) + λρ β( • ) ,
(1)

for some tuning parameter λ ≥ 0. However, the IPDpool estimator is not feasible 

under the DataSHIELD constraint. Our goal is to construct an alternative estimator 

that attains the same efficiency as β IPDpool
( • )

 asymptotically but only requires sharing 

summary data. When p is small, the sparse meta analysis (SMA) approach by He et 

al. (2016) achieves this goal via estimating β( • ) as βSMA
( • ) = argminβ( • )QSMA β( • ) , where 

QSMA β( • ) = N−1∑m = 1
M β(m) − β̆(m) ⊤

V̆m
−1 β(m) − β̆(m) + λρ β( • ) , β̆(m) = argminβ(m)Lm β(m)

and V̆m = nm
−1 ∇2Lm β̆(m) −1

. The SMA method is DataSHIELD since only derived statistics 

β̆(m)
 and V̆m are shared in the integrative regression. The SMA estimator attains oracle 

property when p is relatively small but fails for large p due to the failure of β̆(m)
.

3. Data-SHIR

3.1. SHIR Method

In the high-dimensional setting, one may overcome the limitation of the SMA approach by 

replacing β̆(m)
 with the regularized LASSO estimator,

βLASSO
(m) = argmin

β(m)
Lm β(m) + λm β−1

(m)
1 (2)
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However, aggregating βLASSO
(m) , m ∈ [M]  is problematic with large p due to their inherent 

biases. To overcome the bias issue, we build the SHIR method motivated by SMA and the 

debiasing approach for LASSO (see, e.g., Van de Geer et al. 2014) yet achieve debiasing 

without having to perform debiasing for M local estimators. Specifically, we propose the 

SHIR estimator for β0
( • ) as βSHIR

( • ) = argminβ( • )QSHIR β( • ) , where

QSHIR β( • ) = N−1 ∑
m = 1

M
nm β(m) ⊤ ℍmβ(m) − 2β(m) ⊤ gm

+λρ β( • ) ,
(3)

ℍm = ∇2Lm βLASSO
(m)

 is an estimate of the Hessian matrix and gm = ℍmβLASSO
(m) − ∇Lm βLASSO

(m)
. Our 

SHIR estimator βSHIR
( • )

 satisfy the DataSHIELD constraint as QSHIR β( • )  depends on D(m) only 

through summary statistics Dm = nm, ℍm, gm , which can be obtained within the mth study, and 

requires only one round of data transfer from local sites to the central node.

With ℍm, gm, m = 1, …, M , we may implement the SHIR procedure using coordinate descent 

algorithms (Friedman, Hastie, and Tibshirani 2010) along with reparameterization. Let

QSHIR μ, α( • ) = LSHIR μ, α( • ) + λρ μ, α( • ); λg ,

where ρ μ, α( • ); λg = μ−1 1 + λg α−1
( • )

2, 1, α−1
( • )

2, 1 = ∑j = 2
p αj 2 and

LSHIR μ, α( • ) = N−1 ∑
m = 1

M
nm μ⊤ + α(m)T ℍm μ + α(m)

−2gm
⊤ μ + α(m) .

Then the optimization problem in Equation (3) can be reparameterized and represented as:

μSHIR, αSHIR
( • ) = argmin μ, α( • ) QSHIR μ, α( • ) ,

s.t. 1M × 1
⊤ αj = 0, j ∈ [p],

and βSHIR is obtained with the transformation: βj
(m) = μj + αj

(m) for every j ∈ [p]. The above 

procedure is presented in Algorithm A1 in Section A.5 of the supplementary material.

Remark 1.—The first term in QSHIR β( • )  is essentially the second-order Taylor 

expansion of L β( • )  at the local LASSO estimators βLASSO
( • )

. The SHIR method 

can also be viewed as approximately aggregating local debiased LASSO estimators 

without actually carrying out the standard debiasing process. To see this, let 

QdLASSO β( • ) = N−1∑m = 1
M nm β(m) − βdLASSO

(m) ⊤ℍm β(m) − βdLASSO
(m) + λρ β( • ) , where βdLASSO

(m)
 is the 

debiased LASSO estimator for the mth study with
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β dLASSO
(m) = βLASSO

(m) − Θm ∇Lm βLASSO
(m) , for m = 1, …, M, (4)

and Θm is a regularized inverse of ℍm. We may write

QdLASSO β( • )

= N−1 ∑
m = 1

M
nm β(m) ⊤ ℍmβ(m) − 2β(m) ⊤ ℍmβdLASSO

(m)

+Cm + λρ β( • )

≈ N−1 ∑
m = 1

M
nm β(m) ⊤ ℍmβ(m) − 2β(m) ⊤ gm + Cm

+λρ β( • )

= QSHIR β( • ) + N−1 ∑
m = 1

M
Cm

where we use Θmℍm ≈ I in the above approximation and the term

Cm = nm ℍmβLASSO
(m) − ℍmΘm ∇Lm βLASSO

(m) ⊤

βLASSO
(m) − Θm ∇Lm βLASSO

(m)

does not depend on β( • ). We only use Θmℍm ≈ I heuristically above to show a connection 

between our SHIR estimator and the debiased LASSO, but the validity and asymptotic 

properties of the SHIR estimator do not require obtaining any Θm or establishing a theoretical 

guarantee for Θmℍm being sufficiently close to I.

Remark 2.—Compared with existing debiasing-based methods (Lee et al. 2017; Battey et 

al. 2018), the SHIR approach is both computationally and statistically efficient. It does not 

rely on the debiased statistics (4) and achieves debiasing without calculating Θm, which can 

only be estimated well under strong conditions (Van de Geer et al. 2014; Janková and Van 

De Geer 2016).

