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Abstract

Resolving chromatin-remodeling-linked gene expression changes at cell-type resolution is 

important for understanding disease states. Here we describe MAGICAL (Multiome Accessibility 

Gene Integration Calling and Looping), a hierarchical Bayesian approach that leverages paired 

single-cell RNA sequencing and single-cell transposase-accessible chromatin sequencing from 

different conditions to map disease-associated transcription factors, chromatin sites, and genes 

as regulatory circuits. By simultaneously modeling signal variation across cells and conditions 

in both omics data types, MAGICAL achieved high accuracy on circuit inference. We applied 

MAGICAL to study Staphylococcus aureus sepsis from peripheral blood mononuclear single-

cell data that we generated from subjects with bloodstream infection and uninfected controls. 

MAGICAL identified sepsis-associated regulatory circuits predominantly in CD14 monocytes, 

known to be activated by bacterial sepsis. We addressed the challenging problem of distinguishing 

host regulatory circuit responses to methicillin-resistant and methicillin-susceptible S. aureus 
infections. Although differential expression analysis failed to show predictive value, MAGICAL 

identified epigenetic circuit biomarkers that distinguished methicillin-resistant from methicillin-

susceptible S. aureus infections.

Introduction

Gene expression can be modulated through the interplay of proximal and distal regulatory 

domains brought together in 3D space1. Chromatin regulatory domains, transcription factors 

(TFs), and downstream target genes form regulatory circuits2. Within circuits, the binding 

of TFs to chromatin regions and the 3D looping between these regions and gene promoters 
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represent the mechanisms governing how TFs transform regulatory signals into changes 

in RNA transcription3,4. In disease, these circuits could be dysregulated in a cell-type-

specific manner and may not be observed from bulk samples5. Therefore, identifying 

the impact of disease on regulatory circuits requires a framework for mapping regulatory 

domains with chromatin accessibility changes to altered gene expression in the context of 

cell-type resolution6. Single-cell RNA sequencing (scRNA-seq) and single-cell transposase-

accessible chromatin sequencing (scATAC-seq) characterizing disease states have improved 

the identification of differential chromatin sites and/or differentially expressed genes within 

individual cell types5,7,8.

Yet, advances in single-cell assay technology have outpaced the development of methods 

to maximize the value of multiomics datasets for studying disease-associated regulation, 

especially for the regulatory interactions that are not directly measured by the omics data. 

Recent computational approaches9–12 to support the multiomics data analysis demonstrate 

the promise of this area but still lack the capacity to resolve regulation changes within 

individual cell types, which precludes elucidating regulatory circuits affected by the disease 

or showing different responses in varying disease states.

To address these, we developed MAGICAL, a method that models coordinated chromatin 

accessibility and gene expression variation to identify circuits (both the units and their 

interactions) that differ between conditions. MAGICAL analyzes scRNA-seq and scATAC-

seq data using a hierarchical Bayesian framework. To accurately detect differences in 

regulatory circuit activity between conditions, MAGICAL introduces hidden variables for 

explicitly modeling the transcriptomic and epigenetic signal variations between conditions 

and optimization against the noise in both scRNA-seq and scATAC-seq datasets. Because 

regulatory circuits are cell-type specific13, MAGICAL reconstructs them at cell-type 

resolution. Systematic benchmarking against multiple public datasets supported the accuracy 

of MAGICAL-identified regulatory circuits.

S. aureus, a bacterium often resistant to common antibiotics, is a major cause of severe 

infection and mortality14,15. Using single-cell multiomics data generated from peripheral 

blood mononuclear cell (PBMC) samples of S. aureus-infected subjects and healthy 

controls, MAGICAL identified host response regulatory circuits that are modulated during 

S. aureus bloodstream infection, and circuits that discriminate the responses to methicillin-

resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA). Genes in the host 

circuits accurately predicted S. aureus infection in multiple validation datasets. Moreover, in 

contrast to conventional differential analysis that failed to identify specific genes for robust 

antibiotic-sensitivity prediction, MAGICAL-identified circuit genes can differentiate MRSA 

from MSSA. Therefore, MAGICAL can be used for multiomics-based gene signature 

development, providing a bioinformatic solution that can improve disease diagnosis.

