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Abstract

Aims: Aortic stenosis (AS) is a degenerative valve condition that is under-diagnosed and 

undertreated. Detection of AS using limited 2D echocardiography could enable screening and 

improve appropriate referral and treatment of this condition. We aimed to develop methods for 

automated detection of AS from limited imaging datasets.

Methods: Convolutional neural networks were trained, validated, and tested using limited 

2D transthoracic echocardiogram (TTE) datasets. Networks were developed to accomplish two 

sequential tasks; 1) view identification and 2) study-level grade of AS. Balanced accuracy and area 

under the receiver operator curve (AUROC) were the performance metrics used.

Results: Annotated images from 577 patients were included. Neural networks were trained on 

data from 338 patients (average N = 10,253 labeled images), validated on 119 patients (average 

N = 3,505 labeled images), and performance was assessed on a test sets of 120 patients (average 

N = 3,511 labeled images). Fully automated screening for AS was achieved with AUROC 0.96. 

Networks can identify no significant (no, mild, mild/moderate) AS from significant (moderate, or 

severe) AS with an AUROC = 0.86 and between early (mild or mild/moderate AS) and significant 

(moderate or severe) AS with an AUROC of 0.75. External validation of these networks in a 

cohort of 8502 outpatient TTEs showed that screening for AS can be achieved using parasternal 

long-axis imaging only with an AUROC of 0.91.
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Conclusion: Fully-automated detection of AS using limited 2D datasets is achievable using 

modern neural networks. These methods lay the groundwork for a novel method for screening for 

AS.
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Introduction

Aortic stenosis (AS) is an enormous public health problem that affects over 12.6 million 

adults and worldwide causes an estimated 102,700 deaths annually.1 Recently, there has 

been interest in earlier identification of AS and evidence that many patients may not be 

appropriately treated.2,3 These observations motivate the study of novel methods to identify 

AS. Here, we evaluate whether machine learning (ML) methods can accurately identify AS 

using limited 2D imaging datasets that are well suited for disease screening.

Little is known about how to improve identification and treatment of AS. Employing a 

population-based comprehensive transthoracic echocardiogram (TTE) screening approach 

would be prohibitively expensive. Automated interpretation of limited echocardiography 

datasets is an attractive alternative approach to disease detection, especially with the rise of 

point of care ultrasound (POCUS) devices. Barriers to automating AS detection relate to the 

complex nature of this diagnosis, the need to integrate information across multiple images 

for any given study, and datasets that are not routinely annotated as part of routine clinical 

care.

Classically, accurate grading of AS relies on integration of numerous structural and 

hemodynamic parameters from across multiple imaging planes.4 From the perspective of 

disease screening, certain features of AS such as valve thickness and calcium burden are 

readily apparent on 2D images. While deep learning methods can now surpass humans in 

certain medical image classification tasks5,6, common classifier designs take only individual 

images as input and applications in echocardiography have so far focused only on viewpoint 

identification, image segmentation, and assessments of ventricular function and myocardial 

diseases.7–10 ML approaches to AS so far are limited to using echocardiogram reports 

(thereby requiring expert image interpretation to work)11,12 or are limited to very small 

numbers13 or focusing only on severe disease.14 None have focused on assessing the 

continuum of AS severity using limited images with the goal of establishing tools suitable 

for automated disease screening. Here we develop methods that can produce a coherent 

single diagnosis (severity of AS) from limited 2D datasets.

Methods

Echocardiograms

This work was approved by the Tufts Medical Center IRB. The echocardiograms originate 

from TTEs performed between 2011–2020 at a high-volume tertiary care center (Tufts 

Medical Center, Boston, MA). The echocardiograms were acquired as part of routine clinical 
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care. The CardioVascular Imaging Center is Intersocietal Accreditation Commission (IAC) 

accredited and is equipped with ultrasound units from major vendors (Philips®, Toshiba®, 

Siemens®). By using standardized digital imaging and communications in medicine 

(DICOM) images, these methods are intended to be vendor-independent. Echocardiograms 

were included based on the presence or absence of AS. Images were not selected for 

inclusion based on image quality. Patients with prior aortic valve replacements were 

excluded. Other cardiac findings including other concomitant structural heart disease and 

rhythm abnormalities (i.e. atrial fibrillation) were not excluded.

Image acquisition and preprocessing

Images were acquired by trained sonographers with methods consistent with current 

American Society of Echocardiography (ASE) guidelines.15 For this study, we used 

metadata to identify and discard all spectral Doppler, color-flow Doppler, and M-mode 

recordings, keeping only 2D cardiac transthoracic echocardiogram (TTE) images. To 

minimize compute time and enhance transportability and to position these networks for 

use in future screening environments, the first frame of each PLAX or PSAX AoV loop 

was automatically selected for use in the prediction models. If there were multiple PLAX 

or PSAX AoV acquisitions in a study (as is often the case) predictions used the first frame 

from each acquisition to arrive at study-level AS prediction. All images were standardized 

to 112×112 pixel resolution. Consistent with routine clinical care, there are no view or 

diagnostic label annotations available for images when they are collected.