3.2. Tuning Parameter Selection

The implementation of SHIR requires selection of three sets of tuning parameters, 

λm, m ∈ [M] , λ and λg. We select λm, m ∈ [M]  for the LASSO problem locally via the 

standard K-fold cross-validation (CV). Selecting λ and λg needs to balance the tradeoff 

between the model’s degrees of freedom, denoted by DF λ, λg , and the quadratic loss in 

QSHIR β( • )  It is not feasible to tune λ and λg via the CV since individual-level data are not 

available in the central site. We propose to select λ and λg as the minimizer of the generalized 

information criterion (GIC) (Wang and Leng 2007; Zhang, Li, and Tsai 2010), defined as

GIC λ, λg = Deviance λ, λg + γNDF λ, λg ,
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where γN is some prespecified scaling parameter and

Deviance λ, λg = N−1 ∑
m = 1

M
nm βSHIR

(m) ⊤ λ, λg ℍmβSHIR
(m) λ, λg

−2gm
TβSHIR

(m) λ, λg .

Following Zhang, Li, and Tsai (2010) and Vaiter et al. (2012), we define DF λ, λg  as the 

trace of

∂Sμ, Sα
2 QSHIR μSHIR, αSHIR

( • ) −1 ∂Sμ, Sα
2 LSHIR μSHIR, αSHIR

( • ) ,

where Sμ = j:μSHIR, j λ, λg ≠ 0 , Sα = j: αSHIR, j λ, λg 2 ≠ 0 , the operator ∂Sμ, Sα
2  is defined 

as the second order partial derivative with respect to μSμ
⊤ , αSα

(2) ⊤ , …αSα
(M) ⊤ ⊤, after plugging 

α(1) = − ∑m = 2
M α(m) into QSHIR μ, α( • )  or LSHIR μ, α( • ) .

Remark 3.—As discussed in Kim, Kwon, and Choi (2012), γN can be chosen depending on 

the goal with commonly choices including γN = 2/N for AIC (Akaike 1974), γN = logN /N
for BIC (Bhat and Kumar 2010), γN = loglogplogN /N for modified BIC (Wang, Li, and 

Leng 2009) and γN = 2logp/N for RIC (Foster and George 1994). We used the BIC with 

γN = logN /N in our numerical studies.

Remark 4.—For linear models, it has been shown that the proper choice of γN guarantees 

GIC’s model selection consistency under various divergence rates of the dimension p (Kim, 

Kwon, and Choi 2012). For example, for fixed p, GIC is consistent if NγN ∞ and γN 0. 

When p diverges in polynomial rate Nξ, then GIC is consistent provided that γN = logN /N
(BIC) if 0 < ξ < 1/2; γN = loglogplogN /N (modified BIC) if 0 < ξ < 1. When p diverges in 

exponential rate O exp κNξ  with 0 < v < ξ, GIC is consistent as γN = Nv − 1. These results 

can be naturally extended to more general log-likelihood functions.

4. Theoretical Results

In this section, we present theoretical properties of βSHIR
( • )

 for ρ β( • ) = ρ β( • )  but discuss 

how our theoretical results can be extended to other sparse structures in Section 7. In 

Sections 4.2 and 4.3, we derive theoretical consistency and equivalence for the prediction 

and estimation risks of the SHIR, under high dimensional sparse model and smooth loss 

function f. In Section 4.4, we compare the risk bounds for SHIR with an estimator derived 

based on those of the debiasing-based aggregation approaches (Lee et al. 2017; Battey et al. 

2018). In addition, Section 4.5 shows that the SHIR achieves sparsistency, that is, variable 

selection consistency, for the nonzero sets of μ0 and α0
( • ). We begin with some notation and 

definitions that will be used throughout the article.
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4.1. Notation and Definitions

Let o α(n) , O α(n) , ω α(n) , Ω α(n)  and Θ α(n)  respectively represent the sequences that 

grow in a smaller, equal/ smaller, larger, equal/larger and equal rate of the sequence α(n). 
Similarly, let oP, OP, ωP, ΩP and ΘP represent each of the corresponding rates with probability 

approaching 1 as n ∞.

For any vector v0 ∈ ℝd, denote the ℓ2-ball around v0 with radius r > 0 as 

Br v0 = v ∈ ℝd: v − v0 2 ≤ r . Following Vershynin (2018), we define the sub-Gaussian 

norm of a random variable X as X ψ2: = supq ≥ 1 q−1/2 E|X|q 1/q
 and for any random 

vector X = X1, …, Xd
⊤, its sub-Gaussian norm defined as X ψ2 = supv ∈ B1(0) v⊤X ψ2. For 

any symmetric matrix X, let Λmin(X) and Λmax(X) denote its minimum and maximum 

eigenvalue, respectively. For a ∈ ℝ, denote by sign(a) the sign of a, and for event 

E, denote by I(E) the indicator for E. Denote by Sμ = j:μ0j ≠ 0 , Sα = j: α0j 2 ≠ 0 , 

S0 = Sμ ∪ Sα, Sfull = Sμ, Sα , sμ = Sμ , sα = Sα  and s0 = S0 . Let f1
′(a, y) = ∂f(a, y)/ ∂a and 

f1
″(a, y) = ∂2f(a, y)/ ∂a2. Also, let ℍ β( • ) = N−1bdiag n1ℍ1 β(1) , n2ℍ2 β(2) , …, nMℍM β(M) , 

ℍ = ℍ βLASSO
( • )

, ℍm β(m) = E ℍm β(m) , and ℍm = ℍm β0
(m) . Finally, we introduce the 

compatibility condition Ccomp  as below.

Definition 1 (Compatibility Condition Ccomp .—The Hessian matrix ℍ β( • )

and the index set S satisfy the Compatibility Condition, if for all 

μΔ
⊤, αΔ

( • ) ⊤ ⊤ = μΔ
⊤, αΔ

(1) ⊤ , …, αΔ
(M) ⊤ ⊤ ∈ C(t, S) with any constant t > 0, there exists a constant 

ϕ0 t, S, ℍ β( • )  such that,

μΔ 1 + λg αΔ
( • ) ⊤

2, 1
2 ≤ N−1 ∑

m = 1

M
nm S ℍm

1/2 β(m)

μΔ + αΔ
(m)

2

2
/ϕ0 t, S, ℍ β( • ) ,

where 

C(t, S) = u⊤, v( • ) ⊤ ⊤ = u⊤, v(1) ⊤ , …, v(M) ⊤ ⊤:v(1) + ⋯ + v(M) = 0, uSc 1 + λg vSc
( • )

2, 1

≤ t uS 1 + λg vS
( • )

2, 1

, 

and ϕ0 t, S, ℍ β( • )  represents the compatibility constant of ℍ β( • )  on the set S.

