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ABSTRACT: Protein engineering holds immense promise in shaping the
future of biomedicine and biotechnology. This Review focuses on our
ongoing development of Mutexa, a computational ecosystem designed to
enable “intelligent protein engineering”. In this vision, researchers will
seamlessly acquire sequences of protein variants with desired functions as
biocatalysts, therapeutic peptides, and diagnostic proteins through a
finely-tuned computational machine, akin to Amazon Alexa’s role as a
versatile virtual assistant. The technical foundation of Mutexa has been
established through the development of a database that combines and
relates enzyme structures and their respective functions (e.g.,
IntEnzyDB), workflow software packages that enable high-throughput
protein modeling (e.g., EnzyHTP and LassoHTP), and scoring functions
that map the sequence-structure−function relationship of proteins (e.g., EnzyKR and DeepLasso). We will showcase the applications
of these tools in benchmarking the convergence conditions of enzyme functional descriptors across mutants, investigating protein
electrostatics and cavity distributions in SAM-dependent methyltransferases, and understanding the role of nonelectrostatic dynamic
effects in enzyme catalysis. Finally, we will conclude by addressing the future steps and fundamental challenges in our endeavor to
develop new Mutexa applications that assist the identification of beneficial mutants in protein engineering.

1. INTRODUCTION
Protein engineering refers to the process of optimizing protein
sequences for enhanced physical (e.g., thermal stability,
solubility, and complex stoichiometry), chemical (e.g., reac-
tivity, substrate specificity, selectivity, and substrate scope),
biological, and pharmaceutical functions. Typical strategies in
protein engineering include directed evolution,1−4 gene
shuffling/recombination,5,6 site-directed mutagenesis,7,8 and
protein truncation and fusion.9,10 Enabled by protein engineer-
ing, researchers can create enzymes to accelerate low-
efficiency11−14 or even new-to-nature reactions,15,16 develop
peptides with targeted therapeutic effects,17,18 innovate
diagnostic tools for early stage cancer detection,19−21 and
advance our understanding of fundamental life processes.22,23

A “holy grail” challenge in protein engineering is the effective
identification of desired protein variants within a mutational
landscape.24,25 This difficulty results from the combinatorial
explosion associated with sequence mutation. Sampling
mutations across only a dozen amino acid sites creates an
astronomical number of variants. Despite advances in screening
strategies for protein engineering, the success rate for identifying
beneficial mutants is around 1% or lower.26−33 De novo design of
new functional proteins provides a promising alternative, but the
hit rate to identify successful designs among all design

candidates is similar to the chance of experimental discov-
ery.34−37 The time-consuming, labor-intensive, and expensive
process of experimental screening is largely unavoidable.
To reduce the size of mutant libraries for functional sreening,

computational approaches have been augmented with protein
engineering.25,38−40 These methods, such as bioinformatics,24,41

classical molecular simulations,42,43 quantum chemistry,44−47

and data-driven modeling,22,48−52 span a wide breadth of
computational subfields. Each modeling strategy has a specific
strength. Bioinformatics reveals the evolutionary coupling and
patterns behind function-encoding sequence regions; classical
molecular simulations elucidate the dynamics and conforma-
tional ensembles that constitute effective protein−protein/
ligand interactions or enzyme catalysis; quantum chemistry
informs the variation of electronic structure that underlies
enzymatic reactions and covalent inhibition; and data-driven
modeling predicts the formal, nonlinear relationships between
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sequence, structure, and function. Each of the aforementioned
computational methods has associated strengths and weak-
nesses with respect to accuracy, efficiency, resolution, and
reproducibility. The combination of these computational
approaches promises to establish an integrative strategy that
we call “intelligent protein engineering”. Similar to human
intelligence that leverages both physical insight and statistical
observation to guide decision making, intelligent protein
engineering refers to a platform that employs physics-based
molecular simulations and data-driven modeling to generate,
discover, predict, and design new protein variants with enhanced
chemical, mechanical, thermal, and pharmaceutical properties.
Intelligent protein engineering aims to guide experimental
discovery of desired protein mutants by effectively shrinking the
number of mutations that have to be screened. In turn,
intelligent protein design will save extensive experimental
resources in the pursuit of identifying functional protein
variants.
With a long-term goal to create a platform that enables

intelligent protein engineering, our lab has been building a
computational ecosystem called Mutexa (Scheme 1). Mutexa is
short for “Alexa for mutants”, and we believe that how people
engineer proteins in the future shouldmirror how Amazon Alexa
is used today�when researchers want to create protein
sequence variants with desired functions, they will simply
consult our comprehensive computational platform. Mutexa
integrates high-throughput computation, bioinformatics, quan-

tum chemistry, multiscale simulations, and data-driven model-
ing to identify protein mutants that can enhance functions
including enzyme catalysis, peptide therapeutics, and disease
biomarker detection.23 Over the past three years, we have been
establishing the technical foundation of Mutexa by developing
1) a database that integrates enzyme structure and function data
(IntEnzyDB53,54), 2) software tools for high-throughput
construction and modeling of enzymes (EnzyHTP55,56) and
lasso peptides (LassoHTP57), and 3) scoring functions to
predict the impact of mutations on substrate-positioning
dynamics,23,58 enzymatic kinetic resolution (EnzyKR59), and
peptide antimicrobial activity (DeepLasso60). The database,
workflow software, and scoring functions will be discussed in
detail in Sections 2, 3, and 4, respectively. In addition, we will
briefly introduce applications of these tools including determin-
ing the convergence criteria for computing enzyme functional
descriptors,61 investigating the distribution of protein electro-
statics and cavity geometries for SAM-dependent methyltrans-
ferases,62 and understanding the role of nonelectrostatic
dynamic effects in mediating enzyme catalysis.63 Finally, we
will conclude by addressing the next steps and challenges in
building new Mutexa applications for functional protein
engineering.

Scheme 1. Overview of Mutexa, a Computational Ecosystem for Protein Engineeringa

aMutexa consists of three components, including a database that integrates the structural and functional information of proteins; workflow software
that allows automatic, high-throughput modeling for proteins; and a scoring function that describes sequence-structure-function relationship of
proteins. Combining these three basic components, new applications for predictive modeling are being developed into Mutexa, including tools that
enable enzyme engineering for non-native substrates or new-to-nature reactions, peptide engineering for antimicrobial uses, and binder protein
engineering for disease biomarker recognition.
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2. INTENZYDB: AN INTEGRATED
STRUCTURE−FUNCTION ENZYMOLOGY
DATABASE

Building an integrated database that merges related enzyme
sequence, structure, and function data in one place is essential
for developing accurate physical methods and holistic data-
driven models for enzyme engineering. However, data
collection, cleaning, and joining present three major challenges.
Data collection is often impeded by different design (e.g.,
relational, object-oriented, or hybrid), storage hierarchy, query
mechanism, and API protocols of various existing databases.
Data cleaning is tricky because existing data entries involve
missing or inaccurate mutational spot labels and experimental
conditions, as well as manual typos and rounding errors. Data
joining between enzyme structure and function data is
challenging due to inconsistent keys�enzyme kinetics data-
bases typically store data entries using EC number and often lack

PDB IDs, creating challenges for one-to-one mapping to
structural databases.
To address these challenges, we developed an integrated

structure-kinetics enzymology database, IntEnzyDB, for facile
data-driven modeling and machine learning.53,54 The database
merges related enzyme sequence, structure, and function data in
one place to address the challenges associated with the
collection, cleaning, and joining of enzymology data. In contrast
to object-oriented databases that store enzyme records in
separate data files,64 IntEnzyDB employs a relational database
architecture with a flattened data structure. This approach
enhances scalability and enables the integration of additional
enzyme function data, such as folding stability and solubility,
into the database. A similar database architecture has been
employed by Fleischmann et al. to build IntEnz, an integrated
enzymology database for nomenclature and classification of
enzyme-catalyzed reactions.65

Figure 1. Architecture, kinetics data statistics, and performance benchmark for IntEnzyDB. (a) The database architecture consists of five tables,
including three tables for enzyme structure information (chain-level, amino acid-level, and atom-level), one table for kinetics, and a reference table that
includes foreign keys from the structure and kinetics tables. Themapping of the tables is established using the PDB ID, Chain ID, and UniProtKB keys.
(b) The distribution of kinetics data for six enzyme commission classes. (c) The comparison of operation time between IntEnzyDB and manual
curation methods. The operation time for downloading, reading, and cleaning data is measured for processing 1, 100, 200, 400, 600, 800, and 1000
PDB IDs, with data downloading and reading/cleaning indicated by dotted and dashed lines, respectively. The total operation time for the manual
curation method is shown by the red solid line. All operation times are reported in seconds. Adapted with permission from ref 53. Copyright 2022
American Chemical Society.
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To store kinetics and structure information, IntEnzyDB
implements five data tables (Figure 1a). We curated three tables
to store cleaned enzyme structure data derived from RCSB
PDB,64 including a chain table that contains general protein
structure information (e.g., nomenclature, organism, resolution,
etc.), an amino acid table that contains amino acid attributes,
properties, and physiochemical parameters, and an atomic
structure table that contains the atom types and Cartesian
coordinates. We curated one table for kinetics data derived from
BRENDA,66 Sabio-RK,67 ProtaBank,68 and Design2 Data.69