Results

MAGICAL framework

MAGICAL identifies disease-associated regulatory circuits by comparing single-cell 

multiomics data (scRNA-seq and scATAC-seq) from disease and control samples (Fig. 
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1a). The framework incorporates TF motifs and chromatin topologically associated domain 

(TAD) boundaries as prior information to infer regulatory circuits comprising chromatin 

regulatory sites, modulatory TFs, and downstream target genes for each cell type. In brief, 

to build candidate disease-modulated circuits, differentially accessible sites (DAS) within 

each cell type are first associated with TFs by motif sequence matching and then linked to 

differentially expressed genes (DEG) in that cell type by genomic localization within the 

same TAD. Next, MAGICAL uses a Bayesian framework to iteratively model chromatin 

accessibility and gene expression variation across cells and samples in each cell type and to 

estimate the confidence of TF–peak and peak–gene linkages for each candidate circuit (Fig. 

1b).

To accurately identify varying circuits between different conditions, MAGICAL explicitly 

models signal and noise in chromatin accessibility and gene expression data (see Methods 

section ‘MAGICAL’). A TF–peak binding variable and a hidden TF activity variable 

are jointly estimated to fit to the chromatin accessibility variation across cells from the 

conditions being compared. These two variables are then used together with a peak–gene 

looping variable to fit the gene expression variation. Using Gibbs sampling, MAGICAL 

iteratively estimates variable values and optimizes the states of circuit TF–peak–gene 

linkages. Finally, high-confidence circuits fitting the signal variation in both data types are 

selected.

TF activity represents the regulatory capacity (protein level) of a particular TF protein16,17, 

which is distinct from TF expression. For each TF, we assume its hidden TF activities 

following an identical distribution across cells in the same cell type and the same sample, 

regardless of whether the cells are from the scATAC-seq assay, the scRNA-seq assay, or 

both. MAGICAL iteratively learns the activity distribution for each TF and estimates the 

specific activities of all TFs in each cell (Supplementary Fig. 1). This procedure eliminates 

the requirement of cell-level pairing of RNA-seq and ATAC-seq data. Thus, MAGICAL is a 

general tool that can analyze single-cell true multiome or sample-paired multiomics datasets.

We validated MAGICAL in multiple ways, demonstrating that it infers regulatory circuits 

accurately (Fig. 1c). MAGICAL-inferred linkages between chromatin sites and genes were 

validated using experimental 3D chromatin interactions. The resulting circuit genes, sites, 

and their regulatory TFs were evaluated in multiple independent studies. And finally, as 

one example of utility, we showed that the circuit genes can be used as features to classify 

disease states, providing a bioinformatics solution to challenging diagnostic problems.

Comparative analysis of performance

MAGICAL is a scalable framework. It can infer regulatory circuits of TFs, chromatin 

sites, and genes with differential activities between contrast conditions or infer regulatory 

circuits with active chromatin sites and genes in a single condition. Because existing 

integrative methods11,12,18 can only be applied to single-condition data, to provide a 

comparative assessment of the performance of MAGICAL, we restricted MAGICAL to the 

single-condition data analysis possible with existing methods.
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For peak–gene looping inference, we compared MAGICAL to the TRIPOD11 and FigR18 

methods, using the same benchmark single-cell multiome datasets as used by the authors 

reporting these methods. In the comparison of MAGICAL with TRIPOD using a 10x 

multiome single-cell dataset, MAGICAL-inferred peak–gene loops showed significantly 

higher enrichment of experimentally observed chromatin interactions in blood cells in 

the 4DGenome database19 (P < 0.0001, two-sided Fisher’s exact test, Supplementary Fig. 

2a), the same validation data used by TRIPOD developers. MAGICAL also significantly 

outperformed FigR on the application to a GM12878 SHARE-seq dataset10. In that case, 

the peak–gene loops in MAGICAL-selected circuits had significantly higher enrichment of 

H3K27ac-centric chromatin interactions20 than did FigR (P < 0.0001, two-sided Fisher’s 

exact test, Supplementary Fig. 2b).