4.2. Prediction and Estimation Consistency

To establish theoretical properties of the SHIR estimators in terms of estimation and 

prediction risks, we first introduce some sufficient conditions. Throughout the following 

analysis, we assume that nm = Θ(N /M) for m ∈ [M] and λg = Θ M−1/2

Condition 1.—There exists an absolute constant ϕ0 > 0 such that for all 

δ1 = Θ s0Mlogp/N 1/2 , β( • ) = β(1) ⊤ , …, β(M) ⊤ ⊤
 satisfying β(m) ∈ Bδ1 β0

(m) , the Hessian 
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matrices ℍ β( • )  and the index set S0 satisfy Ccomp (Definition 1) with compatibility constant 

ϕ0 t, S0, ℍ β( • ) ≥ ϕ0.

Condition 2.—For all m ∈ [M], Xij
(m)f1

′ β0
(m)TXi

(m), Y i
(m)  is sub-Gaussian, that is, there exists 

some positive constant κ = Θ(1) such that Xij
(m)f1

′ β0
(m) ⊤ Xi

(m), Y i
(m)

ψ2 < κ. In addition, there 

exists B > 0 such that maxm ∈ [M], i ∈ nm Xi
(m)

∞ ≤ B.

Condition 3.—There exists positive CL = Θ(1) such that f1
″(a, y) − f1

″(b, y) ≤ CL |a − b| for all 

a, b ∈ ℝ.

Remark 5.—Condition 1 is in a similar spirit as the restricted eigenvalue or restricted 

strong convexity condition introduced by Negahban et al. (2012). The first part of Condition 

2 controls the tail behavior of Xij
(m)f1

′(a, y) so that the random error ∇Lm β0
(m)  can be 

bounded properly and the method could be benefited from the group sparsity of α( • )

(Huang and Zhang 2010). This condition can be easily verified for sub-Gaussian design and 

an extensive class of models, for example, the logistic model. In addition, the condition 

maxm ∈ [M], i ∈ nm Xi
(m)

∞ ≤ B holds for bounded design with B = Θ(1) and for subGaussian 

design with B = Θ log(pN) 1/2  Condition 3 assumes a smooth function f to guarantee 

that the empirical Hessian matrix ∇2Lm βLASSO
(m)

 is close enough to ∇2Lm β0
(m) , and the term 

gm = ℍmβLASSO
(m) − ∇Lm βLASSO

(m)
 is close enough to ∇2Lm β0

(m) β0
(m) − ∇Lm β0

(m) .

The following Proposition 1 illustrates that for sub-Gaussian weighted design with regular 

Hessian matrix, Condition 1 (Compatibility Condition) holds with probability approaching 

1. This can be viewed as an extension of the existing results, that is, sub-Gaussian design 

and linear model with lasso penalty (Rivasplata 2012), to our case with nonlinear model 

and the mixture penalty. We present the proof of Proposition 1 in Section A.1 of the 

supplementary material.

Proposition 1.—Assume that s0 = o N /(Mlogp)  and Condition 3 holds. Assume in 

addition that there exists absolute constants κx, Cx > 0, such that for all m ∈ [M], 

Cx
−1 ≤ Λmin ℍm ≤ Λmax ℍm ≤ Cx, maxx ∈ B1(0)E x⊤Xi

(m) 4 ≤ Cx and for any δ1 = Θ s0Mlogp/N 1/2

and β(m) ∈ Bδ1 β0
(m) , Xi

(m) f1
″ β(m) ⊤ Xi, Y i

(m) 1/2
ψ2

≤ κx. Then we have that, Condition 1 is 

satisfied with probability approaching 1.

Remark 6.—As an important example in practice, it is not hard to verify that, for logistic 

models with f(a, y) = ya − log 1 + ea , and sub-Gaussian covariates Xi
(m), the key assumption 

on the weighted design required in Proposition 1, Xi
(m) f1

″ β(m)TXi, Y i
(m) 1/2

ψ2
≤ κx, is 

satisfied.
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We further assume in Condition 4 that the local LASSO estimators achieve the minimax 

optimal error rates to a logarithmic scale (Raskutti, Wainwright, and Yu 2011; Negahban et 

al. 2012).

Condition 4.—The local estimators satisfy that maxm ∈ [M] βLASSO
(m) − β0

(m)

1
= OP s0 logp/nm

1/2 , 

and maxm ∈ [M] βLASSO
(m) − β0

(m)

2
≍ maxm ∈ [M] X(m) βLASSO

(m) − β0
(m)

2
= OP s0logp/nm

1/2 .

Remark 7.—Extensive literatures, such as Van de Geer et al. (2008), Bühlmann and 

Van De Geer (2011), and Negahban et al. (2012), have established a complete theoretical 

framework regarding to this property. See, for example, Negahban et al. (2012), in which 

Condition 4 can be proved for strongly convex loss function f.

Next, we present the risk bounds for the SHIR including the prediction risk 

ℍ1/2 βSHIR
( • ) − β0

( • )

2
 and estimation risk μSHIR − μ0 1 + λg αSHIR

( • ) − α0
( • )

2, 1.

Theorem 1 (Risk bounds for the SHIR).—Under Conditions 1–4, there exists 

λ = Θ (logp + M)/N 1/2 + Bs0Mlogp/N  and λg = Θ M−1/2  such that

ℍ1/2 βSHIR
( • ) − β0

( • )
2

= OP s0(logp + M)/N 1/2

+Bs0
3/2Mlogp/N ;

μSHIR − μ0 1 + λg αSHIR
( • ) − α0

( • )
2, 1

= OP s0 (logp + M)/N 1/2 + Bs0
2Mlogp/N .

Note that, in Theorem 1, the rate of the penalty coefficient for ∑j = 2
p αj 2 is 

λλg = Θ (logp + M)/NM 1/2 + BM1/2s0logp/N . The second term in each of the upper 

bounds of Theorem 1 is the error incurred by aggregation noise of derived data 

instead of raw data. These terms are asymptotically negligible under sparsity as 

s0 = o N(logp + M) 1/2/[BMlogp] . Then βSHIR
( • )

 achieves the same error rate as the ideal 

estimator β IPDpool
( • )

 obtained by combining raw data as shown in the following section, and is 

nearly rate optimal.