The table contains information of enzyme kinetic assays such as
EC number, substrate, mutation, temperature, turnover number,
Michaelis constant, and so on. We adopted a protocol to
eliminate the data entries with no annotation of experimental
conditions. If multiple kinetic values weremeasured for the same
enzyme−substrate system under an identical experimental
condition by different research groups, these values were
averaged out and stored in IntEnzyDB. Finally, we curated

one reference table to achieve one-to-one mapping between
enzyme kinetics and PDB based on foreign keys PDB ID, Chain
ID, and UniProtKB. Using IntEnzyDB, we constructed a data
table containing 4243 kcat/KM values, which represent enzyme
catalytic efficiency for variants with single amino acid
substitutions. The data set includes 691 wild-type (WT)
enzymes, 2592 enzyme mutants, and 943 substrates. Of the
stored kcat/KM values, 29.2% pertain to oxidoreductases (EC 1),
19.4% to transferases (EC 2), 32.6% to hydrolases (EC 3), 9.1%
to ligases (EC 4), 4.9% to isomerases (EC 5), and 4.9% to lyases
(EC 6) (Figure 1b).
To assess the efficiency of retrieving enzyme structure data

using IntEnzyDB, we compared it against a manual curation
strategy (Figure 1c). Unlike the manual approach, IntEnzyDB
allows the user to filter and download precleaned and tabulated
structural data directly using SQL queries. Our results indicate
that for processing 200 enzymes, IntEnzyDB is approximately
two times faster than the manual curation approach (80 s vs 173

Figure 2. Design framework and application of EnzyHTP. (a) The workflow of high-throughput enzyme modeling. The workflow comprises four
levels of operation, namely protein preparation, mutant generation, geometry variation, and energy engine. The input to this framework is the enzyme
structure, and the output is computational modeling data. (b) Application of EnzyHTP to compute the electrostatic stabilization energy values (i.e.,
<Gelec>) for 100 fluoroacetate dehalogenase (FAcD) mutants. For each mutant, the workflow automatically conducts 1 ns molecular dynamics
simulations, 100 single point quantum mechanics calculations, dipole moment analysis, and output an averaged <Gelec> value. (c) Definition of
electrostatic stabilization energy, which is computed by the dot product between the enzyme interior electric field and the dipole moment of the
breaking C−F bond. (d) Spatial distribution of 100 single mutation spots on FAcD. (e) The distribution of Gelec values for 100 FAcD mutants, where
the red dashed line indicates the Gelec value for the WT FAcD. Adapted with permission from ref 56. Copyright 2022 American Chemical Society.
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s), and for 1000 enzymes, it is around six times faster (151 s vs
905 s). The results indicate that the operating time using
IntEnzyDB is nearly independent of data size, which is
particularly beneficial when handling a large amount of
structural data (i.e., thousands or more). The flattened data
structure of IntEnzyDB likely accounts for its high data
processing efficiency. By loading all data entries at once,
IntEnzyDB outperforms the traditional approach, where data
tables and files are accessed serially in CPU. While processing
smaller amounts of data (e.g., for one enzyme structure),
IntEnzyDB may take longer (86 s vs 1.9 s) than the manual
approach. However, IntEnzyDB can save a substantial amount
of time when managing large amounts of data by avoiding
repeatedly opening and reading files.
Although only∼10min are saved when operating on the 1000

structures in the benchmark (Figure 1), time savings are
expected to proportionally increase with the number of data
entries. We expect that more quality enzyme structure and
function data will be collected and stored in the future. As such,
IntEnzyDB provides an efficient solution for extracting enzyme
structural features for statistical analysis or machine learning.
The high quality structure and function data stored in
IntEnzyDB also serve as a benchmark for the systematic
assessment and development of new molecular modeling
methods used for enzyme engineering. As the next steps for
developing IntEnzyDB, we will further expand the mapped
structure-kinetics data table by using predicted structures and
active site annotations. Text mining strategies will be
implemented to enable more comprehensive data validation
and collection. We will incorporate new types of enzyme
property data to IntEnzyDB, including stability, solubility,
expressibility, and even molecular modeling data derived from
high-throughput simulations.56 The incorporation of a diverse
range of quality data from molecular level to macroscopic scale
has the potential to enhance the learning efficiency, predictive
accuracy, and generalizability of the models.

3. SOFTWARE TOOLS THAT ENABLE
HIGH-THROUGHPUT MOLECULAR SIMULATIONS
OF PROTEINS
3.1. EnzyHTP: A High-Throughput Computational

Platform for EnzymeModeling.Different types of computa-
tional theories and methods, including quantum mechanics
(QM), molecular mechanics (MM), and multiscale QM/MM
modeling, have been extensively employed in protein engineer-
ing to guide the selection of function-enhancing enzyme
mutants for late-stage functionalization,70 polymer upcy-
cling,71,72 degradation of environmental pollutants,73,74 and
treatment of food allergies.75,46 To maximize the potential of
molecular simulations in biocatalyst development,76−79 it is
essential to perform enzyme modeling in an automatic and high-
throughput fashion. To address this challenge, we developed a
computational platform, EnzyHTP, to automate the entire life
cycle of enzyme modeling in a high-throughput manner.
EnzyHTP has four levels of operation arranged in a top-down
hierarchy (Figure 2a). The four levels are protein preparation,
mutant generation, geometry variation, and energy engine. Each
level was implemented as an independent Python module. The
protein preparation module emphasizes constructing computa-
tional models for enzyme structures obtained from X-ray
crystallography experimental data or computational predictions.
The mutant generation module is responsible for generating
novel enzyme variants based on a common enzyme sequence

and scaffold by altering an existing amino acid’s side chain type
and conformation. The geometry variation module samples
enzyme conformation and substrate reaction coordinates using
external molecular dynamics or Monte Carlo software packages.
The energy engine makes use of QM, MM, or multiscale QM/
MM calculations using quantum chemistry toolboxes. In
particular, the QM treatment of enzyme active sites and reacting
species is critical to elucidating the catalytic mechanisms of
enzymes and predicting the impact of mutations on enzyme
catalysis.
To demonstrate the high-throughput capability of EnzyHTP,

we employed the software to investigate the impact of single
mutations on the interior enzyme electrostatics for 100
fluoroacetate dehalogenase (FAcD) mutants (Figure 2b). The
model enzyme, Rhodopseudomonas palustris FAcD, hydrolyzes
the C−F bond of fluoroacetate (FAc) via an SN2 mechanism
(Figure 2c).80−84 The cleavage of the C−F bond contributes to
the rate-determining step. The enzyme electric field accelerates
the reaction by stabilizing the dipole moment along the breaking
C−F bond.85 The electrostatic effect is quantified using
electrostatic stabilization energy (i.e., Gelec), which is computed
by the dot product between the electric field and the C−F bond
dipole (Figure 2c). Using EnzyHTP, we created a Python
workflow to compute Gelec values for 100 FAcD variants with
random single amino acid substitution. The workflow first
generates 100 variants using the mutant generation module
based on a curated FAcD crystal structure (Figure 2b). The
mutation spots are distributed over the entire FAcD enzyme
scaffold (Figure 2d), with a spatial proximity to the active site
ranging from 7 to 32 Å. The workflow performs an MD
simulation for each variant and then samples 100 conformers
from a 1 ns MD production run. The structure involves a
restrained prereaction complex in which the residue Asp110 is
aligned with the substrate C−F bond for a potential SN2 attack.
A short propagation time is used for the MD simulations to
ensure that the sampled enzyme conformers resemble the crystal
structure. Third, the workflow computes the ensemble average
of Gelec values (denoted by <Gelec>) using 100 conformational
snapshots extracted from a 1 ns MD trajectory. The bond dipole
is computed using a single-point QM calculation (HF/6-
31G(d)) that consists of the substrate and Asp110, followed by
wave function-based localized molecular orbital (LMO) analysis
using Multiwfn. The electronic field strength of a mutant is
computed based on the RESP charges of enzyme atoms using
Coulomb’s law. Solvent molecules and counterions are
excluded. Using the workflow, we completed the computation
of <Gelec> values for 100 FAcD variants in 7 h with 10 GPUs
(NVIDIA V100 SMX2) and 160 CPUs (Xeon Gold 6248). In
contrast, performing this process manually for 100 enzyme
variants would take several weeks due to tedious processes of
mutant structure curation and file preparation, in addition to the
computational runtime.
Figure 2e displays the distribution of <Gelec> values for 100

FAcD variants. The computed <Gelec> values exhibit a range of
−1.1 to 8.2 kcal/mol. Comparing to the reference <Gelec> value
of the WT FAcD (i.e., 0.5 kcal/mol), a small proportion of
mutations (∼10%) cause a reduction in the < Gelec> value,
indicating the formation of a more favorable electrostatic
environment that can between stabilize the developing C−F
dipole in the FAcD mutant compared to the WT FAcD.
However, the majority of mutations (∼90%) have the opposite
effect, which are likely to reduce or even abolish the catalytic
effect. Despite an enhanced enzyme electric field strength for
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breaking the C−F bond, the 10% mutations are not necessarily
the actual beneficial mutations due to the impact of mutation on
other untested aspects, such as stability, solubility, expressibility,
and so on. Our work on developing EnzyHTP software sets the
basis for in silico high-throughput enzyme screening that
identifies beneficial enzyme variants, which can accelerate the
development cycle of new biocatalysts that catalyze non-native
substrates or new-to-nature reactions. EnzyHTP will facilitate
the comprehension of enzyme catalytic mechanisms across
numerous enzymes within a protein family. EnzyHTP can also
assist in generating computational data for our database
IntEnzyDB, which in turn contributes to enhancing our
statistical understanding and machine learning capabilities.
Inspired by the code base and architecture of EnzyHTP, we are
developing more high-throughput software suites to address
specific challenges of automatic molecular modeling in protein
engineering. For one, we developed a tool for automatic
construction and modeling of lasso peptides. This will be
discussed in Section 3.2.
3.2. LassoHTP: A High-Throughput Tool for Lasso

Peptide Structure Construction and Modeling. Lasso

peptides are a class of ribosomally synthesized and post-
translationally modified natural products. They were first
discovered in 199186 and have been increasingly reported as
candidates for new antibiotics,87−90 enzyme inhibitors,88,91 and
receptor antagonists,86 (e.g., microcin J2591,92). Lasso peptides
involve a 1-rotaxane topology93,94 with a macrolactam ring held
in position by sterically bulky residues above and below the ring.
The ring in the lasso peptide is formed by an isopeptide bond
between the N-terminal α-amino group and the carboxylate
group of an aspartate or glutamate. Bioinformatic analyses
estimate that the lasso peptides with a known structure and
function occupy ∼10% of all possible lasso peptides that exist in
nature. To accelerate the discovery of functional lasso peptides,
computational tools capable of predicting the structures and
functions of uncharacterized lasso peptides can aid in prioritiz-
ing pharmaceutically valuable candidates for experimental
evaluation. However, due to the distinct topology of lasso
peptides, computational tools that were designed for structural
prediction of globular proteins (e.g., AlphaFold295) or cyclic
peptides96 fail to predict the structure of lasso peptides with high
fidelity.