De-identification

Leveraging known region locations that are encoded within the DICOM storage format, 

propriety software was created to automatically identify the image burn region that contains 

protected health information (PHI). By excluding these imaging regions from the data copy, 

images were reliably de-identified. A 10% samples of the included de-identified images was 

manually reviewed to confirm no PHI was included.

Limited View labels

The study setup followed the cognitive steps involved in diagnosing AS by 

echocardiography (Figure 1), specifically view recognition followed by view interpretation. 

We collected expert annotations of a limited number of view types with two goals in 

mind; 1) to evaluate (and validate) automated view classification networks and 2) prioritized 

views are used in subsequent AS diagnostic models. Labels were assigned to examples of 

the parasternal long axis (PLAX), parasternal short axis at the level of the aortic valve 

(PSAX AoV). These views were purposely selected because they are standard views that can 

visualize the AoV and can be prioritized in a limited screening environment. For evaluation 

of view the classification tasks apical 2-chamber (A2C), and apical 4-chamber (A4C) views 

were also labeled. An ‘Other’ super-category label that covered other 2D views was also 

collected. Doppler imaging was not included in this study because these acquisitions are not 

routinely collected during point-of-care ultrasound (POCUS) imaging studies and because 

Doppler image acquisition requires a high level of skill that is often only available in 

dedicated echocardiogram laboratories.
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An echocardiogram annotation tool was built to facilitate view annotation (Supplemental 

Figure 1). Annotators (board certified echocardiographers or American Registry for 

Diagnostic Medical Sonography credentialed sonographers) assigned labels to ≥ 2 examples 

of each imaging view for each of the 599 studies included in our labeled set. Agreement 

between labelers was assessed on a set of 50 echocardiograms that were labeled in duplicate 

(Supplemental Table 1, Supplemental Table 2).

Diagnostic labels

The presence or absence of AS and the grade of AS (if present) were assigned by a 

cardiologist with specialty training in echocardiography. AS classification was assigned 

during clinical care in standard fashion following an integrative approach as recommended 

by current guidelines (i.e. integrating information across all available images of all view 

types for a given patient).4 The reference grade of AS for this study was taken directly 

from the clinical imaging report. AS labels for these experiments are shown in Table 1. 

Echocardiograms representing the full spectrum of AS pathologies were purposely included. 

To focus this work on potential automated screening use cases, and with recognition that 

inter-reader agreement of disease severity is modest,16 we grouped standard severity levels 

into 3 diagnostic classes: “no AS”, “early AS” (combining mild and mild-to-moderate), and 

“significant AS” (combining moderate and severe). In a screening environment (upstream 

of the traditional echocardiogram laboratory), the primary clinical question is which 

individuals should be referred for comprehensive echocardiography and AS-related care.

Datasets and Experimental Design

Our experiments focused on assessing performance on echocardiogram studies from never-

before-seen patients. These experiments were done in a manner consistent with Proposed 

Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME) 

checklist.17 The PRIME checklist for this study is available upon request.

Our final dataset consisted of 599 fully-labeled TTE studies, where each study has a 

diagnosis label (no AS, early AS, or significant AS) as well as some images with view 

labels. We have released this dataset to researchers worldwide as the Tufts Medical 

Echocardiogram Dataset, version 2 (TMED-2). Most patients contributed only one study, 

but multiple studies from a small number of patients (22 out of 577) were included to 

improve dataset size. Each patient’s data were assigned to exactly one set to properly 

assess generalization across individuals. The labeled data were divided into training (60%), 

validation (20%), and test sets (20%). We ensured that the ratio of diagnostic classes was 

the same across training, validation, and test (~21% no AS, ~29% early AS, and ~50% 

significant AS). Dataset composition by label is summarized in Table 2 (for diagnosis task) 

and Supplemental Table 3 (for view task).

Each ML method was allowed to fit parameters to the training set, select hyperparameters 

based on performance on the validation set, and report results on the test set. To improve 

the reliability of our results, we repeated the process of training a model and evaluating 

its performance across 3 separate, independent random partitions of all data into training, 

validation, and test sets. We report average performance across these 3 test sets. In addition 
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to using the full training and validation set (479 studies), we also considered two levels of 

reduction (165 and 56 studies, roughly 33% and 11% of the full size). The same full-size test 

sets (120 studies) were always used to compare final performance.