4.3. Asymptotic Equivalence in Prediction and Estimation

Under specific sparsity assumptions, we show the asymptotic equivalence, with respect to 

prediction and estimation risks, of the SHIR and the ideal IPDpool estimator β IPDpool
( • )

 or 

alternatively defined as

μIPDpool, αIPDpool
( • ) = argmin

μ, α( • )
L μ, α( • ) + λρ μ, α( • ); λg ,

s.t. 1M × 1
⊤ αj = 0, j ∈ [p],
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where λ is a tuning parameter.

Theorem 2.—(Asymptotic Equivalence) Under assumptions in Theorem 1 and assume 

s0 = o N(logp + M) 1/2/[BMlogp] , there exists λ = Θ (logp + M)/N 1/2 and λg = Θ M−1/2

such that the IPDpool estimator β IPDpool
( • )

 satisfies

ℍ1/2 β IPDpool
( • ) − β0

( • )
2

= OP s0(logp + M)/N 1/2 ;
μIPDpool − μ0 1 + λg αIPDpool

( • ) − α0
( • )

2, 1

= OP s0 (logp + M)/N 1/2 .

Furthermore, for some λΔ = o(λ), the IPDpool and the SHIR defined by (3) with λ = λ + λΔ

are equivalent in prediction and estimation in the sense that

ℍ1/2 βSHIR
( • ) − β0

( • )
2

≤ ℍ1/2 β IPDpool
( • )

−β0
( • )

2
+ oP s0(logp + M)/N 1/2 ;

μSHIR − μ0 1 + λg αSHIR
( • ) − α0

( • )
2, 1 ≤ μIPDpool − μ0 1

+λg αIPDpool
( • ) − α0

( • )
2, 1 + oP s0 (logp + M)/N 1/2 .

Theorem 2 demonstrates the asymptotic equivalence between βSHIR
( • )

 and β IPDpool
( • )

 with respect to 

estimation and prediction risks, and hence implies the optimality of the SHIR. Specifically, 

when s0 = o N(logp + M) 1/2/[BMlogp] , the excess risks of βSHIR
( • )

 compared to β IPDpool
( • )

 are of 

smaller order than those of IPDpool, that is, the minimax optimal rates (up to a logarithmic 

scale) for multi-task learning of high-dimensional sparse model (Huang and Zhang 2010; 

Lounici et al. 2011). Similar equivalence results was given in Theorem 4.8 of Battey et al. 

(2018) for the truncated debiased LASSO estimator. However, to the best of our knowledge, 

in the existing literatures, such results have not been established yet for the LASSO-type 

estimators obtained directly from a sparse regression model. Compared with Battey et al. 

(2018), our result does not require the Hessian matrix ℍm to have a sparse inverse since 

we do not actually rely on the debiasing of βLASSO
(m)

. Consequently, the proofs of Theorem 

2 are much more involved than those in Battey et al. (2018). The new technical skills are 

developed and presented in detail in the supplementary material.

4.4. Comparison With the Debiasing-based Strategy

To compare to existing approaches, we next consider an extension of the debiased LASSO-

based procedures proposed in Lee et al. (2017) and Battey et al. (2018) to incorporating 

between study heterogeneity. Specifically, at the mth site, we derive the debiased LASSO 

estimator βdLASSO
(m)

 as defined in (4) and send it to the central site, where Θm is obtained 

via nodewise LASSO (Javanmard and Montanari 2014). At the central site, compute 

μdLASSO = M−1∑m = 1
M βdLASSO

(m)
, αdLASSO

(m) = βdLASSO
(m) − μdLASSO and αdLASSO

( • ) = αdLASSO
(1) , …, αdLASSO

(M) ⊤. The 

final estimator for μ and α can be obtained by thresholding μdLASSO and αdLASSO
( • )  as 
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μL&B = Tμ μdLASSO; τ1  and αL&B
( • ) = Tα αdLASSO

( • ) ; μ2 , by Lee et al. (2017) and Battey et al. (2018), 

where

Tμ μ; τ1 = μ1, μ2
ℎ+ τ1 , …, μp

ℎ+ τ1
⊤ or

μ1, μ2
s+ τ1 , …, μp

s+ τ1
⊤

Tα α( • ); τ2 = vec α1, α2
ℎ+ τ2 , …αp

ℎ+ τ2
⊤ or

vec α1, α2
s+ τ2 , …αp

s+ τ2
⊤ ,

for any vector x = x1, …, xd
⊤ and constant τ, xℎ+ = xI x 2 > τ  and 

xs+ = x 1 − x 2
−1τ I x 2 > τ  respectively denote the hard and soft thresholded counterparts 

of x, and vec(A) vectorize the matrix A by column.

The error rates of μL&B, αL&B
( • )  can be derived by extending Lee et al. (2017) and Battey 

et al. (2018). We outline the results below and provide details in Section A.3.4 of the 

supplementary material. Denote by ℍm β(m) = E ℍm β(m) , ℍm = ℍm β0
(m) , Θm = θmjℓ p × p = ℍm

−1

and s1 = maxm ∈ [M]j ∈ [p] ℓ ≠ j:θmjℓ ≠ 0 . Then in analog to Theorem 1, one can obtain that

μL&B
( • ) − μ0 1 + λg αL&B

( • ) − α0
( • )

2, 1 (5)

= OP s0 (logp + M)/N 1/2 + Bs0 s0 + s1 Mlogp/N , (6)

where B is as defined in Condition 2. Compared with the error rates of SHIR as presented 

in Theorem 1, μL&B, αL&B
( • )  shares the same “first term”, s0 (logp + M)/N 1/2, representing the 

error of an individual-level empirical process. However, its second term incurred by data 

aggregation can be larger than that of SHIR as s1 = ω s0 , which could happen due to the 

complex design in practice.

