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Abstract

In psychiatric and social epidemiology studies, it is common to measure multiple different 

outcomes using a comprehensive battery of tests thought to be related to an underlying construct 

of interest. In the research that motivates our work, researchers wanted to assess the impact of 

in utero alcohol exposure on child cognition and neuropsychological development, which are 

evaluated using a range of different psychometric tests. Statistical analysis of the resulting multiple 

outcomes data can be challenging, because the outcomes measured on the same individual are 

not independent. Moreover, it is unclear, a priori, which outcomes are impacted by the exposure 

under study. While researchers will typically have some hypotheses about which outcomes are 

important, a framework is needed to help identify outcomes that are sensitive to the exposure 

and to quantify the associated treatment or exposure effects of interest. We propose such a 

framework using a modification of stochastic search variable selection, a popular Bayesian 

variable selection model and use it to quantify an overall effect of the exposure on the affected 

outcomes. The performance of the method is investigated empirically and an illustration is given 

through application using data from our motivating study.
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1 | INTRODUCTION

In psychological and social epidemiology studies, participants are typically assessed using 

a comprehensive battery of tests or tasks designed to measure psychological, neurological, 

or cognitive outcomes that are difficult to measure directly. Analysts then face the challenge 

of how to best handle the resulting multiple outcomes. Often, a large number of outcomes 

are collected, and it can be challenging to decide which outcomes to include in the analysis. 

Scientists typically rely on previous studies, in combination with expert knowledge, to select 

the outcomes on which to focus. No statistical framework has been available for identifying 

outcomes that are sensitive to an exposure, nor has such a framework been developed to 

quantify the magnitude of effects.

There is a rich literature on statistical methods for the analysis of multiple outcomes data. 

The simplest approach is to analyze each outcome separately, but such an analysis requires 

adjustment for multiple comparisons (Lefkopoulou & Ryan, 1993). Structural equation 

models (SEMs) can also be used to model correlated outcomes by treating the outcomes as 

manifestations of the latent variables (Budtz-Jørgensen et al., 2002; Dunson, 2000; Sánchez 

et al., 2005). However, the regression coefficients characterizing the relationship between the 

exposure and the latent factor can be problematic to interpret, and inference is sensitive to 

model misspecification (Sammel & Ryan, 2002). Meta-analysis is another popular approach 

to synthesis of multiple outcomes data, but relatively little work has been carried out 

for dealing with highly correlated outcomes in observational settings (Akkaya Hocagil et 

al., 2022; Berkey et al., 1998; Ryan, 2008; van den Noortgate et al., 2015). Generalized 

estimating equations (Lefkopoulou et al., 1989; Liang & Zeger, 1986) have also been used to 

analyze multiple outcome data, with working covariance matrices specified to accommodate 

correlations across outcomes, because the repeated observations on each individual can be 

viewed as a special type of clustered data. Generalized linear mixed models offer another 

framework to model the effect of exposure on multiple outcomes (Sammel et al., 1999; 

Thurston et al., 2009). In this paper, we extend the generalized linear modeling approach for 

the analysis of multiple outcomes.

A limitation of the available statistical methods for analyzing multiple outcomes data is that 

researchers must specify the outcomes to be included in the analysis. As mentioned above, 

this is usually done using expert knowledge or following some gatekeeping procedure to 

select the subset of affected outcomes (see, for example, Turk et al., 2008). However, this 

can be challenging when outcomes are high dimensional or when expert knowledge does not 

provide strong guidance. Moreover, using exploratory data analysis to guide the decision-

making increases the risk of distorting statistical inference due to multiple comparisons. We 

develop and evaluate a principled statistical approach for identification of relevant outcomes 

on which to model the exposure effects, while accounting for the correlation among the 

outcomes.