Deep Neural Nets for View and Diagnosis Classification

We trained two neural networks: one view classifier and one diagnosis classifier. Each used 

the same backbone neural network architecture: a wide residual network with 28 layers 

containing 5,931,683 parameters18. Each network takes one image as input and produces 

a predicted probability vector. We discuss how we aggregate predictions across images in 

the next paragraph. The view classifier is trained to produce a 5-way probabilistic view 

classification (PLAX, PSAX AoV, A4C, A2C, or Other) given a single image. To train, we 

minimize 5-class cross entropy summed over all view-labeled images in the labeled set. The 

diagnosis classifier is trained so the same network produces two separate outputs given a 

single image: the primary output is a 3-way probabilistic vector indicating the diagnosis (no, 

early, or significant AS), and the auxiliary output is a 5-way probabilistic vector indicating 

the view type. We use multi-task training, where the loss function is a sum of the 3-class 

diagnosis cross entropy and 5-class view cross entropy, summed over all view-labeled 

images. We found this multi-task training delivered better diagnosis performance. After 

multi-task training, only the 3-class diagnosis output is used (the separately trained view 

neural network is a better view classifier than the auxiliary output). Each model was trained 

via stochastic gradient descent until the validation balanced accuracy for its primary task did 

not improve for at least 30 epochs. The actual epochs needed vary from 150-1000 depending 

on the method used.

Producing One Study-Level Diagnosis from Many Images

Given the trained image-to-view and image-to-diagnosis classifier networks described 

above, our goal was to automate assignment of a study-level AS severity diagnosis: one 

vector summarizing the holistic interpretation of all images in a study. To accomplish this, 

we applied an approach which we call Prioritized View weighting19, which we developed 

on an earlier, smaller dataset. The intuitive motivation is that diagnostic predictions made 

from images that show the aortic valve (PLAX or PSAX AoV views) should be considered 

stronger evidence than predictions of disease severity from other view types. Concretely, our 

Prioritized View procedure obtains a study-level probabilistic prediction in three steps. First, 

using the image-to-diagnosis classifier to produce a 3-class probability vector indicating AS 

severity for every image in the study. Second, use the image-to-view classifier to predict 

the probability of a relevant view (PLAX or PSAX) for every image. Finally, compute a 

weighted average over the 3-class vectors from step one, weighting each by the probability 

from step two. We compare this Prioritized View approach to an alternative Simple Average 

that treats diagnoses from all images equally without any weighting by the view classifier.

Performance Metrics

Throughout the evaluation of both view and diagnostic tasks we use balanced accuracy 

as the performance metric of interest. Standard accuracy does not adequately assess 

performance when the data has imbalanced class distributions, as seen in both view and 

diagnostic tasks. Balanced accuracy is computed in two steps: compute the fraction of true 
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members of each class that are correctly recognized, then average this fraction across all 

classes.

To further assess our method’s utility as a screening tool, we use receiver operating 

curve (ROC) analysis and report area-under-the-curve for several potential use cases: (A) 

distinguishing no AS from any AS (early and significant), (B) distinguishing early AS from 

significant AS, and (C) distinguishing non-significant (no AS or early AS) from significant 

(moderate, moderate/severe, or severe) AS.

External Validations

External validation of the view classifer was done using the The Stanford EchoNet 

Dynamic dataset.20 This dataset contains 10,030 images of the A4C view type, gathered 

using completely different patient populations, clinical teams, and label assignments than 

our Tufts-focused dataset. Since all 10,030 images are A4C views, we report our view 

classifier’s accuracy on this dataset. We used all available A4C images in this dataset, which 

are provided at 112×112 resolution (the same resolution we used for our images).

Two external validation studies of the AS diagnostic classifiers were done. The first was a 

temporal external validation performed on TTEs done at Tufts Medical Center from May 

to July, 2022. These studies represent consecutive clinically indicated TTEs with an AS 

classification that was independently reviewed for this study (no AS, early AS, significant 

AS, defined in an identical fashion to the model derivation tasks).

Next, we performed an external validation study on data provided by iCardio.ai. The data 

consisted of TTEs performed between 2018–2020 by an outpatient diagnostic imaging 

company. For this validation we had access to a single imaging view (PLAX) and the AS 

diagnostic label for the study. This validation was designed to test model performance on 

limited 2D acquisitions. The TTEs for this cohort were performed for independent medical 

practices and clinics in over 13 states in the US and data were acquired with ultrasound units 

from 4 major vendors (GE®, Philips®, Teratech®, Acuson®). AS grade was assigned by a 

COCATS level III echocardiographer.

Statistical Analysis

To evaluate the classification performance of each neural network, we report the balanced 

accuracy on the test set. To assess binary discrimination between two classes, we also 

report the area under the ROC curve. For each performance metric, we report a 95% 

confidence interval computed using 5,000 bootstrapped samples of the test set. We average 

this reporting across 3 independent partitions or “splits” of the data into training and test.