In addition, SHIR could be more efficient than the debiasing-based strategy even when the 

impact of the additional error term, which depends on s1 in (6), is asymptotically negligible. 

Consider the setting when all β(m)’s are the same, that is, β(m) = β, and p is moderate or 

small so that the regularization is unnecessary and the maximum likelihood estimator (MLE) 

for β is feasible and asymptotically Gaussian. In this case, SHIR can be viewed as the 

inverse variance weight estimation with asymptotic variance ΣSHIR = ∑m = 1
M nmΘm

−1 −1
, while 

the debiasing-based approach outputs an estimator of variance ΣL&B = M−2∑m = 1
M nm

−1Θm. It 

is not hard to show that ΣSHIR ⪯ ΣL&B, where the equality holds only if all Θm’s are in certain 

proportion. Thus, SHIR is strictly more efficient than debiasing-based approach under the 

low-dimensional setting with heterogeneous Θm, which commonly arises in metaanalysis 

as the distributions of X(m)’s are typically heterogeneous across the local sites. In the 

high-dimensional setting, similarly, SHIR is expected to benefit from the “inverse variance 

weight” construction, and our simulation results in Section 5 support this point.
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4.5. Sparsistency

In this section, we present theoretical results concerning the variable selection consistency of 

the SHIR. We begin with some extra sufficient conditions for the sparsistency result.

Condition 5.—For all δ2 = Θ s0Mlogp/N 1/2  and β(m) satisfying β(m) ∈ Bδ2 β0
(m) , there 

exists Cmin = Θ(1) such that Λmin ℍm, S0 β(m) > Cmin, where ℍm, S0 β(m)  denotes the submatrix of 

ℍm β(m)  with its rows and columns corresponding to S0.

Condition 6.—For all δ3 = Θ s0Mlogp/N 1/2  and β( • ) = β(1) ⊤ , …, β(M) ⊤ ⊤
 satisfying 

β(m) ∈ Bδ3 β0
(m) , the weighted design matrix W β( • )  satisfies the Irrepresentable Condition 

CIrrep on Sfull with parameter ϵ > 0, where W β( • )  is defined in Section A.2 and CIrrep is given 

in Definition A2 of the supplementary material.

Condition 7.—Let v = min minj ∈ Sμ μ0j , M−1/2minj ∈ Sα α0j 2 . For the ϵ defined in Condition 

6, s0(logp + M)/N 1/2 + Bs0
3/2Mlogp/N /(vϵ) 0, as N ∞.

Remark 8.—Conditions 5–7 are sparsistency assumptions similar to those of Zhao and 

Yu (2006) and Nardi et al. (2008). Condition 5 requires the eigenvalues for the covariance 

matrix of the weighted design matrix corresponding to S0 to be bounded away from zero, 

so that its inverse behaves well. Condition 6 adopts the commonly used Irrepresentable 

Condition (Zhao and Yu 2006) to our mixture penalty setting. Roughly speaking, it requires 

that the weighted design corresponding to Sfull cannot be represented well by the weighted 

design for Sfull
c . Compared to Nardi et al. (2008), CIrrep is less intuitive but essentially weaker. 

We justify such condition on several common correlation structures and compare it with 

Zhao and Yu (2006) in Section A.2 of the supplementary material. Condition 7 assumes that 

the minimum magnitude of the coefficients is large enough to make the nonzero coefficients 

recognizable. It requires essentially weaker assumption on the minimum magnitude than 

local LASSO (Zhao and Yu 2006). This is because we leverage the group structure of β0
(m)’s 

to improve the efficiency of variable selection.

Theorem 3.—(Sparsistency) Let Sμ = j:μSHIR, j ≠ 0  and Sα = j: αSHIR, j 2 ≠ 0 . Denote by 

the event Oμ = Sμ = Sμ  and Oα = Sα = Sα . Under Conditions 1–7 and assume that

λ = o v/s0
1/2 and

λ = ϵ−1ω (logp + M)/N 1/2 + Bs0Mlogp/N ,

we have P Oμ ∩Oα 1 as N ∞.
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Theorem 3 establishs the sparsistency of SHIR. When s0 = o N(logp + M) 1/2/[BMlogp] , 

Condition 7 turns out to be vϵ = ω s0(logp + M)/N 1/2 , the corresponding sparsistency 

assumption for the IPDpool estimator. In contrast, a similar condition, which could be as 

strong as vϵ = ω s0Mlogp/N 1/2 , is required for the local LASSO estimator (Zhao and 

Yu 2006). Compared with the local one, our integrative analysis procedure can recognize 

smaller signal under some sparsity assumptions. In this sense, the structure of β0
( • ) helps 

us to improve the selection efficiency over the local LASSO estimator. Different from the 

existing work, we need carefully address the mixture penalty ρ and the aggregation noise of 

the SHIR, which introduce technical difficulties to our theoretical analysis.

In both Theorems 2 and 3, we allow M, the number of studies, to diverge while still 

preserving theoretical properties. The growing rate of M is allowed to be

M = min o (N /logp)1/2/ Bs0 , o N / Bs0logp 2

for the equivalence result in Theorem 2 and

M = min o Nϵv/ Bs0
3/2logp , o N(ϵν)2/s0

for the sparsistency result in Theorem 3.

5. Simulation Study

We present simulation results in this section to evaluate the performance of our proposed 

SHIR estimator and compare it with several other approaches. The simulation codes are 

available at https://github.com/moleibobliu/SHIR. Let M ∈ 4, 8  and p ∈ 100, 800, 1500
and set nm = n = 400 for each m. For each configuration, we summarize results based on 200 

simulated datasets. We consider three data-generating mechanisms:

i. Sparse precision and correctly specified model (strong and sparse signal): 
Across all studies, let Sμ = 1, 2, …, 6  for μ, Sα = 3, 4, …, 8  for α, S = Sμ ∪ Sα

and Sc = [p]\S. For each m ∈ [M], we generate X(m) from a zero-mean 

multivariate normal distribution with covariance ℂ(m), where ℂScSc
(m) = ℝp − 8 rm , 