We refer to the challenge of identifying which of many observed outcomes are sensitive to 

an exposure as the outcome selection problem and show that it can be reframed as a classical 

variable selection problem. Variable selection is typically carried out to choose a subset of 

candidate predictors that together explain most of the variation in a single response variable. 
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The variable selection literature has a long history, from earlier frequentist approaches such 

as “best subset” regression, model selection based on Akaike/Bayesian information criterion 

(Akaike, 1998; Schwarz, 1978), backward and forward stepwise regression, to the more 

recent Bayesian methods that involve a wide range of “slab-and-spike” or shrinkage priors; 

see Hastie et al. (2020), O’Hara and Sillanpää (2009), and van Erp et al. (2019) for some 

recent reviews. To the best of our knowledge, these ideas and approaches have not been 

adapted to deal with the setting where one aims to select which outcomes in a large set of 

candidate outcomes are sensitive to an exposure.

In this paper, we first show how the problem of interest can be reframed as one of variable 

selection. We adopt a Bayesian approach to analyze outcomes and identify those that are 

strongly affected by the exposure. The model is motivated by the popular stochastic search 

variable selection (SSVS) method, but we extend the SSVS prior to allow estimation of a 

mean effect among the sensitive outcomes. A random effects model is used to account for 

the correlation among outcomes measured on the same individuals.

The paper is organized as follows: In Section 2, we present the basic model and show how 

the outcome selection problem can be reframed as one of variable selection. We also discuss 

the associated computing approach. In Section 3, we assess the performance of our method 

in comparison to other variable selection models based on a simulation study. In Section 4, 

we use the model and method to analyze data from our motivating application regarding the 

effect of in utero alcohol exposure on different measures of child cognition. In Section 5, we 

present some conclusions and discussion.

2 | METHODOLOGY

2.1 | Addressing the outcome selection problem

Suppose we observe K continuous outcomes for each of n independent individuals. The 

outcomes will typically be correlated because they are measures from the same individual, 

though they may be of different scales and nature. For example, the outcomes may be 

measuring different domains of a person’s cognitive function (verbal versus mathematical). 

Therefore, exposure effects are not expected to be exactly the same across affected outcomes 

but vary around a mean level μ, which we identify as the parameter of interest. For each 

individual, we observe an exposure value and some other observed predictor variables, 

which we denote as z. In the application discussed in Section 4, z is a propensity score 

computed for each individual to adjust for confounders.

We now show how to express our multiple outcomes data as panel data in long format. 

Consider a sample of n independent individuals labeled j = 1, …, n, where each individual 

has measurements on K outcomes labeled p = 1, …, K. For now, assume there are no missing 

data and that all K outcomes have been measured on all n individuals. Now suppose 

we stack the observations from all n individuals together, giving us a data set with nK
observations in total. Row i of this data set records the observed outcome corresponding to 

individual j i  and outcome p i .
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To represent the multiple outcome problem as a multiple predictors problem, we first define 

a new set of covariates xk, k = 1, …, K:

xk i = exposurej i 1 p i = k ,

for i = 1, …, nK. The ith value of xk xk i  is the interaction between the exposure level of 

individual j i  and a dummy variable indicating whether the value of the outcome p i  is 

k. Including this exposure by outcome interaction term is critical because it allows for a 

potentially different exposure effect, depending on outcome. An example of the dataframe 

format and how to map from the multiple outcome format to the stacked format for n
individuals and K = 3 outcome variables is presented in Figure 1. This “trick” of expressing 

the multiple outcomes problem in terms of repeated measures has been widely used in the 

literature, making it straightforward then to analyze multiple outcomes using standard mixed 

modeling or GEE software (Lefkopoulou et al., 1989).

We will base our analysis on a linear mixed model, as follows:

y i = νp i + αj i + ∑k = 1

K βkxk i + γp i zj i + ϵ i , (2.1)

for i = 1, …, nK, individual j = 1, …, n and outcome p = 1, …, K. The error terms ϵ i  are 

independent and normally distributed, ϵ i N 0, σpii
2  and the random effect αj i N 0, σr

2

accounts for the within-individual correlation and αj ⊥ αj′ for j ≠ j′.