Results

The clinical characteristics of the patients included in this study are shown in Table 3a. The 

primary labeled cohort included 577 patients. The median age was 74 (IQR 63–82). 43% of 

the patients were women. 86% of the study population was Caucasian. The hemodynamic 

parameters of the echocardiograms are shown in Table 3b. The median aortic valve peak 

velocity was 2.89 m/s (2.29–3.67), the median peak gradient was 34.6 mmHg (21.0–54.0 
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mmHg), and the average mean gradient was 18.1 mmHg (11.9–30.6 mmHg). The average 

LV ejection fraction was 60% (55–65%).

Partitioning of the dataset is shown in Table 2. The fully-labeled set contains both diagnosis 

and view labels (599 studies representing 577 patients, 43823 total images of which 17270 

have view labels). After preprocessing, the median study in our dataset contains 70 images 

(5th-95th percentile range 48–105, min-max range 15–181). The median number of images 

with view labels is 19 (5–95th range 4.9–71, min-max range 1–107). Fully-labeled data were 

divided into training (60%, 360 studies), validation (20%, 119 studies), and test sets (20%, 

120 studies).

View classification

Our view classifiers deliver 97% balanced accuracy on test set when averaged over the 3 

partitions of TMED-2. Balanced accuracy for the view task increases notably as the size of 

the available training and validation data increases from 90.3% with only 56 studies (95% 

bootstrap CI 87.5–90.4%) to all 97.0% with all 476 studies (95% bootstrap CI 95.9–97.5%, 

Supplementary Table 4). Using power-law curve-fitting that has been empirically successful 

at characterizing deep learning performance as dataset sizes increase21, we project that 

labeled-set-only balanced accuracy could improve to 98.5% if 1000 labeled studies were 

available for model training and validation (Supplemental Figure 2).

To sanity-check prediction quality, we used Grad-CAM22 to generate visual explanation 

heat-maps for our view classifier on select images from our test set (Figure 2). These visuals 

suggest that view predictions depend on relevant regions of the aortic root and aortic valve 

instead of irrelevant background data.

External validation of view classification

Accuracy at recognizing A4C views from the external EchoNet dataset is 93.4% (95% 

bootstrap CI: 93.2–93.8%) averaged over 3 splits on the full labeled set (476 studies 

for training and validation, 120 for test). When the available labeled data are smaller, 

performance is naturally less accurate: 81.1% when developed on 165 studies and 66.1% 

when developed on 56 studies (Supplement Table 5).

Diagnosis performance using limited 2D images related to a patient

Supplementary Figure 2 shows how study-level diagnosis classification improves with more 

labeled data across two strategies for averaging across all images to make a coherent study-

level diagnosis (Prioritized View vs. Simple Average). On our full dataset, the Prioritized 

View strategy delivers 74.5% balanced accuracy for the 3-way AS diagnosis task compared 

to 34.9% for Simple Average (Supplementary Table 6). Note that random guessing baseline 

would achieve 33%.

On the largest training split, the multi-task training for our diagnosis classifier took ~14 

hours on a Nvidia® RTX6000 Graphics Processing Unit (GPU). Using an already-trained 

network, it takes approximately 0.4 seconds to get an AS diagnostic prediction for a typical 

study.
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Using automatic study-level diagnosis as a preliminary screening tool for AS

Discriminatory performance for various clinical use cases are shown in Table 4, Figure 3. 

A) Using limited 2D images, AUROC = 0.96 for screening for any AS, B) AUROC = 0.75 

for identifying early (mild or mild/moderate) AS vs significant (moderate, moderate/severe, 

severe) AS, and C) AUROC = 0.86 for no significant AS (no AS and early AS) vs significant 

(moderate, moderate/severe, or severe) AS. Using these data, our methods demonstrate 

sensitivity of 88.3% and specificity of 88% for detecting AS. The confusion matrices for 

these predictions are shown the Figure 4.

External validation of AS classification

In the temporal validation the AS classifier was used to study 263 consecutive TTEs 

acquired at Tufts Medical Center with independently verified AS grade as assigned by a 

board certified echocardiographer. For the diagnostic screening task of identifying AS (all 

grades) the AUROC was 0.95. In this external validation cohort the prevalence of AS was 

14.5%. The sensitivity was 94.7% and the specificity was 78.7%. Positive predictive value 

(PPV) was 42.9% and negative predictive value (NPV) was 98.9% (Figure 5). For the task 

of identifying significant AS (moderate and severe) vs no significant AS (no AS, mild, 

mild-moderate AS) the AUROC was 0.95 (Supplemental Figure 3).

In the fully external validation using a single PLAX view, the AS classifier was used to 

screen for AS in 8502 echocardiograms. For the screening task the AUROC was 0.91. In this 

cohort the prevalence of AS was 9.0%. The sensitivity was 89.3% and the specificity was 

76.1%. The PPV was 27.0% and the NPV was 98.6% (Figure 6).