Figure 3. Design framework and application of LassoHTP. (a) A schematic of LassoHTP’s workflow, which involves three modules: scaffold
constructor, peptide mutant generator, and MD simulator, to transform a user-input sequence into a conformational ensemble. (b) Application of the
mutant generator module to convert the poly alanine lasso peptide scaffold into the lasso peptide that is consistent with the user-input sequence.
Sequence shown is for xanthomonin-II105 (PDB ID: 2MFV). (c) Distribution of root-mean-square deviation (RMSD) for LassoHTP-initiated and
PDB-initiated MD conformational ensemble for caulosegnin-II.98 (d) Average RMSD values of LassoHTP (LHTP)-initiated (colored in blue) and
PDB-initiated (colored in orange) MD ensembles for eight lasso peptides involved in the benchmark. The structures of the lasso peptides were
determined mostly by NMR except for caulosegnin-II by X-ray crystallography (PDB ID: 5D9E). For (c) and (d), the RMSD was calculated using
backbone atoms (i.e., Cα, N, C, and O) with reference to the reference crystal and NMR structure. Adapted with permission from ref 57. Copyright
2023 American Chemical Society.
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To address this challenge, we developed LassoHTP as a tool
for high-throughput lasso peptide structure prediction and
conformational sampling. LassoHTP converts a user-defined
lasso peptide sequence (with annotation of ring, loop, and tail)
into a three-dimensional structure and a conformational
ensemble using three software modules, including a scaffold
constructor, a mutant generator, and an MD simulator (Figure
3a). The scaffold constructor is responsible for generating a poly
alanine lasso peptide scaffold based on a structural library and
tail extender function, while the mutant generator module
mutates this scaffold to produce a lasso peptide structure that
corresponds to the user-defined sequence or sequences resulting
from mutagenesis (Figure 3b). Finally, the MD simulator uses
the AMBER software package97 to parametrize the resulting
lasso peptide structure and conduct MD simulations to output a
conformational ensemble. The modular architecture of
LassoHTP ensures its flexibility and versatility, similar to that
of EnzyHTP.56 Each module can be independently operated for
building, modifying, or modeling a lasso peptide, and the three
modules can be sequentially executed as part of an automatic
workflow to convert user-defined lasso peptide sequences into
conformational ensembles.
To test LassoHTP, we employed the software to predict

conformational ensembles for different types of lasso peptides
(called LHTP-initiated MD) and then benchmarked their
consistency against the MD ensembles initiated from the
corresponding crystal- or NMR-structures (called PDB-initiated
MD, Figure 3c and 3d). The first test case is the WT
caulosegnin-II98 (PDB ID: 5D9E), as a crystal structure
(resolution: 0.86 Å) exists for this peptide. For both LHTP-
initiated and PDB-initiated MD ensembles, trajectories were
simulated using identical force field parameters and the
ensembles were constructed by evenly taking 1000 snapshots
from a 100 ns MD trajectory. The RMSD value calculated from

the LHTP-initiated ensemble (1.48 Å) closely align with that
from the PDB-initiated ensemble (1.55 Å).
Furthermore, we tested LassoHTP using seven lasso peptides

whose structures have been determined by NMR, including
benenodin-1 conformer 1,99 benenodin-1 conformer 2,99

citrocin,100 the RGD variant of microcin J25,101 streptomono-
micin,102 ubonodin,103,104 and xanthomonin-II105 (Figure 3d).
They involve a wide range of structural constructs. The first
structural model of each peptide’s NMR-resolved structural
ensemble was used to initiate the MD simulation and as a
reference structure for RMSD calculations in both LHTP- and
PDB-initiated MD ensembles. The two ensembles are
reasonably consistent: the difference of the RMSD values
between the two ensembles ranges from∼0.0 Å for benenodin-1
conformer 1 and citrocin to ∼1.2 Å for streptomonomicin and
benenodin-1 conformer 2, with the average being 0.48 Å. The
consistency between the two ensembles were also validated
using principal component analysis (PCA). The benchmark
shows that LassoHTP can generate reasonable lasso peptide
structures and conformational ensembles from sequence. As
such, LassoHTP provides a platform to build modules for high-
throughput functional predictions including binding affinity to
drug target, thermostability against harsh conditions, and
permeability across membrane transport proteins.
Nonetheless, we should note some technical limitations that

we would like to address in LassoHTP. For one, the isopeptide
bonds with a cis-configuration, which populate with high
abundance in benenodin-1,106 have not been constructed in
the scaffold library. Additionally, enhanced sampling methods
have yet to be used for navigating the conformational space of
lasso peptides. Both aspects are expected to be addressed in the
next version of LassoHTP.
3.3. ARMer: A Python Library for Adaptive Resource

Allocation of Molecular Modeling Workflows on High-

Figure 4. Framework and application of adaptive resource manager (i.e., ARMer), a Python library used for adaptive computing resource allocation on
high-performance computing cluster. (a) Variables and functions used by ARMer for configuration, submission, and dynamic monitoring of
computational tasks. The variables and functions are encapsulated in a Job class. They can be called by a user to prepare a Python script that enables the
construction of a high-throughput molecular modeling workflow with effective allocation of computing resources (e.g., CPU and GPU). (b) An
exemplary application of ARMer to construct a workflow for high-throughput modeling of fluoroacetate dehalogenase (FAcD) mutants. In the
workflow, a Python script that runs on a single-CPU thread leverages functions and variables from the Job class to manage the modeling subtasks (i.e.,
mutation, molecular dynamics, and quantummechanics simulations) by configuring, submitting, andmonitoring new job scripts. TheMD job requests
1GPU (in orange) and eachQM job requests 8 CPUs (in blue). To submit and run individual QMcalculations in parallel, a job array with a size of 25 is
employed. The type of modeling subtasks, time usage, and resource cost are noted in the figure. Adapted with permission from ref 55. Copyright 2023
American Chemical Society.
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Performance Computing Clusters. High-throughput com-
putation has emerged as a new paradigm to facilitatemechanistic
study,107 catalyst screening,108 functional material design,109,110

drug discovery,111,112 and enzyme modeling.56 Our lab has
developed EnzyHTP56 and LassoHTP57 as open-access
software packages to enable the high-throughput modeling of
enzymes and lasso peptides, respectively. High-throughput
computation needs to allocate different types of computing
resources (e.g., CPU, GPU, etc.) for multiple subtasks in high-
performance computing (HPC) clusters. Resource allocation in
the workflow to minimize resources and overall runtime remains
a technical challenge in the computational community. To
address this challenge, we developed a new Python library,
Adaptive Resource Manager (ARMer), to dynamically request
computing resources based on the need of a specific modeling
subtask in the workflow.55 Using commands implemented in the
ARMer library, a Python “workflow script” is prepared that runs
on a single-CPU thread to configure, submit, and monitor
molecular simulation jobs for a high-throughput workflow in
HPC clusters. This is in sharp contrast to the traditional resource

allocation scheme where a fixed amount of computing resources
is requested for all types of molecular modeling tasks.
The ARMer Python library contains a Job class that defines

variables and functions associated with each job’s configuration,
submission, and dynamic monitoring of completion (Figure 4a).
ARMer also contains an HPC class that supports the Job class
with variables and functions to mediate external input/output in
a local HPC cluster where ARMer is deployed. In the Job class, a
job object is instantiated based on information provided by the
user through the arguments: commands, cluster, env_settings, and
res_keywords. With the Job object created, a script for the
required tasks can be generated and then submitted by the
submit() method (Figure 4a). A job ID is added to the object by
the function. By tracing the job ID, the “workflow script” can
monitor the status of a job object in the queue, and mediate the
status by killing, holding, or releasing the job. The “workflow
script” will dynamically detect the timing of the job completion
by retrieving error or completion messages from the output file.
Notably, dynamic monitoring of job completion status is critical
to a high-throughput modeling workflow because multiple types