The parameters νp and γp are outcome-specific intercepts and coefficients for z, and the 

coefficients βk represents the exposure effect on outcome k. In a classical multiple outcomes 

setting, it is typical to assume that all outcomes are associated in a similar way with the 

exposure or treatment of interest, with effects varying around a mean level μ. It is natural to 

assume

βk N μ, τ2 ,

for k = 1, …, K, and then assign appropriate priors for μ and τ to estimate the model using 

a Bayesian estimation procedure. We now want to generalize this framework to allow for 

the possibility that not all K outcomes are affected by the exposure. Asking the question of 

which outcomes should be included becomes a problem of variable selection, based on the 

K covariates x1, …, xk. From a modeling perspective, allowing for some of the outcomes to be 

unaffected by the exposure simply corresponds to setting βk = 0 for those variables.

Variable selection methodologies have been extended to deal with random effects; see 

for example Bondell et al. (2010), Fan and Li (2012), and Yang et al. (2020). For our 

model, because we do not need to perform variable selection for the random effects, it is 

straightforward to use existing techniques for the independent predictors xk. This means 

that we can potentially use any of a variety of sparsity priors, such as SSVS (George & 

McCulloch, 1993), Bayesian LASSO (Figueiredo, 2003; Park & Casella, 2008), and the 
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horseshoe prior (Carvalho et al., 2009) for outcome selection. However, because we are 

interested in selecting the subset of affected outcomes variables and quantifying the mean 

exposure effect on these variables, in this study we focus on the use of the SSVS method. 

We discuss this further in the next section.

2.2 | Stochastic search variable selection

There is a large literature on Bayesian variable selection methods; however, in this paper, 

we only discuss the “slab and spike” type of priors, as they are suitable for our problem 

of identifying sensitive outcomes from a large number of outcomes. Methods that compare 

models by Bayes Factor (Kass & Raftery, 1995) or criteria such as DIC (Spiegelhalter et al., 

2002) or WAIC (Watanabe & Opper, 2010) require fitting all candidate models and hence 

only applicable when comparing a small number of models. Therefore, they are not suitable 

for the outcome selection problem.

Methods involving a “slab and spike” prior can be divided, broadly, into two categories: 

Methods that specify a prior that approximate the “slab and spike” shape for the coefficients 

βk; and methods that use latent indicator variables that indicate whether a covariate is 

included in the model. Shrinkage priors such as the Bayesian LASSO (Figueiredo, 2003; 

Park & Casella, 2008) and the horseshoe prior (Carvalho et al., 2009) belong to the 

first category. The implementation of these methods is straightforward and they have 

had extensive use in recent years. However, it is not clear how to modify these priors to 

incorporate a common mean of the nonzero coefficients. Yang et al. (2020) proposed using 

SSVS for selection of fixed effects in linear mixed models; however, they also did not 

consider estimating the mean effect.

The second category of approach defines a latent variable Ik that indicates whether a 

coefficient βk is nonzero. In the approaches proposed by Kuo and Mallick (1998) and 

Dellaportas et al. (2002), a coefficient βk is set to 0 if Ik = 0. Both methods specify βk = Ikθk

and hence require an appropriate prior for θk. These approaches can be challenging to tune to 

ensure that the iterates of Ik do not get stuck at 0 or 1. For example, mixing may be poor for 

the Kuo and Mallick (1998) approach if the prior for θk is too vague (O’Hara & Sillanpää, 

2009). We can assume θk N μ, τ2  with unknown μ and τ, but the model will be hard to fit 

and we cannot interpret μ as the mean of all βk of which Ik = 1.

Our method is motivated by the SSVS method (George & McCulloch, 1993), which defines 

a mixture prior for βk instead: Let lk be a latent indicator variable, with Ik = 1 means covariate 

k is included in the model, Ik = 0 means it is not. The indicator affects the prior of βk, so we 

can define a joint prior for Ik, βk  as

p Ik, βk = p βk ∣ Ik p Ik .