Discussion

Novel approaches to AS case identification are needed in order improve treatment rates for 

this condition. Here we develop methods for fully automated detection of AS from limited 

TTE datasets. We show that automated detection of AS is possible using modern deep 

learning classifiers and that these networks are generalizable across different datasets. These 

tools can broadly characterize the presence or absence of AS and the severity of disease 

and are well suited for identifying patients who should be referred for comprehensive 

echocardiography. These results represent important steps toward establishing a novel 

approach to AS case identification.

These models are not designed to comprehensively phenotype AS as can be done with 

complete TTE. Instead, we view this work as a method to move case identification 

upstream of the echocardiogram laboratory. With an estimated incidence rate of severe AS 

of 4.4%/year in the general population >65 years of age, it is clear that many patients 

go unrecognized.23 The sensitivity and specificity of contemporary care with cardiac 

auscultation for detecting significant valve disease is only 44% and 69% respectively.24 

Performance of auscultation is likely to be even lower for detecting more mild disease where 

murmurs are less intense. An automated screening program that uses limited 2D datasets

—embedded within or upstream of hospital or clinic-based echocardiogram laboratories—

might improve case identification and referral. While the discriminatory performance of 
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these models appears excellent, the positive predictive value is modest. This is related in part 

to the relatively low prevalence of significant AS and should be viewed in the context of a 

very high negative predictive value (i.e. very few cases will be missed).

These tools could enable studies to address the profound treatment disparities for patients 

with severe AS25,26 or interrogate emerging evidence that many patients with severe AS 

are not treated.3,27,28 Automated screening could allow for large scale studies of the natural 

history of AS and also uncover potential biases in the care pathway of patients with this 

condition. Certainly, additional studies are needed to assess whether automation tools that 

enable effective screening and timely referral can improve outcomes for patients with AS. 

Automated detection of AS might also enable studies of early interventions to halt disease 

progression.29 Classically, it has been challenging to study early stage disease since early 

AS is asymptomatic. Fully automated interpretation of limited echocardiography may be 

worthwhile if effective treatments emerge, or for enabling trial recruitment for treatment of 

earlier stage disease. The methods presented here do not use Doppler images and so are 

potentially suited to use with POCUS devices.

The modern networks studied here are attractive for the field of echocardiography because 

they can learn competitive models from small labeled datasets. These models used a 

single frame from the cine loops. Use of the time-varying feature sets almost certainly 

contains additional information, however this added information has to be balanced against 

the computational requirements needed to process more complex datasets. This network 

was designed to be scalable and require the least-information necessary to be clinically 

valuable. Additionally, as demonstrated with the external validation study, these networks 

can ingest complete or partial studies and assign a diagnostic label. This flexibility 

positions these methods for use with limited acquisitions in screening environments. Here 

study-level diagnoses were achieved using a novel view-prioritized approach which uses a 

view-classifier to identify views deemed relevant for the diagnostic task of interest (here 

AS). Diagnostic classifier predictions from these relevant views are then prioritized via a 

weighted average to predict a coherent study-level diagnostic label. We present validation 

studies of the sequential view and diagnostic tasks to emphasize the tiered approach used 

here that we believe can be applied to automate other complex imaging diagnoses.

The data used in these studies are released as part of our Tufts Medical Echocardiogram 

Database version 2 (TMED-2, data and code available at https://tmed.cs.tufts.edu/). 

TMED-2 substantially increases the number of publically released studies, increases 

resolution to 112×112 from 64×64, and increases available view types compared to our 

smaller earlier release.19 This database covers a range of AS pathologies and will support 

the development of novel methods to automate screening for complex imaging diagnoses. 

The notable accuracy gains possible on external data with 3x increases in dataset size 

illustrate the critical need for efforts to make labeled datasets available to researchers 

worldwide.

There are a few limitations to this work that must be recognized. The presented 

echocardiograms come from a single academic center and diagnostic labels were assigned as 

part of routine clinical care. Non-white patients were under-represented in this cohort though 
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the echocardiogram-based imaging diagnosis of AS should not have any biologic differences 

based on race. This study did not include outcome data or information from other imaging 

modalities to confirm disease severity. While the number of labeled echocardiograms is 

modest, these networks are notable in that they can learn from small labeled sets. This is 

important for future model development where labels are expensive and time consuming. 

While more complex low flow/ low gradient subtypes may be misclassified, we minimize 

this risk by collapsing moderate and severe AS into a single ‘significant AS’ category that 

should be referred for comprehensive study and care. This is by design and is important for 

future screening trials. Prior efforts that focus only on high flow/ high gradient subtypes14 

would miss a significant number of cases that represent severe disease with lower flow 

profiles. With release of our code and images, we encourage additional external validations 

of our work. We expect performance would improve with higher image resolutions, larger 

neural networks, or use of all frames from cineloops rather than the first frame only; we 

kept resolutions modest (112 × 112 pixels) and used only one frame to achieve a tractable 

balance between accuracy and training time. On modern GPUs each neural network we 

trained already requires dozens of hours on the largest version of our dataset.