Figure 5.Amolecular dynamics-derived descriptor for representing the impact of mutation on enzyme catalysis. (a) The crystal structure for themodel
enzyme used in the study: lactonase SsoPox (PDB ID: 2VC7). Flexible loops are colored in pink. Substrate binding pocket is indicated by an orange
oval. W263 is the spot in which mutations have been performed to investigate the role of mutation on enzyme kinetics. (b) The reaction activation free
energies (ΔG‡) for 3-oxo-CX acyl-homoserine lactone substrates (X = 10 or 12, colored in black and blue, respectively) combined with different
enzyme variants (WT, W263F, W263T, W263I, and W263 V). ΔG‡ value is converted from the turnover rate using Eyring’s equation. (c) The PCA
loading plot for the descriptors tested in the study. The descriptor is ranked based on its contribution in principal components (frommajor to minor):
1. SASAsub/SASApkt; 2. SASApkt; 3. RMSDpro; 4. dloop1−3; 5. RMSDpkt_sub; 6. RMSDsub; 7. RMSDpkt; 8. d99−229; 9. d258‑sub; 10. EFall; 11. SASAsub; 12.
d97‑sub; 13. EFnoion; 14. d223−256; 15. dtail‑loop8. The percentage in each axis label indicates the contribution of the principal component to the total
variation. (d) Distribution ofΔG‡ values versus SASA ratio (i.e., SASAsub/SASApkt) in enzyme variants across C10 and C12 substrates. The red dashed
lines indicate the optimal point of ΔG‡ and the black dashed lines are the linear fitting of data points on each side of the optimal point. Adapted with
permission from ref 58. Copyright 2022 American Chemical Society.
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of simulation subtasks must be sequentially operated in the
process. In the case of high-throughput enzyme modeling, after
submitting anMD sampling task, the “workflow script” must put
the rest of the subtasks on hold and wait for the conformational
ensemble to generate before submission of the subsequent QM
calculations.
We tested the resource and time consumption of the high-

throughput molecular modeling workflow enabled by adaptive
resource allocation on our local HPC at Vanderbilt’s advanced
computing center for research and education (ACCRE). A
single-CPU job was submitted to execute a “workflow script”
that employs built-in commands from the ARMer library to
manage computing resources for molecular simulation tasks
involved in the high-throughput modeling of FAcD mutants
(Figure 4b). Compared to traditional allocation strategy that
directly execute subtasks using a fixed amount of allocated CPU
or GPU nodes, this Python script configures resource-
demanding subtasks (i.e., needing >1 CPU or ≥1 GPU) in a
new job script and then submits the job to the queue (i.e., setting
ifcluster = “True” in the code). This job was configured with a 96-
h wall-clock running time to oversee the entire workflow.
For the MD simulation task, the workflow script configures

shell commands in a job script to request GPU resource, set
environment variables, and conduct MD modeling using
AMBER. The workflow script then submits the job and regularly
monitors the completion status of the job. After receiving the
signal of completion, the workflow script will continue operating
the QM calculation subtasks in the workflow. Due to the
independence of individual QM tasks, the workflow script can
submit multiple QM jobs (8 CPU for each QM job)
simultaneously to the job array so that they can run in parallel
up to the size limit of job array (i.e., 25 jobs) in local HPC cluster
(Figure 4b). New jobs are submitted once the “workflow script”
detects open slots on the array. With an array size of 25 jobs, one
would expect an approximate time acceleration by a factor of 25
if no major time is spent on job queueing. As such, the ARMer
library makes it possible to adaptively allocate computing
resources to effectively accomplish a high-throughput molecular
modeling workflow. This is different from the traditional
resource allocation strategy in which one relies on the initially
requested/assigned GPU or CPU nodes for the entire
computational workflow.

4. SCORING FUNCTIONS THAT DESCRIBE
SEQUENCE-STRUCTURE−FUNCTION
RELATIONSHIPS FOR PROTEIN ENGINEERING
4.1. A Molecular Dynamics-Derived Descriptor for

Enzyme Catalysis. To guide predictive protein engineering,
physical descriptors have been identified that correlate with
enzyme catalytic efficiency, including enzyme electrostatics in
ketosteroid isomerase,113 Kemp eliminase,114,115 methyltrans-
ferase,116 and P450 enzymes;117 and binding affinity in
endoglucanases and cellobiohydrolases.118−120 Protein dynam-
ics have been proposed as a critical factor to favor substrate
positioning,121−128 control reaction dynamics,129−134 regulate
dynamic network for thermal activation,135 and tune protein
thermal capacity.136 However, the molecular dynamics-derived
descriptors that represent the quantitative impact of protein
dynamics on catalysis remain largely unexplored. Here, we used
statistical modeling with PCA to identify molecular dynamics-
derived descriptors that guide the search of enzyme variants that
accommodate non-native substrates with optimal substrate-
positioning dynamics.

We used lactonase SsoPox as a model system (Figure 5a),
which catalyzes the hydrolysis of 3-oxo-CX acyl-homoserine
lactone (X = 10 or 12).137−142 The WT SsoPox is most reactive
toward the C10 substrate, while the W263T mutant for the C12
substrate (Figure 5b).138 This enzyme system was chosen
primarily because kinetic turnover numbers have been
characterized for both C10 and C12 substrates combined with
the same set of SsoPox variants (i.e., WT, W263F, W263T,
W263I, and W263 V). This allows us to identify physical
descriptors that inform distinct substrate-positioning behaviors
of the same enzyme scaffold toward different substrates.
Using molecular dynamics trajectories for each substrate-

enzyme variant complex, we calculated 15 molecular features
that are associated with the structural and dynamics character-
istics. The descriptors fall into four groups: 1) solvent accessible
surface area (SASA); 2) electric field; 3) root-mean-square
deviation; and 4) functionally important substrate-residue,
residue−residue, and loop−loop distances. We utilized a PCA
loading plot to rank the importance of these descriptors−a
higher importance rank indicates that the descriptor contains
more information to predict the change of experimental
activation free energies (Figure 5c). The PCA analysis identified
the SASA ratio of substrate to active-site pocket (i.e., SASAsub/
SASApkt) as the top predictor for the mutation effect on
activation free energy. This descriptor has been defined to be the
substrate-positioning index (SPI) in our later study.63 The form
of SPI is similar to the definition of hydrophobicity index.143

We further investigated the distribution of ΔG‡ values versus
SPI for C10 and C12 substrates combined with different enzyme
variants. The distribution conforms to a two-segment, piecewise
linear correlation plot with a volcano shape (Figure 5d). This
quantitative relationship is very similar to the Sabatier principle
observed for cellobiohydrolases by Jeppe et al.118−120 The SPI
value ranges from 1.67 to 1.96, and the activation free energy
reaches the minimum (∼16.5 kcal·mol−1) under an optimal SPI
value. For the C10 substrate, WT SsoPox, which is most
favorable, has an SPI of 1.85. In contrast, for C12 substrate, the
SPI value for WT drifts to 1.96. The ΔG‡ reaches the minimum
value of 16.4 kcal·mol−1 in W263T, where the reaction turnover
number for C12 is comparable to the native reaction for C10 in
the WT enzyme (16.6 kcal·mol−1). The shift of the SPI value
upon mutation is dominated by the size variation of the active-
site pocket. As such, the optimal SPI value shown in Figure 5a
likely reflects the desired enzyme cavity that best accommodates
a substrate to achieve efficient catalysis. Replacing the native
substrate C10 with C12 leads to an increase of substrate size,
which is beyond the accommodation capacity of theWT enzyme
but presents a good fit in the W263T variant that has a larger
active-site pocket. The results show that SPI can be employed as
a predictive descriptor to guide the search for optimal enzyme
mutants for catalyzing non-native substrates. To achieve
efficient hydrolysis, a non-native substrate-bound enzyme
variant needs to involve a similar range of SPI value to the
native substrate-bound WT enzyme.
4.2. Deep Learning Models for Protein Function

Prediction. In this section, we introduce two deep learning
models that our group recently developed for engineering of
enantioselective biocatalysts (i.e., EnzyKR59) and antimicrobial
peptides (i.e., DeepLasso60). EnzyKR was developed to predict
the enantiomeric outcome of kinetic resolution reactions
catalyzed by hydrolases. DeepLasso was built to predict the
antimicrobial activity of ubonodin variants.
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Hydrolases, such as lipases, esterases, and dehalogenases, have
been widely employed for kinetic resolution in synthetic
reactions in the chemical and pharmaceutical industries.144−147

Despite the development of empirical,148 statistical,149 machine
learning,150 and deep learning models,151,152 the “generalist”
models that can predict enantioselectivity across a broad
spectrum of hydrolase scaffolds, mechanisms, and substrate
types remain undeveloped.153 To address this challenge, our
group developed a deep learning model, EnzyKR, to predict the
activation free energy of a hydrolase-substrate enantiomer
complex. The difference of predicted free activation energies
between enantiomers (i.e., ΔΔG‡ = ΔGR

‡ − ΔGS
‡) informs

outcome of hydrolytic kinetic resolution. The training and test
data include a total of 224 hydrolase-substrate complexes
curated from 13 enzyme commission subclasses under the
category of hydrolases, which are curated from our integrated
enzyme structure-kinetic database IntEnzyDB.53

The model consists of a classifier that distinguishes reactive
hydrolase-enantiomer complexes from unreactive binding
poses, and a regressor predicts the hydrolytic activation free
energy (i.e., ΔG‡) for the reactive complex. The classifier
employs convolutional and graph neural networks to separately
encode three types of input: enzyme sequences, substrate

SMILES strings, and the distance maps for the hydrolase-
substrate complex (Figure 6a). The regressor of EnzyKR takes
input from both the classifier embedding and substrate-enzyme
interaction maps (a stacked form of atomic distance map).
Notably, the atomic distance map differentiates substrate
chirality, allowing the model to effectively learn the enantio-
meric preference of hydrolases. EnzyKR exhibits a decent
prediction accuracy with a Pearson R of 0.91, Spearman R of
0.86, and a mean absolute error (MAE) of 0.8 kcal/mol on the
training set (204 data points). EnzyKR also achieves a Pearson R
of 0.66, Spearman R of 0.70, and MAE of 1.5 kcal/mol on the
test set (20 data points held out from the training set). For both
training and test sets, the value of Spearman R is close in range to
that of Pearson R. This indicates that EnzyKR balances the
regression of target values or ranking without overfitting.
To evaluate the significance of different features in EnzyKR,

we conducted a baseline evaluation by removing specific features
and observing their impact on the predictive accuracy of the
regressor. Eliminating the atomic distance map leads to
reductions in both Pearson and Spearman R values to 0.53
and 0.51, respectively, accompanied by an MAE increase to 2.2
kcal/mol. Similarly, removal of SMILES strings of substrates
from the classifier input results in lowered Pearson and