Conditioning on Ik, the prior of βk is

p βk ∣ Ik = 1 − Ik N 0, g1 + IkN 0, τ2 .
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For our outcome selection framework, we propose to modify the SSVS prior to incorporate 

the mean exposure effect μ on the sensitive outcomes. Conditioning on Ik, we now have a 

mixture prior for βk

p βk ∣ Ik = 1 − Ik N 0, g1 + IkN μ, τ2 . (2.2)

To improve the performance of the model, we follow Meuwissen and Goddard (2004) and 

modify the prior in (2.2) to

p βk ∣ Ik = 1 − Ik N 0, τ2/c + IkN μ, τ2 . (2.3)

The tuning parameter c should be chosen to ensure good separation between the “in” and 

“out” variables. The standard deviations τ, σk, and σr are assigned log-normal priors in our 

simulation study and application.

Note that the posterior mean of lk will be the posterior probability that outcome k is included 

in the model; hence, it will be important in terms of interpreting the results of our model 

fit. The prior, p Ik = 1 , can simply be a categorical distribution with a fixed probability 

parameter. This prior probability may be different across outcomes, based on the experts’ 

knowledge, or fixed at 0.5 so that the prior is non-informative. The prior probability p Ik = 1
can also be treated as a parameter to be estimated (O’Hara & Sillanpää, 2009). For the 

examples in this paper, we simply set a prior probability p Ik = 1  for each k.

For the examples in this paper, an outcome is classified as “relevant” if the posterior mean of 

the corresponding Ik is greater than 0.5. We note that the threshold may affect the conclusion 

on the relevance of each outcome variable but does not change the estimate of the mean 

effect μ. Of course, other thresholds could be used. We suggest that it is best to report the 

posterior probabilities of Ik = 1 for all k. An alternative approach is to look at the whole 

vector I to identify the most frequently sampled subsets of outcomes.

3 | SIMULATION STUDY

3.1 | Setup

In this section, we demonstrate the performance of the method using simulated data. The 

aim of this simulation study is to assess the performance of our prior for outcome selection 

for different effect sizes. In the exercise, we set the number of outcomes to K = 20 and a 

moderate sample size of n = 100. We examine the performance of the proposed model with 

different numbers of relevant outcomes K1 = 5,10,15.

We simulated 10 data sets from the model (2.1) described in Section 2.1. We set the 

parameters value to generate the data sets as follows: The intercepts νk values are randomly 

picked from N 0,1  and standard deviations σk
2 are generated from N 1.5,0.3  for k = 1, …, 20. 

The coefficients βk corresponding to the relevant outcomes were generated from N μ, 0.01μ2
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to ensure that the βk are scattered closely enough around μ. We used two different values for 

the mean common effect μ :μ = − 0.1 and μ = − 3.

Given these “true” parameters values, in each simulation, we create a data 

set by first generate the exogenous variable zj i  from N 0,1  and exposure 

j i ∣ zj i 1 zj i < 0 N 0, 0.52 + 1 − 1 zj i < 0 N 1,1  and then generate the outcome y

according to model (2.1).

We then fit model (2.1) using the prior in (2.3) with c = 100 to each of the 10 data sets. 

We examine both versions of SSVS: Our proposed model in which μ is a parameter and 

the standard SSVS prior where μ = 0. The prior probability of Ik is p lk = 1 = 0.5 for all 

outcome k. For comparison, we also fit the model where βk are assumed a hierarchical 

prior βk N μ, τ2  with unknown μ and τ2. We also fit the model that only uses the correct 

relevant outcomes, assuming βk N μ, τ2 . We call this the “subset model.” The result of the 

subset model is treated as the “standard” because it is the model that uses the correct set of 

outcomes.

The rest of the parameters are assigned fairly flat priors. For example, we use a normal 

N 0,100  prior for μ, νk and γk. The parameters σr and σk, k = 1, …, K are assigned log-

normal(0,10) priors. In all models, τ is assigned a log-normal(0,1) prior.

For each simulation, we record the number of outcomes identified as relevant, the number 

of correctly identified outcomes, the number of false positives, and the estimated μ. An 

outcome is classified as “relevant” if the posterior mean of the corresponding Ik is greater 

than 0.5. The results presented here represent the average over the 10 simulations for each 

setting. The SSVS models are fitted using the software JAGS (Plummer, 2003) and the other 

models are implemented with STAN (Carpenter et al., 2017).