Conclusion

ML approaches optimized for echocardiography can successfully identify AS using limited 

2D datasets. These methods lay the groundwork for fully automated screening for this 

disease and future study of interventions to improve outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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DICOM digital imaging and communications in medicine

PLAX parasternal long axis

PSAX AoV parasternal short axis at the level of the aortic valve

TMED-2 Tufts Medical Echocardiogram Dataset, version 2

References

1. Yadgir S, Johnson CO, Aboyans V, et al. Global, Regional, and National Burden of Calcific Aortic 
Valve and Degenerative Mitral Valve Diseases, 1990–2017. Circulation. 2020;1670–80. [PubMed: 
32223336] 

2. Lindman BR, Sukul D, Dweck MR, et al. Evaluating Medical Therapy for Calcific Aortic Stenosis: 
JACC State-of-the-Art Review. J Am Coll Cardiol. 2021;78(23):2354–76. [PubMed: 34857095] 

3. Li SX, Patel NK, Flannery LD, et al. Trends in Utilization of Aortic Valve Replacement for Severe 
Aortic Stenosis. J Am Coll Cardiol. 2022 Mar 8;79(9):864–77. [PubMed: 35241220] 

4. Baumgartner H, Hung J, Bermejo J, et al. Recommendations on the Echocardiographic 
Assessment of Aortic Valve Stenosis: A Focused Update from the European Association of 
Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 
2017 Apr;30(4):372–92. [PubMed: 28385280] 

5. Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016;316(22):2402–10. 
[PubMed: 27898976] 

6. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep 
neural networks. Nature. 2017;542(7639):115–8. [PubMed: 28117445] 

7. Zhang J, Gajjala S, Agrawal P, et al. Fully Automated Echocardiogram Interpretation in Clinical 
Practice. Circulation. 2018 Oct 16;138(16):1623–35. [PubMed: 30354459] 

8. Ouyang D, He B, Ghorbani A, et al. Video-based AI for beat-to-beat assessment of cardiac function. 
Nature. 2020 Apr 9;580(7802):252–6. [PubMed: 32269341] 

9. Duffy G, Cheng PP, Yuan N, et al. High-Throughput Precision Phenotyping of Left Ventricular 
Hypertrophy With Cardiovascular Deep Learning. JAMA Cardiol. 2022 Feb 23;

10. Tromp J, Seekings PJ, Hung CL, et al. Automated interpretation of systolic and diastolic function 
on the echocardiogram: a multicohort study. Lancet Digit Heal. 2022 Jan;4(1):e46–54.

11. Sengupta PP, Shrestha S, Kagiyama N, et al. A Machine-Learning Framework to Identify Distinct 
Phenotypes of Aortic Stenosis Severity. JACC Cardiovasc Imaging. 2021 Sep;14(9):1707–20. 
[PubMed: 34023273] 

12. Playford D, Bordin E, Mohamad R, et al. Enhanced Diagnosis of Severe Aortic Stenosis Using 
Artificial Intelligence: A Proof-of-Concept Study of 530,871 Echocardiograms. JACC Cardiovasc 
Imaging. 2020 Apr;13(4):1087–90. [PubMed: 31864981] 

13. Yang C, Ojha BD, Aranoff ND, et al. Classification of aortic stenosis using conventional machine 
learning and deep learning methods based on multi-dimensional cardio-mechanical signals. Sci 
Rep. 2020 Dec 16;10(1):17521. [PubMed: 33067495] 

14. Dai W, Nazzari H, Namasivayam M, et al. Identifying Aortic Stenosis With a Single Parasternal 
Long-Axis Video Using Deep Learning. J Am Soc Echocardiogr. 2022 Oct 30;

15. Mitchell C, Rahko PS, Blauwet LA, et al. Guidelines for Performing a Comprehensive 
Transthoracic Echocardiographic Examination in Adults: Recommendations from the American 
Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1–64. [PubMed: 30282592] 

16. Haji K, Wong C, Neil C, et al. Multi Reader Assessment of Accuracy and Interobserver Variability 
in Aortic Stenosis by Echocardiography. Hear Lung Circ. 2019;28:S258.

17. Sengupta PP, Shrestha S, Berthon B, et al. Proposed Requirements for Cardiovascular Imaging-
Related Machine Learning Evaluation (PRIME): A Checklist. JACC Cardiovasc Imaging. 2020 
Sep;13(9):2017–35. [PubMed: 32912474] 

Wessler et al. Page 11

J Am Soc Echocardiogr. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Zagoruyko S, Komodakis N. Wide Residual Networks. In: Procedings of the British Machine 
Vision Conference 2016. 2016. p. 87.1–87.12.