Figure 6.Design and application of EnzyKR, a deep learning model for predicting the enantiomeric outcome of hydrolase-catalyzed kinetic resolution.
(a) EnzyKR consists of a classifier and a regressor. Three types of input data for the classifier involve the enzyme−substrate complex structure, enzyme
sequence, and simplified molecular-input line-entry system (SMILES) string. The distance map derived from the complex structure is encoded using a
2D convolutional neural network (CNN). The multiple sequence alignments (MSA) of the enzyme sequences are also encoded by a 2D CNNmodel.
The substrate SMILES strings are encoded by a graph neural network (GNN)model. The embeddings from the classifier and the interaction maps are
used as input for the regressor. The regressor involves one module of cross-attention, followed by residual blocks consisting of three 2D dilated
convolution layers, one 2D batch norm layer, and one ReLU layer. Two layers of a fully connected neural network (i.e., multiple-layer perceptron) are
employed to conduct regression between the extracted feature and the activation free energy. (b) The test reactions used to assess the ability of EnzyKR
to predict the outcomes of kinetic resolution. The test set involves 18 enantioselective hydrolytic reactions catalyzed by two hydrolases. RPA1163 is a
fluoroacetate dehalogenase that catalyzes the C−F bond hydrolysis in 9 fluoroacetic acid derivatives labeled from a to i. HheC is a halohydrin
dehalogenase that catalyzes the stereoselective epoxide ring-opening in 9 spiro-epoxyoxindoles derivatives labeled from j to r. (c) The predicted
enantiomeric excess (ee%) values of EnzyKR (red) and the baseline model DLKcat (gray) for 18 enantiomer pairs in hydrolase-catalyzed reactions.
The experimental ee% value is shown in black. A positive ee% value indicates that the S-configuration is favored.
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Spearman R values of 0.6, and an MAE increase to 2.0 kcal/mol.
These findings indicate that both the distance map and substrate
SMILES strings are indispensable features positively contribu-
ting to the predictive accuracy of the EnzyKR regressor.
We further tested EnzyKR for its ability to differentiate

enantiomeric reactions using 18 hydrolytic reactions catalyzed
by FAcD RPA1163154 and halohydrin HheC155 (Figure 6b).
These reactions were separately curated from literature sources.
The performance of EnzyKR was compared against DLKcat, a
deep learning kcat predictor.

152 Figure 6c shows that compared
to the experimental results (black), EnzyKR (red) correctly
predicts the favored enantiomer and outperforms DLKcat
(gray) in 13 out of 18 reactions (i.e., 1a-c, 1e-i, 4k-o). In more
than half of the test cases, DLKcat predicts an enantiomeric
excess (ee%) value lower than 50%. Due to the lack of chirality
encoding in the model, the overall predictive performance of
DLKcat appears to be similar to a random guess. Despite a
decent performance, we should note that the limitation of
EnzyKR lies in the small size of data set and potentially
inadequate representation of chirality. We are addressing these
issues in our ongoing works.
The second deep learning model is DeepLasso. In recent

decades, lasso peptides, such as microcin J25,156 ubonodin,157

cloacaenodin,158 and so on,18 have emerged as promising
candidates for stemming the tide of the antimicrobial crisis.
However, the development of computational models to facilitate
the engineering of lasso peptide mutants with enhanced
antimicrobial activities lag far behind the pace of lasso peptide
discovery. To fill in the void, we collaborated with the Link lab
and developed DeepLasso to predict the antibiotic activity (i.e.,
enrichment value) for ubonodin variants (Figure 7). The
training and test data involve ∼90,000 mutants of lasso peptide
ubonodin that were collected from experimental high-
throughput screening and next-generation sequencing of single
and double mutant library constructed by site-saturation
mutagenesis. The antimicrobial activity of a ubonodin mutant
is represented by an enrichment value, which is the base-2
logarithm of the ratio of the mutant’s frequency at a specific step
of the screen relative to the mutant’s frequency in the cloning
transformation library.60 Negative enrichment values indicate
that the variant likely inhibits RNAP. Dropout mutants are those
with very high RNAP inhibitory activity and their the
enrichment values are annotated as “not available”.
Similar to EnzyKR, DeepLasso also adopts a classifier-

regressor architecture (Figure 7a). Using a ubonodin variant
sequence as input, the classifier first predicts whether the variant

Figure 7. Design architecture of DeepLasso, a deep learning model for predicting the antibiotic activity of lasso peptide ubonodin mutants. (a) The
architecture of DeepLasso consists of an encoder, classifier, and regressor. The sequence encoder is constructed by three layers of a convolutional
neural network (CNN), two layers of a bidirectional long−short-term memory network, and one attention layer. The topology encoder is constructed
by three layers of CNN with each layer used to learn a specific topological region of lasso peptide sequence (i.e., ring, loop, or tail). The classifier
involves a sequential layout of two residual blocks, one attention layer, and one layer of multilayer perceptron (MLP). The regressor involves a
sequential layout of one residual block and two layers of MLP. The tensors derived from the encoder are concatenated and fed into the classifier for
prediction; the resulting tensor from the classifier is then used in the regressor for prediction. (b) Confusion matrix analysis for the classifier of
DeepLasso. The matrix shows classification of sequence regions of ubonodin variants (ring, loop, and tail). The color scale is used to represent the
magnitude of hit rate (i.e., high: yellow; low: dark blue). (c) Confusion matrix analysis for the classifier of DeepLasso. The matrix shows binary
classification of dropout versus nondropout variants. Grayscale is used to represent the magnitude of hit rate (i.e., high: black; low: white). (d)
Regression analysis for the nondropout variants with enrichment values. The linear correlation between experimental vs predicted enrichment values is
shown along with Pearson correlation coefficient, Spearman correlation coefficient, and mean absolute error. Adapted with permission from ref 60.
Copyright 2023 American Chemical Society.
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is likely to be a dropout variant. If the sequence is deemed likely
to be a nondropout variant, the regressor predicts an enrichment
value for the variant. DeepLasso employs a sequence encoder to
learn the pattern of the ubonodin amino acid sequence as well as
a topology encoder to represent the sequence regions for the
ring, loop, and tail of the lasso peptide (Figure 7b). Unlike
existing deep learning models for antimicrobial peptide
prediction,159 the topology encoder we implemented in
DeepLasso can potentially improve the learning efficiency
because the topology of lasso peptides is known to be essential in
the inhibition of RNAP.160−162 To evaluate the accuracy of
DeepLasso, we performed confusion matrix analysis for the
classifier (Figure 7c) and linear regression analysis for the
regressor (Figure 7d). The results show that DeepLasso achieves
a 73% hit rate for the dropout variants and 63% for nondropout
variants (Figure 7c). The higher accuracy for predicting dropout
variants is desired because these variants are the most likely to
exhibit strong antibiotic activity. For nondropout variants, the
predicted enrichment values are correlated to the experimental
value with a Pearson correlation R of 0.80, a Spearman rank
correlation R of 0.77, and a MAE of 2.2. The regressor allows us
to score the nondropout variants for their RNAP inhibitory
activity.
DeepLasso provides a computational tool to map out the

fitness landscape of ubonodin variants as potential antibiotics.
Though trained with mostly single and double mutants,
DeepLasso is capable of identifying higher order ubonodin
mutants with enhanced antimicrobial activity. One critical
aspect that has yet to be considered here is the ability to predict
permeability of ubonodin variants through the membrane of
target bacteria. The permeability through cell membrane is
independent from RNAP inhibition but should weigh in as an
important factor for development of the next version of
DeepLasso. Besides, the magnitude to which we can generalize
DeepLasso for the antimicrobial prediction of other types of
lasso peptides remains a valuable question for investigation.

5. APPLICATIONS
The preceding sections present the core technical components
underlying Mutexa, including an integrated structure−function
database (Section 2), software packages for high-throughput
modeling of protein mutants (Section 3), and scoring functions
for predicting the sequence-structure−function relationships
(Section 4). In this section, we will demonstrate three
applications where these new computational tools are leveraged
to determine the conditions for computational convergence in
enzyme modeling,61 to gain a statistical view across members of
the methyltransferase family,62 and to deepen the understanding
of dynamic effects in enzyme catalysis.63

The first case applies the high-throughput enzyme modeling
workflow of Mutexa (i.e., EnzyHTP56) to investigate the
boundary conditions that should be used in enzyme modeling
for a reliable description of mutation effects. In computational
protein engineering, functional descriptors have been calculated
from molecular simulations to aid the search for beneficial
enzyme variants.163−166 However, the optimal size of the active-
site region for computing these descriptors across multiple
enzyme variants has not yet been investigated. Using EnzyHTP,
we conducted convergence tests on 18 Kemp eliminase
variants,167,168 evaluating functional descriptors in six active-
site regions with varying distances from the substrate. The
assessed descriptors include the dynamic fluctuation of the
active-site (represented by root-mean-square deviation, or

RMSD), the substrate positioning index (represented by the
SASA ratio between the substrate and the active site), and the
electric field index (represented by the projection of the electric
field on the reacting C−H bond). Both molecular mechanics
and multiscale quantum mechanics/molecular mechanics
methods have been used to compute the descriptors. The
descriptor values were determined for each of the 18 Kemp
eliminase variants. Spearman correlation matrices were
employed to identify the condition for the region size beyond
which further expansion of the boundary does not significantly
alter the ranking of descriptor values. Our results show that
dynamics-derived descriptors, specifically the dynamic fluctua-
tion and substrate positioning index, reached convergence at a
distance cutoff of 5 Å from the substrate. The electric field
descriptor exhibits convergence at 6 Å when employing
molecular mechanics methods with truncated enzyme models,
and at 4 Å when utilizing quantum mechanics/molecular
mechanics methods with the entire enzyme model. This study
serves as a reference for selecting descriptors in predictive
modeling of enzyme engineering.
The second case uses EnzyHTP to study the convergent