ℂScS
(m) = ℝp − 8 rm Γp − 8, 8 rm, 15 , ℂSS

(m) = I8 + Γp − 8, 8
⊤ rm, 15 ℝp − 8 rm Γp − 8, 8 rm, 15 , Iq denotes 

the q × q identity matrix, ℝq(r) denotes the q × q correlation matrix of AR(1) 

with correlation coefficient r, Γq1, q2 r, s1  denotes the q1 × q2 matrix with each of 

its column having randomly picked s1 entries set as r or −r in random and 

the remaining being 0, and rm = 0.4(m − 1)/M + 0.15. Given X(m), we generate 

Y (m) from the logistic model P Y (m) = 1 ∣ X(m) = expit XSμ
(m) ⊤ μSμ + XSα

(m)⊤αSα
(m)  with 

μSμ = 0.5(1, − 1, 1, − 1, 1, − 1)⊤ and αSα
(m) = 0.35( − 1)m ⋅ (1, 1, 1, − 1, − 1, − 1)⊤.
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ii. Sparse precision and correctly specified model (weak and sparse signal): Use 

the same data-generation mechanism as in (i) but relatively weak signals 

μSμ = 0.2(1, − 1, 1, − 1, 1, − 1)⊤ and αSα
(m) = 0.15( − 1)m ⋅ (1, 1, 1, − 1, − 1, − 1)⊤.

iii. Sparse precision and correctly specified model (strong and dense signal): Use 

the same mechanism as in (i) but denser supports: Sμ = 1, 2, …, 18 , and 

Sα = 7, 8, …, 24 , and more heterogeneous coefficients across the sites (see their 

specific values in Section A.5 of the supplementary material).

iv. Sparse precision and correctly specified model (weak and dense signal): Use 

the same mechanism as in (iii) but weaker signals (see Section A.5 of the 

supplementary material).

v. Dense precision and wrongly specified model: Let S = 1, 2, …, 5 , 

S′ = 6, …, 50 , and S″ = [p]\ S ∪ S′ . For each m ∈ [M],, we 

generate X(m) from zero-mean multivariate normal with 

covariance matrix ℂ(m), where ℂ S′ ∪ S″ S′ ∪ S″
(m) = bdiag ℝ45 rm , ℝp − 50 rm , 

ℂSS″
(m) = 0, ℂS′S

(m) = ℝ45 rm Γ45, 5 rm, 45  and ℂSS
(m) = I5 + Γ45, 5

⊤ rm, 45 ℝ45 rm Γ45, 5 rm, 45 . 

Given X(m), we generate Y (m) from a logistic model with 

P Y (m) = 1 ∣ X(m) = expit ∑j = 1
5 0.25 + 0.15( − 1)m Xj

(m) + 0.2 Xj
(m) 3

+ 0.1∑j = 1
4 Xj

(m)Xj + 1
(m)

.

Across all settings, the distributions of X(m) and model parameters of Y (m) ∣ X(m) differ 

across the M sites, which mimic the heterogeneity of the covariates and models. The 

heterogeneity of X(m) is driven by the study-specific correlation coefficient rm in its 

covariance matrix ℂ(m). Under Settings (i)–(iv), the fitted logistic loss corresponds to 

the likelihood under a correctly specified model with the support of μ and that of α(m)

overlapping but not exactly the same. Under Setting (v), the fitted loss corresponds to a 

misspecified model but the true target parameter β(m) remains approximately sparse with 

only first 5 elements being relatively large, 45 close to zero and remaining exactly zero. For 

each j ∈ S, there are 15 nonzero coefficients on average in the jth column of the precision 

Θm under Settings (i)–(iv), and 45 nonzero coefficients under Setting (v). So we can use 

Settings (i)–(iv) to simulate the scenario with sparse precision on the active set and use 

Setting (v) to simulate relatively dense precision.

For each simulated dataset, we obtain the SHIR estimator as well as the following alternative 

estimators: (a) the IPDpool estimator β IPDpool
( • ) = argminβ( • )Q β( • ) ; (b) the SMA estimator 

(He et al. 2016), following the sure independent screening procedure (Fan and Lv 2008) 

that reduces the dimension to n/(3logn) as recommended by He et al. (2016); and (c) the 

debiasing-based estimator βL&B
( • )

 as introduced in Section 4.4, denoted by DebiasL&B. For βL&B
( • )

, 

we used the soft thresholding to be consistent with the penalty used by IPDpool, SMA and 

SHIR. We used the BIC to choose the tuning parameters for all methods.

Cai et al. Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2023 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In Figures 1 and 2, we present the relative average absolute estimation error (rAEE), 

β( • ) − β0
( • )

1, and the relative prediction error (rPE), X β( • ) − β0
( • )

2
, for each estimator 

compared to the IPDpool estimator, respectively. Consistent with the theoretical equivalence 

results, the SHIR estimator attains very close estimation and prediction accuracy as those 

of theidealizedIPDpoolestimator,withrPEandrAEEaround1.03 under Setting (i), 1.02 under 

(ii), 1.04 under (iii), 1.03 under (iv), and 1.07 under (v). The SHIR estimator is substantially 

more efficient than the SMA under all the settings, with about 45% reduction in both 

AEE and PE on average. This can be attributed to the improved performance of the local 

LASSO estimator βLASSO
(m)

 over the MLE β̆(m)
 on sparse models. The superior performance is 

more pronounced for large p such as 800 and 1500, because the screening procedure does 

not work well in choosing the active set, especially in the presence of correlations among 

the covariates. Compared with DebiasL&B, SHIR also demonstrates its gain in efficiency. 

Specifically, relative to SHIR, DebiasL&B has 15% ~ 29% higher AEE and 18% − 42% higher 

PE under the five settings. This is consistent with our theoretical results presented in Section 

4.4 that SHIR has smaller error compared to DebiasL&B due to the heterogeneous Hessians 

and aggregation errors. In addition, compared to Settings (i)–(iv), the excessive error of 

DebiasL&B is larger in Setting (v) where the the inverse Hessian Θm is relatively dense. This is 

consistent with conclusion in Section 4.4.