Because the MAGICAL framework, unlike TRIPOD and FigR, used chromatin TAD 

boundaries as prior information, we evaluated whether the improvement in performance 

resulted solely from this additional information. To investigate this, we eliminated the use 

of TAD boundaries and modified MAGICAL for this test by assigning candidate linkages 

between peaks and genes within 500 kb (a naive distance prior). As shown in Supplementary 

Fig. 2a,b, even without the prior TAD information, MAGICAL still outperformed the 

competing methods (P < 0.001, two-sided Fisher’s exact test). Overall, these results suggest 

that in addition to the benefit of priors, explicit modeling of signal and noise in both 

chromatin accessibility and gene expression data increased the accuracy of peak–gene 

looping identification.

MAGICAL analysis of COVID-19 single-cell multiomics data

To demonstrate the accuracy of the primary application of MAGICAL on contrast-condition 

data to infer disease-modulated circuits, we applied MAGICAL to sample-paired PBMC 

scRNA-seq and scATAC-seq data from individuals infected with SARS-CoV-2 and healthy 

controls5. Because immune responses in patients with COVID-19 differ according to disease 

severity21,22, MAGICAL inferred the regulatory circuits for mild and severe clinical groups 

separately. The chromatin sites and genes in the identified circuits were validated using 

newly generated and publicly available independent COVID-19 single-cell datasets (Fig. 

2a). We primarily focused on three cell types that have been found to show widespread gene 

expression and chromatin accessibility changes in response to SARS-CoV-2 infection23,24, 

including CD8 effector memory T (TEM) cells, CD14 monocytes (Mono), and natural killer 

(NK) cells. In total, MAGICAL identified 1,489 high-confidence circuits (1,404 sites and 

391 genes) in these cell types for mild and severe clinical groups (Supplementary Table 1; 

Methods section ‘MAGICAL analysis of COVID-19 single-cell multiomics data’).

To confirm the circuit chromatin sites selected by MAGICAL for mild COVID-19, we 

generated an independent PBMC scATAC-seq dataset from six people infected with 

SARS-CoV-2 with mild symptoms and three uninfected (polymerase chain reaction (PCR)-

negative) controls (Fig. 2b; Supplementary Table 2). Approximately 25,000 quality cells 

were selected after quality-control (QC) analysis. These cells were integrated, clustered, and 

annotated using ArchR25 (Supplementary Fig. 3; Supplementary Table 3). Peaks were called 

from each cell type using MACS226. In total, 284,909 peaks were identified (Supplementary 
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Table 4). For the three selected cell types, differential analysis between COVID-19 and 

control groups returned 3,061 sites for CD8 TEM, 1,301 sites for CD14 Mono, and 1,778 

sites for NK (Supplementary Table 5; Methods section ‘COVID-19 PBMC scATACseq 

data analysis’). This produced three validation peak sets for mild COVID-19 infection. 

For severe COVID-19, an existing study focused on T cells identified specific chromatin 

activity changes with severe COVID-19 in CD8 T cells27. We used their reported chromatin 

sites to validate the circuit chromatin sites identified in CD8 T cells. In all four validation 

sets, the precision (proportion of sites that are differential in the validation data) of the 

MAGICAL-selected chromatin sites was significantly higher than the original DAS (P < 

0.001, two-sided Fisher’s exact test, Fig. 2c,d).

When multiple potential chromatin regulatory loci are identified in the vicinity of a specific 

gene, it is commonly assumed that the locus closest to the transcriptional starting site (TSS) 

is likely to be the most important regulatory site. Challenging this assumption, however, 

are experimental studies that show genes may not be regulated by the nearest region28,29. 

Supporting the importance of more distal regulatory loci, MAGICAL-selected chromatin 

sites significantly outperformed the nearest DAS to the TSS of DEG or all DAS within the 

same TAD with DEG, and the improvement is substantial (precision is approximately 50% 

better with MAGICAL, P < 0.05, two-sided Fisher’s exact test, Fig. 2c,d).

To validate the circuit genes modulated by mild or severe COVID-19, we used genes 

reported by external COVID-19 single-cell studies21,30,31. In total, we collected six 

validation gene sets (three cell types for mild COVID-19 and three cell types for severe 

COVID-19). The precision of MAGICAL-selected circuit genes is significantly higher 

than that of original DEG in all validations (precision is approximately 30% better with 

MAGICAL, P < 0.05, two-sided Fisher’s exact test, Fig. 2e,f). These results confirmed the 

increased accuracy of disease association for both chromatin sites and genes in MAGICAL-

identified regulatory circuits.