Note that in this simulation study, the first setting with μ = − 0.1 represents a situation when 

the effect is weak with small data, so that the posterior standard deviation is large. In this 

case, it would be difficult for the model to decide whether a βk is 0 or not. The second setting 

μ = − 3 mimics the situation in which the effect is stronger, and the selection method is 

expected to work better.

3.2 | Results

The performance of the SSVS algorithm in detecting the affected outcomes for different μ
and K1 is presented in Table 1. The results suggest that the original and our modified SSVS 

algorithms have very similar performance, though neither do well in detecting the affected 

outcomes when μ is small. This is expected as the overall effect μ is small, so some of 

the relevant βk would be close to 0. Because here we used uninformative priors for lk, the 

algorithm will keep switching between stage Ik = 0 and lk = 1 for these outcomes. This is 

similar to the phenomenon observed by O’Hara and Sillanpää (2009), where the posterior 

probabilities of lk are close to 0.5 and some outcomes are classified incorrectly by chance.
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Table 2 shows the mean squared errors of estimating the individual coefficient βk:

MSE = 1
K ∑k = 1

K β k − βk
2, (3.1)

where we take the estimate β̂k to be the posterior mean of βk ∣ lk = 1 if the posterior mean 

of Ik is greater than 0.5; otherwise we set β̂k = 0. For both large and small values of μ, the 

SSVS priors provide more accurate estimates of βk in terms of MSE, compared to the model 

without variable selection.

Lastly, Table 3 shows the estimated of μ, averaged over 10 simulations, by different priors. 

Table 3 shows that our modified SSVS can provide estimates of μ that are closer to the result 

from the subset model, especially for large μ. However, when the effect is weak, the model 

is not able to estimate μ accurately because it fails to identify the correct set of sensitive 

outcomes.

The simulation example shows that SSVS priors can provide accurate estimates of the 

coefficients and accurately identify the affected outcomes and estimate the mean effect when 

μ is far from 0. However, it may require more informative priors for Ik and better tuning 

to capture small effects accurately. The R code for the study is provided on Github–see 

https://github.com/khuedung91/BayesianOutcomeSelection/.

4 | EFFECT OF PRENATAL ALCOHOL EXPOSURE ON CHILDREN IN 

DETROIT, MICHIGAN

In this section, we apply our proposed framework to data collected as part of an investigation 

of the long-term effect of prenatal alcohol exposure (PAE) on a child’s cognitive and 

behavioral function. Numerous studies have shown that high levels of PAE can result in a 

distinct pattern of craniofacial anomalies, growth restriction, and cognitive and behavioral 

deficits, a condition known as fetal alcohol syndrome (FAS) (Hoyme et al., 2005; Hoyme 

et al., 2016), the most severe of a continuum of fetal alcohol syndrome disorders (FASD) 

(Carter et al., 2016; Jacobson et al., 2004; Jacobson et al., 2008; Mattson et al., 2019). 

Alternatively, some individuals with PAE exhibit cognitive and/or behavioral impairment 

without the characteristic craniofacial dysmorphology and/or growth restriction, a disorder 

known as alcohol-related neurodevelopmental disorder (ARND).

Our data come from a longitudinal study, funded by the US National Institutes of Health and 

conducted in Detroit, Michigan. In this study, the mothers were interviewed prenatally about 

their alcohol consumption during pregnancy, and the children were followed throughout 

childhood, many of them up until they were 20 years of age. The study collected a large 

number of variables reflecting responses on various neuro-cognitive tests and behavioral 

outcomes assessed on the children throughout childhood. Each of the administered tests 

could be classified as relevant to one of several different domains including cognition, 

executive function, and behavior, among others. Previous neurocognitive studies have 

suggested that the impact of PAE on all of these domains will not be the same, given 

that alcohol may have a stronger effect on certain parts of the brain, while other areas may 
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be relatively unaffected or spared, depending on the timing, genetic vulnerability, and ethnic 

or racial group of the exposure (Jacobson et al., 2004; Jacobson & Jacobson, 1999; 2002). 