In Figure 3, we present the average number of misclassifications on the support of β( • ), 

that is, ∑j = 1
p I β j = 0 ≠ I β0, j = 0  for β obtained via different methods under Settings (i)–

(iv) where the model for Y  is correctly specified. SMA performs poorly and has more 

misclassification numbers under nearly all the settings, specially for p = 800, 1500 and 

dense signals. Both IPDpool and SHIR have good support recovery performance with the 

misclassification numbers below 2.5 under all settings with sparse signal, and below 7.5 

under those with dense signal. These two methods attain similar misclassification numbers 

with the absolute differences less than 0.8 across all settings. Compared to IPDpool and 

SHIR, DebiasL&B has significantly worse performance for all the settings with p ∈ 800, 1500 . 

For weak signal, M = 4 and p ∈ 800, 1500 , the misclassification numbers of DebiasL&B are 

about two to four times as large as those of IPDpool and SHIR. For strong signal or M = 8, 

the gap between DebiasL&B and SHIR is still visible though a bit smaller. For example, under 

Setting (i) with M = 8, DebiasL&B has about 60% more misclassifications than SHIR when 

p = 800, and 110% more misclassifications when p = 1500 on average. In Figures A1 and 

A2 of the supplementary material, we present the average true positive rate (TPR) and 

false discovery rate (FDR) for recovering the support of β( • ). When p = 100, the estimator 

DebiasL&B tends to have smaller FDR than those of SHIR. However, this is achieved at the 

expense of substantially lower TPR. On the other hand, when p is larger (p ∈ 800, 1500 ), 
SHIR attains lower FPR than DebiasL&B while attaining higher or comparable TPR. In 

summary, SHIR achieves similar performance as IPDpool and better performance than 

DebiasL&B in support recovery.
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6. Application to EHR Phenotyping in Multiple Disease Cohorts

Linking EHR data with biorepositories containing “-omics” information has expanded the 

opportunities for biomedical research (Kho et al. 2011). With the growing availability of 

these high-dimensional data, the bottleneck in clinical research has shifted from a paucity 

of biologic data to a paucity of high-quality phenotypic data. Accurately and efficiently 

annotating patients with disease characteristics among millions of individuals is a critical 

step in fulfilling the promise of using EHR data for precision medicine. Novel machine 

learningbased phenotyping methods leveraging a large number of predictive features have 

improved the accuracy and efficiency of existing phenotyping methods (Liao et al. 2015; Yu 

et al. 2015).

While the portability of phenotyping algorithms across multiple patient cohorts is of great 

interest, existing phenotyping algorithms are often developed and evaluated for a specific 

patient population. To investigate the portability issue and develop EHR phenotyping 

algorithms for CAD useful for multiple cohorts, Liao et al. (2015) developed a CAD 

algorithm using a cohort of rheumatoid arthritis (RA) patients and applied the algorithm 

to other disease cohorts using EHR data from Partner’s Healthcare System. Here, we 

performed integrative analysis of multiple EHR disease cohorts to jointly develop algorithms 

for classifying CAD status for four disease cohorts including type 2 diabetes mellitus 

(DM), inflammatory bowel disease (IBD), multiple sclerosis (MS), and RA. Under the 

DataSHIELD constraint, our proposed SHIR algorithm enables us to let the data determine 

if a single CAD phenotyping algorithm can perform well across four disease cohorts or 

disease specific algorithms are needed.

For algorithm training, clinical investigators have manually curated gold standard labels 

on the CAD status used as the response Y , for n1 = 172 DM patients, n2 = 230 IBD patients, 

n3 = 105 MS patients, and n4 = 760 RA patients. There are a total of p = 533 candidate features 

including both codified features, narrative features extracted via natural language processing 

(NLP) (Zeng et al. 2006), as well as their two-way interactions. Examples of codified 

features include demographic information, lab results, medication prescriptions, counts of 

International Classification of Diseases (ICD) codes and Current Procedural Terminology 

(CPT) codes. Since patients may not have certain lab measurements and missingness is 

highly informative, we also create missing indicators for the lab measurements as additional 

features. Examples of NLP terms include mentions of CAD, current smoking (CSMO), 

nonsmoking (NSMO) and CAD related procedures. Since the count variables such as 

the total number of CAD ICD codes are zero-inflated and skewed, we take log(x + 1)
transformation and include I(x > 0) as additional features for each count variable x.

For each cohort, we randomly select 50% of the observations to form the training set for 

developing the CAD algorithms and use the remaining 50% for validation. We trained 

CAD algorithms based on SHIR, DebiasL&B and SMA. Since the true model parameters 

are unknown, we evaluate the performance of different methods based on the prediction 

performance of the trained algorithms on the validation set. We consider several standard 

accuracy measures including the area under the receiver operating characteristic curve 

(AUC), the brier score defined as the mean squared residuals on the validation data, as 
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well as the F-score at threshold value chosen to attain a false-positive rate of 5% (F5%) and 

10% (F10%), where the F-score is defined as the harmonic mean of the sensitivity and positive 

predictive value. The standard errors of the estimated prediction performance measures 

are obtained by bootstrapping the validation data. We only report results based on tuning 

parameters selected with BIC as in the simulation studies but note that the results obtained 

from AIC are largely similar in terms of prediction performance. Furthermore, to verify the 

improvement of the performance by combining the four datasets, we include the LASSO 

estimator for each local dataset (Local) as a comparison.

In Table 1, we present the estimated coefficients for variables that received nonzero 

coefficients by at least one of the included methods. Interestingly, all integrative analysis 

methods set all heterogeneous coefficients to zero, suggesting that a single CAD algorithm 

can be used across all cohorts although different intercepts were used for different disease 

cohorts. The magnitude of the coefficients from SHIR largely agree with the published 

algorithm with most important features being NLP mentions and ICD codes for CAD as 

well as total number of ICD codes which serves as a measure of healthcare utilization. The 

SMA set all variables to zero except for age, nonsmoker and the NLP mentions and ICD 

codes for CAD, while DebiasL&B has more similar support to SHIR.

The point estimates along with their 95% bootstrap confidence intervals of the accuracy 

measures are presented in Figure 4. The results suggest that SHIR has the best performance 

across all methods, nearly on all datasets and across all measures. Among the integrative 

methods, SMA and DebiasL&B performed much worse than SHIR on all accuracy measures. 