19. Huang Z, Long G, Wessler B, et al. A New Semi-supervised Learning Benchmark for Classifying 
View and Diagnosing Aortic Stenosis from Echocardiograms. Proc Mach Learn Healthc Conf. 
2021 Jul 30;

20. Ghorbani A, Ouyang D, Abid A, et al. Deep learning interpretation of echocardiograms. npj Digit 
Med. 2020 Dec 24;3(1):10. [PubMed: 31993508] 

21. Hestness J, Narang S, Ardalani N, et al. Deep Learning Scaling is Predictable, Empirically. ArXiv. 
2017 Dec 1;

22. Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks 
via Gradient-Based Localization. In: 2017 IEEE International Conference on Computer Vision 
(ICCV). IEEE; 2017. p. 618–26.

23. Durko AP, Osnabrugge RL, Van Mieghem NM, et al. Annual number of candidates for 
transcatheter aortic valve implantation per country: current estimates and future projections. Eur 
Heart J. 2018;39(28):2635–42. [PubMed: 29546396] 

24. Gardezi SKM, Myerson SG, Chambers J, et al. Cardiac auscultation poorly predicts the presence 
of valvular heart disease in asymptomatic primary care patients. Heart. 2018;104(22):1832–5. 
[PubMed: 29794244] 

25. Batchelor W, Anwaruddin S, Ross L, et al. Aortic Valve Stenosis Treatment Disparities in the 
Underserved: JACC Council Perspectives. J Am Coll Cardiol. 2019;74(18):2313–21. [PubMed: 
31672188] 

26. Clark KA, Chouairi F, Kay B, et al. Trends in transcatheter and surgical aortic valve replacement in 
the United States, 2008–2018. Am Heart J. 2022 Jan;243:87–91. [PubMed: 34571040] 

27. Tang L, Gössl M, Ahmed A, et al. Contemporary reasons and clinical outcomes for patients 
with severe, symptomatic aortic stenosis not undergoing aortic valve replacement. Circ Cardiovasc 
Interv. 2018;11(12):1–12.

28. Brennan JM, Bryant A, Boero I, et al. PROVIDER-LEVEL VARIABILITY IN THE 
TREATMENT OF PATIENTS WITH SEVERE SYMPTOMATIC AORTIC VALVE STENOSIS. J 
Am Coll Cardiol. 2019 Mar;73(9):1949.

29. Lindman BR, Merryman WD. Unloading the Stenotic Path to Identifying Medical Therapy for 
Calcific Aortic Valve Disease. Circulation. 2021 Apr 13;143(15):1455–7. [PubMed: 33844581] 

Wessler et al. Page 12

J Am Soc Echocardiogr. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Automated detection of aortic stenosis (AS) is a novel approach to diagnosis.

• ML methods were trained to detect AS from limited 2D echo images

• Fully-automated screening for AS using limited datasets is achievable.

• Release of a TTE database will encourage collaboration.
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Figure 1. Approach to Automated Identification of Aortic Stenosis.
Convolutional neural networks (CNN) were trained and tested to identify view type and AS 

diagnostic category using limited 2D datasets.
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Figure 2. 
Grad-CAM visualizations of view predictions. Examples of PLAX (left) and PSAX AoV-

level (right) views in our test set and their Grad-CAM visualizations. The original image is 

shown at the top, and the corresponding Grad-CAM visualization is shown below (original 

image with heat map overlay). The model correctly predicted the images to be PLAX and 

PSAX views, respectively, and correctly focused on the relevant region of the heart for 

making the predictions. The hotter the color, the more important the pixel in making the 

class discriminative decisions.
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Figure 3. Diagnostic Classification Receiver Operator Curves.
Each set of experiments was run with 3 random training-validation-test splits of the 

data (labeled split1, split2, split3). The top row represents screening for AS: AS absent 

vs AS present (any severity). Middle row represents early AS (mild, mild/moderate) vs 

significant AS (moderate, severe). Bottom row represents non-significant AS (none, mild, 

mild/moderate) vs significant AS (moderate, severe). Each line gives the performance of 

one prediction strategy for aggregating across all images in a study: Prioritized View and 

Simple Average. Each column shows the results for one partition of the TMED-2 data into 

training/test.
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Figure 4: Confusion Matrices for AS Severity classification.
Each set of experiments was run with 3 random training-validation-test splits of the data 

(labeled split1, split2, split3). We report the test set confusion matrix from classifiers trained 

on each of the 3 train/test splits of our TMED-2 dataset.
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Figure 5. Temporal Validation of Diagnostic Classifier
Temporal External Validation of the fully automated network for AS identification. AUROC 

shown on the left for 263 consecutive TTEs at Tufts Medical Center. AS diagnosis was 

independently reviewed for this study.
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Figure 6. Fully External Validation
Fully External Validation on 8502 echocardiograms from iCardio.ai. This validation 

study used only the PLAX view. AS diagnosis was assigned by fully independent 

echocardiographers.
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Table 1.
Aortic Stenosis Reference Labels