MAGICAL analysis of S. aureus single-cell multiomics data

We applied MAGICAL to the clinically important challenge of distinguishing MRSA and 

MSSA infections32–34. We profiled sample-paired scRNA-seq and scATAC-seq data using 

human PBMCs from adults whose blood cultures were positive for S. aureus (10 MRSA 

and 11 MSSA), and from 23 uninfected control subjects (Fig. 3a; Supplementary Table 

6). To integrate scRNA-seq data from all samples, we implemented a Seurat-based35 batch 

correction and cell type annotation pipeline (Methods section ‘S. aureus scRNA-seq data 

analysis’). In total, 276,200 quality cells were selected and labeled (Fig. 3b; Supplementary 

Fig. 4; Supplementary Table 7). For scATAC-seq data, we integrated the fragment files 

from quality samples using ArchR25 and selected and annotated 70,174 quality cells (Fig. 

3c; Supplementary Fig. 5; Supplementary Table 8). In total, 388,860 peaks were identified 

(Supplementary Fig. 5b; Supplementary Table 9; Methods section ‘S. aureus scATAC-seq 

data analysis’).

In total, 13 major cell types that surpassed the 200-cell threshold in both scRNA-seq and 

scATAC-seq data were selected for subsequent analysis (Supplementary Fig. 6). Differential 

analysis for three contrasts (MRSA versus control, MSSA versus control, and MRSA versus 
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MSSA) in each cell type returned a total of 1,477 DEG and 23,434 DAS (Supplementary 

Fig. 7; Supplementary Tables 10 and 11).

MAGICAL identified 1,513 high-confidence regulatory circuits (1,179 sites and 371 genes) 

within cell types for three contrasts (MRSA versus control, MSSA versus control, and 

MRSA versus MSSA) (Supplementary Table 12; Methods: MAGICAL analysis of S. aureus 
single-cell multiomics data). It has been reported that activation of CD14 Mono plays a 

principal role in response to S. aureus infection36,37. In MAGICAL analysis, CD14 Mono 

showed the highest number of regulatory circuits (Fig. 3d). Comparing circuits between 

cell types we found that these disease-associated circuits are cell-type-specific (Fig. 3e). 

For example, circuits rarely overlapped between very distinct cell types like monocytes 

and T cells. Between relevant cell types like CD14 Mono and CD16 Mono, or between 

subtypes of T cells, most circuits are still specific for one cell subtype. These circuits 

were further validated using cell type-specific chromatin interactions reported in a reference 

promoter capture (pc) Hi-C dataset13. In all the cell types for which the cell-type-specific 

pcHi-C data was available (B cells, CD4 T cells, CD8 T cells, CD14 Mono), the circuit 

peak–gene interactions showed significant enrichment of pcHi-C interactions in matched 

cell types (Fig. 3f; P < 0.01, one-sided hypergeometric test). For comparison, we also 

performed the peak–gene interaction enrichment analysis between different cell types, 

finding significantly lower enrichment levels. These results indicate the cell-type specificity 

of MAGICAL-identified circuits.

In CD14 Mono, MAGICAL identified AP-1 complex proteins as the most important 

regulators, especially at chromatin sites with increased activity in cells exposed to infections 

(Fig. 3g). This finding is consistent with the importance of this protein complex in gene 

regulation in response to a variety of infections5,38,39. Supporting the accuracy of the 

identified TFs, we compared circuit chromatin sites with ChIP-seq peaks from the Cistrome 

database40. The most similar TF ChIP-seq profiles were from AP-1 complex proteins 

JUN and FOS in blood or bone marrow samples (Supplementary Fig. 8). Moreover, 

functional enrichment analysis41 of the circuit genes showed that cytokine signaling, 

a known pathway mediated by AP-1 complex and associated with the inflammatory 

responses in macrophages42,43, was the most enriched (adjusted P = 2.4 × 10−11, one-sided 

hypergeometric test).