Recent analyses by our group made use of expert knowledge to select outcomes for analysis 

and simply assumed that each had been affected by PAE to some extent (Jacobson et al., 

2021).

To illustrate our methodology, in this paper we focus on a set of 14 outcomes collected when 

the children were approximately 7 years of age. The first eight outcomes come from the 

Achenbach Child Behavior Checklist (CBCL) and Teacher’s Report Form (TRF) at age 7 

(Achenbach, 1991). The CBCL is a checklist completed by the parent and designed to detect 

emotional and behavioral problems in children and adolescents, whereas the TRF represents 

the child’s principal teacher’s report of the similar. These assessments include the child’s 

internalizing and externalizing behaviors, and social and attention problems. The remaining 

six outcomes correspond to the results of various cognitive and neuro-developmental tests 

related to IQ assessed on the Wechsler Intelligence Scales for Children–III (Wechsler, 

1991), academic achievement in reading and arithmetic, learning and memory abilities, 

and executive function. Recent analyses have reported that, of these 14 outcomes, the first 

eight are relatively less affected by PAE, whereas the last six are more sensitive to alcohol 

exposure (Jacobson et al., 2021). After preprocessing, the data include outcomes from 336 

children. PAE is computed based on the mother’s average daily dose of absolute alcohol 

consumed (in ounces) during pregnancy (AA/day). Because the distribution of alcohol 

exposure is positively skewed with a minimum level 0, we compute log(AA/day + 1) and 

use this as the measure of PAE in the analysis.

4.1 | Model and setup

We fit the model (2.1) with the prior in (2.3) to the data set. To adjust for confounders 

associated with both alcohol exposure and cognitive function, we add a propensity score z, 

which was computed beforehand. For details on the covariates included in the propensity 

score and how it was constructed, we refer readers to Akkaya Hocagil et al. (2021). Before 

running the analysis, we rescaled all outcomes to have mean 0 and variance 1.

We fit our proposed model with a few different settings. We start with an uninformative prior 

for the indicator Ik and set p lk = 1 = 0.5 for all k. We use the prior in (2.3) with c = 100 for 

βk where τ is assigned a log-normal (0,1) prior. As a comparison, we also try the prior in 

(2.2) where we fix g1 = 0.22 and a shrinkage prior. For the shrinkage prior, we simply follow 

Figueiredo (2003) and assign a Laplace(0,1) prior for the βk. We also attempt the horseshoe 

prior (Carvalho et al., 2009) for βk but the MCMC has convergence issue and hence the result 

is not presented here.

To assess how sensitive the result is to the prior probability p Ik = 1 , we also fit the model 

with a more informative set of p Ik = 1 ,

p Ik = 1 k = 1:14 = 0.5,0.5,0.2,0.5,0.8,0.8,0.2,0.8,0.5,0.5,0.8,0.8,0.8,0.5 .
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These prior probabilities were chosen by utilizing expertise knowledge and set the 

probability of the outcomes that are known to be relevant to be closer to 1. In practice, 

more informative priors may help the MCMC to have better mixing.

We also fit the model (2.1) to only those outcomes chosen by our SSVS model with a 

hierarchical prior β N μ, τ2 . We call this model the “subset” model. Similar to in the 

simulation study, we will compare the estimates of βk and μ from this reduced model with 

our approach.

We assigned a normal N 0,1  prior for μ. We found the appropriate prior’s parameters 

by fitting model (2.1) to the data using the R package Ime4. The estimates of βk from 

Ime4 suggested that the average effect on the affected outcomes may be around −1, and 

therefore we used the prior that covers this value. For the rest of the parameters, we chose 

diffuse priors. The prior for σr and σk, k = 1, …, 14 is log-normal(0,10). The prior for νk and 

γk are normal N 0,1000  and normal N 0,100 , respectively. The SSVS models were fitted 

using the software JAGS (Plummer, 2003), running three chains each with 200,000 burn-in 

and 200,000 samples with thinning = 10. The other models were implemented in STAN 

(Carpenter et al., 2017).