catalytic behaviors of S-adenosyl methionine (SAM)-dependent
methyl transferases (MTases). MTases are a ubiquitous class of
enzymes catalyzing dozens of reactions in the life pro-
cesses.169−172 Despite targeting a large variety of substrates
with diverse intrinsic reactivity, MTases demonstrate similar
catalytic efficiency.53,54,173 To elucidate the evolutionary
adaptations that allow SAM MTases to accommodate the
diverse chemical features of their respective substrates, we
curated 91 SAMMTases from the protein databank (PDB) and
conducted a comprehensive computational analysis using
EnzyHTP to gain insights into how specific properties, such as
electric field strength and active site volumes, contribute to
achieving similar catalytic efficiency across substrates with
different reactivity levels. When looking at O-, N- and even C-
targeting MTases, we found that there was not a significant
difference in cavity volumes but the electric field strengths have
largely adjusted to enhance the target atom’s ability to accept a
methyl group. For MTases targeting RNA/DNA and histone
proteins, the electric field strength accommodates the formal
hybridization state. Our study also shows that metal ions in
MTases contribute negatively to electric field strength for
methyl donation and enzyme scaffolds likely offset these
contributions.
The last case integrates the workflow software EnzyHTP with

a scoring function of Mutexa, substrate positioning index (SPI,
discussed in the Section 4.1), to investigate the behavior of
nonelectrostatic dynamics in enzyme catalysis. The dynamic
positioning of substrates within the active site, known as
substrate positioning dynamics (SPD), plays a crucial role in
facilitating enzyme catalysis by aligning the substrate in a
reactive conformation.125,164,174−186 However, as conforma-
tional changes often coincide with alterations in the electrostatic
environment inside the enzyme, it remains unclear whether SPD
involves a nonelectrostatic component that independently
influences catalysis or primarily arises from perturbations in
the enzyme’s internal electrostatics.184,187,188 To answer this
question, we integrated computational and experimental
approaches to investigate the nonelectrostatic component of
SPD using Kemp eliminase as a model enzyme. We employed
substrate positioning index to quantify the impact of protein
dynamics on substrate positioning. Using EnzyHTP, we selected
seven variants for kinetic evaluation, which exhibited signifi-
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cantly different SPD while maintaining similar enzyme interior
electrostatics. Our analysis revealed a valley-shaped, two-
segment piecewise linear correlation between experimentally
determined activation free energies and substrate positioning
index values. This trend was further validated using previously
reported kinetic data from the Head-Gordon group.189 Notably,
an optimal SPI value, corresponding to the lowest activation free
energy, was observed for the R154W variant, a surface mutation
located distantly from the active site. Compared to the wild type,
the R154W variant displayed favorable SPD, resulting in an
increased proportion of reactive conformations for substrate
deprotonation. These findings indicate the existence of a
nonelectrostatic component in SPD, serving as a factor that
mediates catalysis by modulating the population of reactive
conformations.

6. NEXT STEPS
In this Review, we have discussed the construction and
applications of Mutexa as a computational ecosystem to
facilitate protein engineering. Below we will discuss specific
aspects to further develop Mutexa.
Selector of Beneficial Mutations. The immediate next

step is to build a locator of beneficial mutants to enhance
catalytic efficiency, mediate selectivity, and expand substrate
scope in enzyme engineering. We expect the locator to contain
three computational modules that separately evaluate the impact
of mutations on 1) enzyme biophysics (i.e., thermal stability,
solubility, etc.), 2) enzyme−substrate binding affinity, and 3)
enzyme specificity and selectivity. For each of the modules, the
proper computational readouts, either derived from data-driven
modeling or physics-based simulations, remain a question of
investigation. Besides being predictive about the functions, these
readouts must be computed with a balanced accuracy and
efficiency for better compatibility with a high-throughput
computational workflow. Designing a computational protocol
within these constrains presents the first challenge.
Complex Mutations. Another challenge faced in the

community is how to achieve the modeling or prediction of
complex mutants that go beyond single amino acid substitution.
Complex mutants that contain multiple mutations, insertions, or
deletions are commonly seen in protein engineering. However,
the data-driven and molecular modeling approaches for
describing and predicting these complex mutants are signifi-
cantly underdeveloped. With increasing joint efforts in
computational and experimental protein engineering, we are
hopeful that Mutexa will provide more solutions for predicting
the functional effects of complex mutations.
Throughput Capability. In contrast to experimental

ultrathroughput screening tools capable of assessing 108mutants
per week, the EnzyHTP-based high-throughput enzyme
modeling allows the computation for only 102 to 104 variants
within the same time frame. Enhancing the throughput capacity
stands as an urgent need to amplify its utility within the scientific
community. The primary bottleneck of computational efficiency
resides in the resource-intensive nature of conformational
sampling in MD simulations and of electronic structure
computation in QM modeling. With the ongoing development
of enhanced sampling algorithms,190−194 deep learning-based
energy functions,195−197 and deep generative model-enabled
conformational samplers,198,199 we expect the substituent
molecular modeling engines to be further accelerated, thus
increasing the throughput capacity of enzyme modeling.

Prediction Accuracy and Benchmarks. Accuracy serves
as a metric that gauges the extent to which computational
predictions conform to the standard. To comprehensively assess
the accuracy of a computational protein engineering tool, it is
critical to establish the standard for computational predictions
by specifically defining the scope of prediction tasks and
constructing corresponding benchmark sets. The breadth of
prediction tasks encompasses properties of functional proteins
such as thermostability, catalytic activity, substrate promiscuity,
selectivity, binding affinity, solubility, and antimicrobial activity,
among others. Furthermore, protein engineering frequently
involves a multiobjective optimization task, striving to
simultaneously improve multiple properties for academic or
industrial applications.
For a specific prediction task, a benchmark should be

employed to develop and evaluate physics-based or data-driven
scoring functions that predict protein properties from their
structures or sequences. The accuracy of these scoring functions
can be evaluated through well-established statistical metrics,
such as Pearson or Spearman correlation coefficient, mean
average error, root-mean-square error, and so on. To enhance
functional prediction accuracy, it is vital to create a benchmark
set with large amounts of high-quality experimental data
encompassing sequence, structure, and function. Equally
important as data set size is the balance of mutation types in
the benchmark set, which has been shown to improve the
classification accuracy for protein thermostability prediction,200

and it is likely critical for prediction of other protein properties.
The creation of a protein engineering benchmark set aimed at

evaluating the accuracy of methods designed to identify
beneficial mutations remains elusive. Different from scoring
functions that are used for functional assessment of mutation
effects, these methods are designed to improve the outcome of
identifying function-enhancingmutations. The accuracy of these
methods is generally represented by the “hit rate” − the
proportion of beneficial mutants identified from mutation
library screening. Presumably, the benchmark for beneficial
mutant identification should encompass numerous instances of
protein engineering tasks under the same category of prediction
task. These testing cases should cover proteins with different
sequence identity, structural scaffold, stages of directed
evolution, types of binding substrates (if applicable), numbers
of mutations (single, double, etc.), and spatial distribution of
mutations (active site, surface, etc.).
Constructing such protein engineering benchmark sets will

allow us to systematically evaluate the accuracy of Mutexa in
identifying mutation hotspots, categorizing mutations based on
their functional impacts, and prioritizing mutations by the
degree of functional enhancement or reduction. Notably, using
Kemp eliminase KE07 as the exclusive test scenario, the hit rate
of the EnzyHTP-based directed evolution protocol was
computed to be 12.5%, surpassing the frequency of naturally
occurring beneficial mutations (∼1%).55 As discussed in our
prior research,55 we expect to further optimize several
components of the computational protein engineering protocol,
including mutation engine, algorithms for smart library
construction, MD sampling engine, substrate-binding config-
urations, and the scoring functions, and the reaction mechanism.
These advancements will pave the way for Mutexa’s trans-
formation into a tool capable of discovering, generating,
designing, predicting function-enhancing variants, thereby
empowering biocatalysts to accelerate new-to-nature chemical
synthesis, industrial enzymes to degrade environmental
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pollutants, binder proteins for early stage tumor detection,
peptides with antimicrobial activities, and therapeutic proteins
to address food allergies.
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Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.;
Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.;
Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.;
Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.;
Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate
protein structure prediction with AlphaFold. Nature 2021, 596 (7873),
583−589.
(96) Stephen, A. R.; Katelyn, V. C.; Asim, K. B.; Alex, K.; Simon, K.;
Joshmyn De La, C.; Victor, A.; Guangfeng, Z.; Frank, D.; Sergey, O.;
Gaurav, B. Cyclic peptide structure prediction and design using
AlphaFold. bioRxiv, Feb. 26, 2023, ver. 1. DOI: 10.1101/
2023.02.25.529956
(97) Case, D.A.; Cerutti, D. S.; Cheatham, T.E., III; Darden, T. A.;
Duke, R.E.; Giese, T.J.; Gohlke, H.; Goetz, A.W.; Greene, D.; Homeyer,
N.; Izadi, S.; Kovalenko, A.; Lee, T.S.; LeGrand, S.; Li, P.; Lin, C.; Liu,
J.; Luchko, T.; Luo, R.; Mermelstein, D.; Merz, K. M.; Monard, G.;
Nguyen, H.; Omelyan, I.; Onufriev, A.; Pan, F.; Qi, R.; Roe, D.R.;
Roitberg, A.; Sagui, C.; Simmerling, C. L.; Botello-Smith,W.M.; Swails,
J.; Walker, R.C.; Wang, J.; Wolf, R.M.; Wu, X.; Xiao, L.; York, D.M.;
Kollman, P.A. AMBER 2017; University of California, San Francisco,
2017.
(98) Hegemann, J. D.; Fage, C. D.; Zhu, S.; Harms, K.; Di Leva, F. S.;
Novellino, E.;Marinelli, L.;Marahiel,M. A. The ring residue proline 8 is
crucial for the thermal stability of the lasso peptide caulosegnin II.
Molecular BioSystems 2016, 12 (4), 1106−1109.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Review

https://doi.org/10.1021/acs.jctc.3c00602
J. Chem. Theory Comput. 2023, 19, 7459−7477