For example, the AUC with its 95% confidence interval of the CAD algorithm for the 

RA cohorts trained via SHIR, SMA and DebiasL&B is respectively 0.93 (0.90,0.95), 0.88 

(0.84,0.92), and 0.86 (0.82,0.90). Compared to the local estimator, SHIR also performs 

substantially better. For example, the AUC of SHIR and Local for the IBD cohort is 0.93 

(0.88,0.97) and 0.90 (0.84,0.95). The difference between the integrative procedures and the 

local estimator is more pronounced for the DM cohort with AUC being around 0.95 for 

SHIR and 0.90 for the local estimator trained using DM data only. The local estimator fails 

to produce an informative algorithm for the MS cohort due to the small size of the training 

set. These results again demonstrate the power of borrowing information across studies via 

integrative analysis.

7. Discussion

In this article, we proposed a novel approach, the SHIR, for integrative analysis of high 

dimensional data under the DataSHIELD framework, where only summary statistics are 

allowed to be transferred from the local sites to the central node to protect the individual-

level data. As we demonstrated via both theoretical analyses and numerical studies, the 

SHIR estimator is considerably more efficient than the estimators obtained based on the 

debiasing-based strategies considered in literatures (Lee et al. 2017; Battey et al. 2018). 

Also, our method accommodates heterogeneity among the design matrices, as well as 

the coefficients of the local sites, which is not adequately handled under the ultra high-

dimensional regime in existing literature. Our approach only solves the LASSO problem 
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once in each local site without requiring the computation of Θ(m)
 or debiasing. Note 

that, SHIR aims at an ℓ1/ℓ2-consistent estimation and is not asymptotically unbiased. 

Consequently, it cannot be directly used for hypothesis testing or confidence interval 

construction, for example, Caner and Kock (2018a,b). Future work lies on developing 

statistical approaches for such purposes under DataSHIELD, high-dimensionality and 

heterogeneity. In addition, sparsistency of our estimator relies on the Irrepresentable 

Condition (Condition 6) that has been commonly used in the literature (see, e.g.,Yuan and 

Lin 2006; Nardi et al. 2008), but its rigorous verification for random design or nonlinear 

models is technically highly challenging. To achieve variable selection consistency without 

such condition, one may use non-concave (group) sparse penalty like group adaptive lasso 

(Wang and Leng 2008) or group bridge (Zhou and Zhu 2010) in our framework.

For the choice of penalty, in the current article, we focus primarily on the mixture 

penalty, ρ β( • ) = ∑j = 2
p μj + λg∑j = 2

p αj 2. Nevertheless, other penalty functions, such as 

group lasso (Huang and Zhang 2010) and hierarchical lasso (Zhou and Zhu 2010), can 

be incorporated into our framework provided that they effectively leverage certain prior 

knowledge. Similar techniques used for deriving the theoretical results of SHIR with the 

mixture penalty can be used for other penalty functions, with some technical details varying 

according to different choices on ρ ⋅ . See Section A.4 of the supplementary material for 

further justifications.

For the consistency result in Theorem 1, SHIR requires s0 = o (N /Mlogp)1/2 . Although this 

sparsity assumption is already weaker than those in the existing literature (Battey et al. 

2018, e.g.) as shown in Section 4.4, it may be strong in practical applications. For example, 

(N /Mlogp)1/2 ≈ 7 in the EHR example which suggests that the sparsity assumption may 

not hold. Nevertheless, the resulting SHIR algorithm appear to perform well in terms of 

out-of-sample classification accuracy. On the other hand, it is of interests to explore the 

possibilities of relaxing such assumption. One potential way is to use multiple rounds of 

communications such as Fan, Guo, and Wang (2019). Detailed analysis of this approach 

warrants future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The relative average absolute estimation error (AEE) of IPDpool (IPD), SHIR, 

DebiasL&B (Debias) and SMA compared to those of IPDpool underdifferent M ∈ 4, 8 , 

p ∈ 100, 800, 1500  and data-generation mechanisms (i)–(v) introduced in Section 5.
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Figure 2. 
The relative prediction error (PE) of IPDpool (IPD), SHIR, DebiasL&B (Debias), and SMA 

compared to those of IPDpool under different M ∈ 4, 8 , p ∈ 100, 800, 1500  and data-

generation mechanisms (i)–(v) introduced in Section 5.

Cai et al. Page 25

J Am Stat Assoc. Author manuscript; available in PMC 2023 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The average number of misclassifications on l βj ≠ 0 , j = 1, …, p  based on IPDpool (IPD), 

SHIR, DebiasL&B (Debias), and SMA under different M ∈ 4, 8 , p ∈ 100, 800, 1500  and 

data-generation mechanisms (i)–(iv) introduced in Section 5.

Cai et al. Page 26

J Am Stat Assoc. Author manuscript; available in PMC 2023 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
The mean and 95% bootstrap confidence interval of AUC, Brier Score, F5% and F10% of 

DebiasL&B, Local, SHIR and SMA on the validation data from the four studies.
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Table 1.

Detected variables and magnitudes of their fitted coefficients for homogeneous effect μ.

Variable DebiasL&B SHIR SMA

Prescription count of statin 0.14 0.07 0

Age 0.09 0.26 0.28

Total ICD counts −0.38 −0.75 0

NLP count of CAD 0.97 1.34 0.81

NLP count of CAD procedure related concepts 0 0.02 0

NLP count of nonsmoker −0.07 −0.25 − 0.42

NLP count of nonsmoker > 0 −0.53 0 0

NLP count of current-smoker 0 −0.03 0

NLP count of CAD related diagnosis or procedure ≥ 1 0.06 0.05 0

ICD count for CAD 1.00 0.67 0.35

CPT count for stent or CABG 0 0.05 0

CPT count for echo 0 −0.10 0

ICD count for CAD × CPT count for echo 0 −0.04 0

NLP count of non-smoker × Oncall 0.09 0 0

NLP count of CAD × NLP count of possible-smoker 0 −0.02 0

NOTE: A×B denotes the interaction term of variables A and B. The log(x + 1) transformation is taken on the count data and the covariates are 

normalized.
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