4.2 | Results

The results are presented in Tables 4 and 5. Table 4 shows the mean posterior probability of 

Ik = 1. For the Laplace shrinkage prior, we report whether 0 is outside of the 95% credible 

intervals of the parameters. The table shows that all SSVS models choose the same set of 

relevant outcomes in different settings. The informative prior on p Ik  results in different 

posterior mean of Ik; however, it does not affect the inference on the outcomes’ relevance 

for most outcome variables. The only exception is CBCL Externalizing at age 7, of which 

the posterior probability of being affected is slightly less than 0.5 (0.436 and 0.496) when 

using a noninformative prior and slightly higher than 0.5 (0.530) when using an informative 

prior. These results are also similar to that of the Laplace shrinkage prior; however, this prior 

shrinks more βk toward 0 than the SSVS priors.

Table 5 presents the estimates of βk and overall effect μ. The SSVS with informative p lk = 1
and the subset model suggest a strong negative effect of PAE on the cognitive outcomes. 

These findings are consistent with those in Jacobson et al. (2021). The estimate of τ is 

similar for both models (0.187 vs. 0.172). On the other hand, the SSVS models with 

the noninformative prior suggest a weaker effect (−0.324 and −0.303 versus −0.398). The 

noninformative prior also results in larger estimates of τ (0.219 and 0.233 vs. 0.187).

Table 5 shows that all SSVS models produce smaller estimates for the coefficients of 

the affected outcomes and hence μ, compared with the subset model. The result here is 

consistent with our observation in the simulation study in Section 3. However, as shown in 

Tables 4 and 5, our proposed model produces very similar estimates of βk compared with the 

Laplace prior in all settings. Table 5 also indicates that the informative prior for the indicator 

Ik produces estimates of βk and μ that are closer to the subset model that only includes the 

affected outcomes.
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5 | CONCLUSION

In this paper, we propose a statistical method for identifying outcomes from a large number 

of observed variables that are directly affected by an exposure variable. Our method is an 

extension of standard Bayesian variable selection models to multiple outcomes data, which 

also provides an estimate of the overall effect of the exposure variable in the subset of 

affected outcomes. We demonstrate the performance and limitations of our method in a 

simulation exercise and a real data application.

Our application in modeling the effect of PAE on cognition identified a set of 

neurodevelopmental tests that are significantly affected by fetal alcohol exposure. In 

addition, the model indicates a negative overall effect of PAE on the sensitive outcomes. 

A limitation of the current model is that we only use an individual random intercept to 

capture the correlations among the outcomes. This approach may not be ideal, and we may 

consider a more sophisticated correlation structure in future work.

Finally, the proposed framework is shown to be effective in identifying sensitive outcomes in 

various scenarios. However, it may underestimate the outcome-specific effect size and mean 

effect when the effects are mild. This is a common issue with variable selection priors; we 

expect that the result can be improved by using more informative priors for the indicators Ik.
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FIGURE 1. 
Illustration of a data table with n individuals and K = 3 outcome variables.
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TABLE 1

The average number of outcomes correctly identified as relevant and incorrectly chosen as relevant in different 

settings with data generated from (2.1). The table shows the results from the original SSVS prior with μ = 0
and our proposed prior where μ is unknown. K1 is the true number of relevant outcomes. The fourth and fifth 

columns show the number of outcomes that each model detects as relevant. The next two columns show the 

number of relevant outcomes correctly identified by each model. The last two columns show the number of 

irrelevant outcomes that were detected as relevant. All numbers are averaged over 10 simulations.

# identified as relevant # correctly identified # incorrectly identified

True μ K 1 μ unknown μ = 0 μ unknown μ = 0 μ unknown μ = 0

−0.1 5 4.9 4.4 1.6 1.5 3.3 2.9

10 5.2 5.3 1.9 2.1 3.3 3.2

15 5.1 4.4 4.5 3.5 0.6 0.9

−3 5 5 5 5 5 0 0

10 10 10.1 10 10 0 0.1

15 15 15 15 15 0 0
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TABLE 2

The mean squared errors of the models with different effect sizes, in simulated data study. The result is 

averaged over 10 simulations.