7474

https://doi.org/10.1093/nar/gkh119
https://doi.org/10.1093/nar/gkaa1025
https://doi.org/10.1093/nar/gkaa1025
https://doi.org/10.1093/nar/gkr1046
https://doi.org/10.1093/nar/gkr1046
https://doi.org/10.1002/pro.3406
https://doi.org/10.1002/pro.3406
https://doi.org/10.1101/2019.12.23.887380
https://doi.org/10.1101/2019.12.23.887380
https://doi.org/10.1101/2019.12.23.887380
https://doi.org/10.1101/2019.12.23.887380?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cbpa.2018.09.004
https://doi.org/10.1016/j.cbpa.2018.09.004
https://doi.org/10.1073/pnas.2006753117
https://doi.org/10.1073/pnas.2006753117
https://doi.org/10.1016/j.joule.2019.01.018
https://doi.org/10.1016/j.joule.2019.01.018
https://doi.org/10.1021/jacs.7b06019?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.7b06019?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.7b06019?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.164.3884.1123
https://doi.org/10.1126/science.164.3884.1123
https://doi.org/10.1016/j.tifs.2019.07.016
https://doi.org/10.1016/j.tifs.2019.07.016
https://doi.org/10.1021/acs.jctc.6b00049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1371/journal.pcbi.1004728
https://doi.org/10.1371/journal.pcbi.1004728
https://doi.org/10.1107/S2052252516018017
https://doi.org/10.1107/S2052252516018017
https://doi.org/10.1126/science.aag2355
https://doi.org/10.1126/science.aag2355
https://doi.org/10.1146/annurev.bb.06.060177.001505
https://doi.org/10.1146/annurev.bb.06.060177.001505
https://doi.org/10.1021/jacs.9b03703?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.aaw9904
https://doi.org/10.1126/science.aaw9904
https://doi.org/10.1126/science.aaw9904
https://doi.org/10.1038/s41592-018-0180-2
https://doi.org/10.1038/s41592-018-0180-2
https://doi.org/10.1021/acs.est.0c08811?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c08811?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c08811?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.7164/antibiotics.44.164
https://doi.org/10.1128/jb.174.22.7428-7435.1992
https://doi.org/10.1128/jb.174.22.7428-7435.1992
https://doi.org/10.1007/BF00211754
https://doi.org/10.1007/BF00211754
https://doi.org/10.7164/antibiotics.48.433
https://doi.org/10.7164/antibiotics.48.433
https://doi.org/10.1093/protein/gzq108
https://doi.org/10.1073/pnas.1817352116
https://doi.org/10.1073/pnas.1817352116
https://doi.org/10.1128/JB.181.8.2659-2662.1999
https://doi.org/10.1128/JB.181.8.2659-2662.1999
https://doi.org/10.1007/s10295-019-02197-z
https://doi.org/10.1007/s10295-019-02197-z
https://doi.org/10.1021/acs.biochem.1c00714?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biochem.1c00714?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1101/2023.02.25.529956
https://doi.org/10.1101/2023.02.25.529956
https://doi.org/10.1101/2023.02.25.529956?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1101/2023.02.25.529956?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C6MB00081A
https://doi.org/10.1039/C6MB00081A
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00602?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(99) Zong, C.; Wu, M. J.; Qin, J. Z.; Link, A. J. Lasso Peptide
Benenodin-1 Is a Thermally Actuated [1]Rotaxane Switch. J. Am. Chem.
Soc. 2017, 139 (30), 10403−10409.
(100) Cheung-Lee, W. L.; Parry, M. E.; Jaramillo Cartagena, A.; Darst,
S. A.; Link, A. J. Discovery and structure of the antimicrobial lasso
peptide citrocin. J. Biol. Chem. 2019, 294 (17), 6822−6830.
(101) Knappe, T. A.; Manzenrieder, F.; Mas-Moruno, C.; Linne, U.;
Sasse, F.; Kessler, H.; Xie, X.; Marahiel, M. A. Introducing lasso
peptides as molecular scaffolds for drug design: engineering of an
integrin antagonist. Angew. Chem., Int. Ed. 2011, 50 (37), 8714−8717.
(102) Metelev, M.; Tietz, J. I.; Melby, J. O.; Blair, P. M.; Zhu, L.;
Livnat, I.; Severinov, K.; Mitchell, D. A. Structure, Bioactivity, and
Resistance Mechanism of Streptomonomicin, an Unusual Lasso
Peptide from an Understudied Halophilic Actinomycete. Chemistry &
Biology 2015, 22 (2), 241−250.
(103) Do, T.; Thokkadam, A.; Leach, R.; Link, A. J. Phenotype-
Guided Comparative Genomics Identifies the Complete Transport
Pathway of the Antimicrobial Lasso Peptide Ubonodin in Burkholderia.
ACS Chem. Biol. 2022, 17, 2332.
(104) Cheung-Lee, W. L.; Parry, M. E.; Zong, C.; Cartagena, A. J.;
Darst, S. A.; Connell, N. D.; Russo, R.; Link, A. J. Discovery of
ubonodin, an antimicrobial lasso peptide active against members of the
Burkholderia cepacia complex. ChemBioChem. 2020, 21 (9), 1335−
1340.
(105) Hegemann, J. D.; Zimmermann, M.; Zhu, S.; Steuber, H.;
Harms, K.; Xie, X.; Marahiel, M. A. Xanthomonins I−III: A New Class
of Lasso Peptides with a Seven-Residue Macrolactam Ring. Angew.
Chem., Int. Ed. 2014, 53 (8), 2230−2234.
(106) Yang, Z.; Hajlasz, N.; Kulik, H. J. Computational Modeling of
Conformer Stability in Benenodin-1, a Thermally Actuated Lasso
Peptide Switch. J. Phys. Chem. B 2022, 126 (18), 3398−3406.
(107) Young, T. A.; Silcock, J. J.; Sterling, A. J.; Duarte, F. autodE:
Automated Calculation of Reaction Energy Profiles� Application to
Organic and Organometallic Reactions. Angew. Chem. 2021, 133 (8),
4312−4320.
(108) An, Q.; Shen, Y.; Fortunelli, A.; Goddard, W. A. QM-
Mechanism-Based Hierarchical High-Throughput in Silico Screening
Catalyst Design for Ammonia Synthesis. J. Am. Chem. Soc. 2018, 140
(50), 17702−17710.
(109) Colón, Y. J.; Snurr, R. Q. High-throughput computational
screening of metal−organic frameworks. Chem. Soc. Rev. 2014, 43 (16),
5735−5749.
(110) Gan, Y.; Miao, N.; Lan, P.; Zhou, J.; Elliott, S. R.; Sun, Z. Robust
Design of High-Performance Optoelectronic Chalcogenide Crystals
from High-Throughput Computation. J. Am. Chem. Soc. 2022, 144
(13), 5878−5886.
(111)McInnes, C. Virtual screening strategies in drug discovery.Curr.

Opin. Chem. Biol. 2007, 11 (5), 494−502.
(112) Li, Z.; Li, X.; Huang, Y.-Y.; Wu, Y.; Liu, R.; Zhou, L.; Lin, Y.;
Wu, D.; Zhang, L.; Liu, H.; Xu, X.; Yu, K.; Zhang, Y.; Cui, J.; Zhan, C.-
G.; Wang, X.; Luo, H.-B. Identify potent SARS-CoV-2 main protease
inhibitors via accelerated free energy perturbation-based virtual
screening of existing drugs. Proc. Natl. Acad. Sci. U. S. A. 2020, 117
(44), 27381−27387.
(113)Welborn, V. V.; Head-Gordon, T. Fluctuations of Electric Fields
in the Active Site of the Enzyme Ketosteroid Isomerase. J. Am. Chem.
Soc. 2019, 141 (32), 12487−12492.
(114) Bhowmick, A.; Sharma, S. C.; Head-Gordon, T. The
Importance of the Scaffold for de Novo Enzymes: A Case Study with
Kemp Eliminase. J. Am. Chem. Soc. 2017, 139 (16), 5793−5800.
(115) Vaissier, V.; Sharma, S. C.; Schaettle, K.; Zhang, T.; Head-
Gordon, T. Computational Optimization of Electric Fields for
Improving Catalysis of a Designed Kemp Eliminase. ACS Catal.
2018, 8 (1), 219−227.
(116) Yang, Z.; Liu, F.; Steeves, A. H.; Kulik, H. J. Quantum
Mechanical Description of Electrostatics Provides a Unified Picture of
Catalytic Action Across Methyltransferases. J. Phys. Chem. Lett. 2019,
10 (13), 3779−3787.