AS Reference Labels. Aortic Stenosis severity was assigned using an integrative approach consistent with 

current American Society of Echocardiography Guidelines.4 The Severe AS reference label includes both high 

gradient and low gradient subtypes. AS severity was pulled from the echocardiogram report as assigned by the 

clinical reader. As part of routine care an additional label of ‘Mild to Moderate’ AS was assigned when 

hemodynamic profiles overlap the ‘Mild’ and ‘Moderate’ severity classes. This label was preserved for these 

experiments. Valve area represents the continuity equation derived valve area. LVOT is the left ventricular 

outflow tract diameter. mmHg is millimeters of mercury, m/s is meters per second.

Reference AS 
Severity Grading Thresholds

Severe

valve area of < 1.0 cm2, peak velocity ≥ 4.0 m/s, or mean gradient ≥ 40 mmHg

valve area of < 1.0 cm2, peak velocity < 4.0 m/s or mean gradient < 40 mmHg and LVOT derived stroke volume ≤ 35 
mL/m2

Moderate valve area of 1.0–1.5 cm2, peak velocity 3.0–4.0 m/s, or mean gradient 20–40 mmHg

Mild valve area of >1.5 cm2, peak velocity 2.6–2.9 m/s, or mean gradient <20 mmHg
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Table 2:
AS Diagnosis Label Cohorts across Train/Test Splits

AS Diagnosis Label Cohorts across Train/Test Splits in TMED-2. We show the number of echocardiogram 

studies assigned to train/valid/test sets across all 3 possible aortic stenosis (AS) severity levels for the fully-

labeled dataset of 599 studies. Image counts represent the mean over 3 splits, as the exact number of images 

per study differs across splits. No split deviates more than 12% from the reported mean here. Each patient’s 

data were assigned to exactly one set to properly assess generalizability to new patients, while preserving 

similar proportions of each AS severity level across train and test.

Number of Studies Number of Labeled Images

Total None Early AS Sig AS Total None Early AS Sig AS

Train* 360 76 103 181 10253 999 1316 7938

Valid 119 25 34 60 3505 344 402 2759

Test 120 26 34 60 3511 339 408 2764

*
indicates that the training set also included an additional set with only view labels but no AS diagnosis label. This view-only set contained 705 

studies representing 7694 labeled images, see Supplement Table 3.

Abbreviations: None represents no AS, Early AS represents mild and mild/mod AS, Sig AS means moderate, moderate/severe, and severe AS.
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Table 3a.
Baseline Characteristics of Patients and Echocardiograms in TMED-2 Dataset.

All baseline characteristics refer to the entire cohort of 577 patients. All values are medians unless otherwise 

specified. IQR is interquartile range. BP is blood pressure, PCI is percutaneous coronary intervention. CABG 

is coronary artery bypass grafting, CVA is cerebrovascular accident.

Patient Characteristics (N = 577)

Age 74 (IQR 63–82)

Sex (% women) 43%

Race

85% Caucasian 
4% Black 

3% Latino 
8% other

Height (inches) 66 (63–69)

Weight (lbs) 174 (146–208)

BMI (kg/m2) 27.8 (24.2–32.1)

Systolic BP (mmHg) 129 (116–144)

Diastolic BP (mmHg) 72 (63–79)

Hypertension (%) 80%

Hyperlipidemia 68%

Congestive Heart Failure 33%

Diabetes 31%

Prior myocardial infarction 13%

Prior PCI 17%

Prior CABG 13%

Prior CVA 10%

Current smoking 8%
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Table 4.
Model Discrimination (AUROC) for AS Screening Tasks

Model Discrimination for three binary screening tasks: 1) AS absent vs AS present, 2) Early AS vs. 

Significant AS, 3) no significant AS vs Significant AS. We report the Area under the Receiver Operator 

Curves (AUROC) for each task, averaged over 3 random training-validation-test splits of the data. The 95% 

bootstrap CI of this average is in parentheses. Methods two methods of aggregating image-level predictions to 

a study-level diagnosis: simple averaging or a weighted averaged that prioritizes specific views (PLAX or 

PSAX) that depict the aortic valve and are thus relevant for AS diagnosis.

Model AS absent vs AS present Early AS vs Sig AS Sig AS vs No Sig AS

Simple Average 0.86 (0.81 – 0.91) 0.73 (0.67 – 0.79) 0.84 (0.79 – 0.88)

Prioritized View 0.96 (0.93 – 0.97) 0.75 (0.68 – 0.81) 0.86 (0.82 – 0.90)
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