SSVS – μ unknown SSVS - μ = 0 No variable selection

K 1 Small μ Large μ Small μ Large μ Small μ Large μ

5 0.012 0.004 0.007 0.007 0.032 0.066

10 0.022 0.017 0.014 0.032 0.036 0.075

15 0.014 0.032 0.011 0.053 0.036 0.073
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TABLE 3

Estimates of μ in different settings of the simulated data study in Section 3. The table shows the average of the 

posterior mean of μ, averaged over 10 data sets, in different μ and K1. The standard errors are in brackets. The 

first column is the true μ. The subset model is the model that used only the correct set of relevant outcomes.

True μ K 1 SSVS No selection Subset model

−0.1 5 −0.025
(0.066)

−0.120
(0.145)

−0.209
(0.143)

10 0.046
(0.069)

0.034
(0.157)

−0.015
(0.169)

15 −0.026
(0.091)

−0.059
(0.188)

−0.077
(0.213)

−3 5 −3.281
(0.040)

−0.908
(0.150)

−3.365
(0.144)

10 −2.949
(0.098)

−1.393
(0.152)

−2.875
(0.175)

15 −2.678
(0.115)

−2.002
(0.210)

−2.688
(0.221)
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TABLE 4

Summary of Ik for different models for Detroit data. For SSVS, the table shows the posterior means of Ik for 

the different outcomes. The table highlights in bold the variables selected by the SSVS prior. For the other 

method, we report whether 0 is outside the 95% credible interval of the corresponding βk. The CBCL and TRF 

tests came from (Achenbach, 1991); the IQ tests were based on the Wechsler Intelligence Test for Children-III 

(Wechsler, 1991).

p Ik = 1 = 0.5
Informative p Ik

g1 = 0.22
Laplace prior g1 = τ2/100 g1 = 0.22

CBCL Social Problem 0 0.286 0.384 0.374

CBCL Attention Problem 0 0.505 0.533 0.576

CBCL Internalizing 0 0.195 0.247 0.057

CBCL Externalizing 0 0.436 0.496 0.530

TRF Social Problem 1 0.856 0.741 0.947

TRF Attention Problem 1 0.873 0.742 0.947

TRF Internalizing 0 0.208 0.267 0.065

TRF Externalizing 1 0.864 0.746 0.947

Verbal IQ 0 0.291 0.393 0.388

Performance IQ 0 0.345 0.432 0.442

Freedom from distractibility 1 0.966 0.809 0.969

Verbal fluency 0 0.670 0.629 0.900

Digit span backwards 1 0.871 0.737 0.945

Story memory 0 0.267 0.360 0.334
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TABLE 5

Posterior means of βk and μ based on the Detroit data. For the SSVS methods, we report the mean of βk ∣ Ik = 1
if the posterior mean of Ik exceeds 0.5 and 0 otherwise.

p Ik = 1 = 0.5
Informative p Ik

g1 = 0.22
Laplace prior g1 = τ2/100 g1 = 0.22

Subset

CBCL Social Problem −0.090 0.000 0.000 0.000

CBCL Attention Problem −0.230 −0.274 −0.268 −0.339 −0.475

CBCL Internalizing 0.083 0.000 0.000 0.000

CBCL Externalizing −0.195 0.000 0.000 −0.324

TRF Social Problem −0.486 −0.404 −0.412 −0.460 −0.612

TRF Attention Problem −0.464 −0.396 −0.404 −0.451 −0.602

TRF Internalizing 0.064 0.000 0.000 0.000

TRF Externalizing −0.499 −0.407 −0.417 −0.464 −0.617

Verbal IQ −0.112 0.000 0.000 0.000

Performance IQ −0.141 0.000 0.000 0.000

Freedom from distractibility −0.561 −0.447 −0.468 −0.505 −0.622

Verbal fluency −0.327 −0.332 −0.330 −0.388 −0.525

Digit span backwards −0.453 −0.389 −0.400 −0.446 −0.574

Story memory −0.061 0.000 0.000 0.000

μ −0.324 −0.303 −0.398 −0.572

τ 0.219 0.233 0.187 0.172
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