(117) Bím, D.; Alexandrova, A. N. Local Electric Fields As a Natural
Switch of Heme-Iron Protein Reactivity. ACS Catal. 2021, 11 (11),
6534−6546.
(118) Kari, J.; Schaller, K.; Molina, G. A.; Borch, K.; Westh, P. The
Sabatier principle as a tool for discovery and engineering of industrial
enzymes. Curr. Opin. Biotechnol. 2022, 78, 102843.
(119) Arnling Bååth, J.; Jensen, K.; Borch, K.; Westh, P.; Kari, J.
Sabatier Principle for Rationalizing Enzymatic Hydrolysis of a Synthetic
Polyester. JACS Au 2022, 2 (5), 1223−1231.
(120) Schaller, K. S.; Molina, G. A.; Kari, J.; Schiano-di-Cola, C.;
Sørensen, T. H.; Borch, K.; Peters, G. H.J.; Westh, P. Virtual
Bioprospecting of Interfacial Enzymes: Relating Sequence and Kinetics.
ACS Catal. 2022, 12 (12), 7427−7435.
(121) Vaissier Welborn, V.; Head-Gordon, T. Computational Design
of Synthetic Enzymes. Chem. Rev. 2019, 119 (11), 6613−6630.
(122) Mehmood, R.; Vennelakanti, V.; Kulik, H. J. Spectroscopically
Guided Simulations Reveal Distinct Strategies for Positioning
Substrates to Achieve Selectivity in Nonheme Fe(II)/α-Ketogluta-
rate-Dependent Halogenases. ACS Catal. 2021, 11 (19), 12394−
12408.
(123) Broom, A.; Rakotoharisoa, R. V.; Thompson, M. C.; Zarifi, N.;
Nguyen, E.; Mukhametzhanov, N.; Liu, L.; Fraser, J. S.; Chica, R. A.
Ensemble-based enzyme design can recapitulate the effects of
laboratory directed evolution in silico. Nat. Commun. 2020, 11 (1),
4808.
(124) Siegel, J. B.; Zanghellini, A.; Lovick, H.M.; Kiss, G.; Lambert, A.
R.; St.Clair, J. L.; Gallaher, J. L.; Hilvert, D.; Gelb, M. H.; Stoddard, B.
L.; Houk, K. N.; Michael, F. E.; Baker, D. Computational design of an
enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction.
Science 2010, 329 (5989), 309−13.
(125) Khersonsky, O.; Kiss, G.; Rothlisberger, D.; Dym, O.; Albeck,
S.; Houk, K. N.; Baker, D.; Tawfik, D. S. Bridging the gaps in design
methodologies by evolutionary optimization of the stability and
proficiency of designed Kemp eliminase KE59. Proc. Natl. Acad. Sci.
U. S. A. 2012, 109 (26), 10358−63.
(126) Hur, S.; Bruice, T. C. The near attack conformation approach to
the study of the chorismate to prephenate reaction. Proc. Natl. Acad. Sci.
U. S. A. 2003, 100 (21), 12015−12020.
(127) Kurkcuoglu, Z.; Bakan, A.; Kocaman, D.; Bahar, I.; Doruker, P.
Coupling between Catalytic Loop Motions and Enzyme Global
Dynamics. PLOS Computational Biology 2012, 8 (9), No. e1002705.
(128) Liao, Q.; Kulkarni, Y.; Sengupta, U.; Petrovic,́ D.; Mulholland,
A. J.; van der Kamp, M.W.; Strodel, B.; Kamerlin, S. C. L. LoopMotion
in Triosephosphate Isomerase Is Not a Simple Open and Shut Case. J.
Am. Chem. Soc. 2018, 140 (46), 15889−15903.
(129) Masterson, J. E.; Schwartz, S. D. Evolution alters the enzymatic
reaction coordinate of dihydrofolate reductase. J. Phys. Chem. B 2015,
119 (3), 989−96.
(130) Wang, Z.; Antoniou, D.; Schwartz, S. D.; Schramm, V. L.
Hydride Transfer in DHFR by Transition Path Sampling, Kinetic
Isotope Effects, and Heavy Enzyme Studies. Biochemistry 2016, 55 (1),
157−66.
(131) Liu, C. T.; Layfield, J. P.; Stewart, R. J., 3rd; French, J. B.;
Hanoian, P.; Asbury, J. B.; Hammes-Schiffer, S.; Benkovic, S. J. Probing
the electrostatics of active site microenvironments along the catalytic
cycle for Escherichia coli dihydrofolate reductase. J. Am. Chem. Soc.
2014, 136 (29), 10349−60.
(132) Liu, C. T.; Francis, K.; Layfield, J. P.; Huang, X.; Hammes-
Schiffer, S.; Kohen, A.; Benkovic, S. J. Escherichia coli dihydrofolate
reductase catalyzed proton and hydride transfers: temporal order and
the roles of Asp27 and Tyr100. Proc. Natl. Acad. Sci. U. S. A. 2014, 111
(51), 18231−6.
(133) Venkitakrishnan, R. P.; Zaborowski, E.; McElheny, D.;
Benkovic, S. J.; Dyson, H. J.; Wright, P. E. Conformational changes
in the active site loops of dihydrofolate reductase during the catalytic
cycle. Biochemistry 2004, 43 (51), 16046−55.
(134) Bhabha, G.; Ekiert, D. C.; Jennewein, M.; Zmasek, C. M.;
Tuttle, L. M.; Kroon, G.; Dyson, H. J.; Godzik, A.; Wilson, I. A.; Wright,

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Review

https://doi.org/10.1021/acs.jctc.3c00602
J. Chem. Theory Comput. 2023, 19, 7459−7477

7475

https://doi.org/10.1021/jacs.7b04830?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.7b04830?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1074/jbc.RA118.006494
https://doi.org/10.1074/jbc.RA118.006494
https://doi.org/10.1002/anie.201102190
https://doi.org/10.1002/anie.201102190
https://doi.org/10.1002/anie.201102190
https://doi.org/10.1016/j.chembiol.2014.11.017
https://doi.org/10.1016/j.chembiol.2014.11.017
https://doi.org/10.1016/j.chembiol.2014.11.017
https://doi.org/10.1021/acschembio.2c00420?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acschembio.2c00420?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acschembio.2c00420?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/cbic.201900707
https://doi.org/10.1002/cbic.201900707
https://doi.org/10.1002/cbic.201900707
https://doi.org/10.1002/anie.201309267
https://doi.org/10.1002/anie.201309267
https://doi.org/10.1021/acs.jpcb.2c00762?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.2c00762?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.2c00762?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/ange.202011941
https://doi.org/10.1002/ange.202011941
https://doi.org/10.1002/ange.202011941
https://doi.org/10.1021/jacs.8b10499?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b10499?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b10499?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C4CS00070F
https://doi.org/10.1039/C4CS00070F
https://doi.org/10.1021/jacs.1c12620?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.1c12620?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.1c12620?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cbpa.2007.08.033
https://doi.org/10.1073/pnas.2010470117
https://doi.org/10.1073/pnas.2010470117
https://doi.org/10.1073/pnas.2010470117
https://doi.org/10.1021/jacs.9b05323?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.9b05323?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.6b12265?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.6b12265?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.6b12265?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.7b03151?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.7b03151?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b01555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b01555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.9b01555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.1c00687?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.1c00687?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.copbio.2022.102843
https://doi.org/10.1016/j.copbio.2022.102843
https://doi.org/10.1016/j.copbio.2022.102843
https://doi.org/10.1021/jacsau.2c00204?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacsau.2c00204?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.2c02305?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.2c02305?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.8b00399?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.8b00399?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.1c03169?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.1c03169?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.1c03169?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.1c03169?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-020-18619-x
https://doi.org/10.1038/s41467-020-18619-x
https://doi.org/10.1126/science.1190239
https://doi.org/10.1126/science.1190239
https://doi.org/10.1073/pnas.1121063109
https://doi.org/10.1073/pnas.1121063109
https://doi.org/10.1073/pnas.1121063109
https://doi.org/10.1073/pnas.1534873100
https://doi.org/10.1073/pnas.1534873100
https://doi.org/10.1371/journal.pcbi.1002705
https://doi.org/10.1371/journal.pcbi.1002705
https://doi.org/10.1021/jacs.8b09378?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b09378?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp506373q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp506373q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biochem.5b01241?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biochem.5b01241?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja5038947?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja5038947?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja5038947?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1415940111
https://doi.org/10.1073/pnas.1415940111
https://doi.org/10.1073/pnas.1415940111
https://doi.org/10.1021/bi048119y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi048119y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi048119y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00602?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


P. E. Divergent evolution of protein conformational dynamics in
dihydrofolate reductase. Nat. Struct Mol. Biol. 2013, 20 (11), 1243−9.
(135) Gao, S.; Thompson, E. J.; Barrow, S. L.; Zhang, W.; Iavarone, A.
T.; Klinman, J. P. Hydrogen-Deuterium Exchange within Adenosine
Deaminase, a TIM Barrel Hydrolase, Identifies Networks for Thermal
Activation of Catalysis. J. Am. Chem. Soc. 2020, 142 (47), 19936−
19949.
(136) Bunzel, H. A.; Kries, H.; Marchetti, L.; Zeymer, C.; Mittl, P. R.
E.; Mulholland, A. J.; Hilvert, D. Emergence of a Negative Activation
Heat Capacity during Evolution of a Designed Enzyme. J. Am. Chem.
Soc. 2019, 141 (30), 11745−11748.
(137) Afriat, L.; Roodveldt, C.; Manco, G.; Tawfik, D. S. The latent
promiscuity of newly identified microbial lactonases is linked to a
recently diverged phosphotriesterase. Biochemistry 2006, 45 (46),
13677−86.
(138) Hiblot, J.; Gotthard, G.; Elias, M.; Chabriere, E. Differential
active site loop conformations mediate promiscuous activities in the
lactonase SsoPox. PLoS One 2013, 8 (9), No. e75272.
(139) Ng, F. S.; Wright, D. M.; Seah, S. Y. Characterization of a
phosphotriesterase-like lactonase from Sulfolobus solfataricus and its
immobilization for disruption of quorum sensing. Appl. Environ.
Microbiol. 2011, 77 (4), 1181−6.
(140) Bzdrenga, J.; Daude, D.; Remy, B.; Jacquet, P.; Plener, L.; Elias,
M.; Chabriere, E. Biotechnological applications of quorum quenching
enzymes. Chem. Biol. Interact 2017, 267, 104−115.
(141) Billot, R.; Plener, L.; Jacquet, P.; Elias, M.; Chabriere, E.; Daude,
D. Engineering acyl-homoserine lactone-interfering enzymes toward
bacterial control. J. Biol. Chem. 2020, 295 (37), 12993−13007.
(142) Sikdar, R.; Elias, M. Quorum quenching enzymes and their
effects on virulence, biofilm, and microbiomes: a review of recent
advances. Expert Rev. Anti-Infe 2020, 18 (12), 1221−1233.
(143) Sonar, K.; Mancera, R. L. Characterization of the
Conformations of Amyloid Beta 42 in Solution That May Mediate Its
Initial Hydrophobic Aggregation. J. Phys. Chem. B 2022, 126 (40),
7916−7933.
(144) Pinheiro, M. P.; Rios, N. S.; Fonseca, T. d. S.; Bezerra, F. d. A.;
Rodríguez-Castellón, E.; Fernandez-Lafuente, R.; Carlos de Mattos,
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