MAGICAL modeled regulatory effects of both proximal and distal sites on genes. We 

examined the chromatin site location relative to the target gene TSS, for the identified 

circuits in CD14 Mono. Compared to all ATAC peaks called around the circuit genes, 

a substantially increased proportion of circuit chromatin sites were located 15Kb to 

25Kb away from the TSS (Fig. 3h). This pattern is consistent with the 24Kb median 

enhancer distance found by CRISPR-based perturbation in a blood cell line44. In addition, 

nearly 50% of circuit chromatin sites were overlapping with enhancer-like regions in 

the ENCODE database45, further emphasizing that MAGICAL circuits are enriched in 

distal regulatory loci. We also found that these circuit chromatin sites were significantly 

enriched in inflammatory-associated genomic loci reported in the genome-wide association 

studies (GWAS) catalog database46, suggesting active host epigenetic responses to infectious 

diseases (Supplementary Fig. 9; P < 0.005 when compared to control diseases, two-sided 
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Wilcoxon rank sum test). Notably, one distal chromatin site (hg38 chr6: 32,484,007–

32,484,507) looping to gene HLA-DRB1 is within the most significant GWAS region (hg38 

chr6: 32,431,410–32,576,834) previously reported to associate with S. aureus infection47.

We finally compared circuit genes to existing epi-genes whose transcriptions were 

significantly driven by epigenetic perturbations in CD14 Mono48. MAGICAL-identified 

circuit genes were significantly enriched with epi-genes (Fig. 3i; adjusted P < 0.005, one-

sided hypergeometric test) while the remaining DEG not selected by MAGICAL, or DEG 

mappable with DAS either within the same topological domains or closest to each other 

showed no evidence of being epigenetically driven. These results suggest that MAGICAL 

accurately identified regulatory circuits activated in response to S. aureus infection.

S. aureus infection prediction

Early diagnosis of S. aureus infection and the strain’s antibiotic sensitivity is critical to 

choosing appropriate treatment for this life-threatening condition. We first evaluated whether 

the MAGIC-identified circuit genes that are common to MRSA and MSSA infections could 

provide a robust signature for predicting the diagnosis of S. aureus infection in general. 

Within each cell type, we selected circuit genes common to both the MRSA versus control 

and MSSA versus control analyses, resulting in 152 genes (Fig. 4a; Supplementary Table 

12). To evaluate the prediction accuracy of these molecular features on S. aureus infection, 

we collected external, public expression data of S. aureus infected subjects. In total, we 

found one adult whole-blood49 and two pediatric PBMC bulk microarray datasets50,51 that 

comprised a total of 126 subjects infected with S. aureus and 68 uninfected controls. The use 

of pediatric validation data has the advantage of providing a much more rigorous test of the 

robustness of MAGICAL-identified circuit genes for classifying disease samples in this very 

different cohort.

To allow validation using public bulk transcriptome datasets, we refined the 152 circuit 

genes set by selecting those with robust performance in our dataset at pseudobulk level. 

We calculated an area under the receiver operating characteristic curve (AUROC) for each 

circuit gene by classifying S. aureus infected and control subjects using pseudobulk gene 

expression (aggregated from the discovery scRNA-seq data). In total, 117 circuit genes 

with AUROCs greater than 0.7 were selected (Supplementary Table 13; Supplementary Fig. 

10a). Functional gene enrichment analysis showed that interleukin (IL)-17 signaling was 

significantly enriched (adjusted P = 2.4 × 10–4, one-sided hypergeometric test), including 

genes from the AP-1, Hsp90, and S100 families. IL-17 has been found to be essential for the 

host defense against cutaneous S. aureus infection in mouse models52. We trained a support 

vector machine (SVM) model using the selected circuit genes as features and the discovery 

pseudobulk gene expression data as input. We then applied the trained SVM model to each 

of the three validation datasets. The model achieved high prediction performance on all 

datasets, with AUROCs from 0.93 to 0.98 (Fig. 4a).

This generalizability of circuit genes for predicting infection in different cohorts suggested 

that MAGICAL identifies regulatory processes that are fundamental to the host response to 

S. aureus sepsis. We further evaluated this by comparing the 117 circuit genes to 366 filtered 

DEG (with per gene AUROC > 0.7 in the discovery pseudobulk gene expression data). We 
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examined the differential expression π value53 (a statistic score that combines both fold 

change (FC) and P-values) of genes in the validation datasets and found significantly higher 

π values for the circuit genes (Supplementary Fig. 10b; P = 9.0 × 10–3, one-sided Wilcoxon 

rank sum test).

S. aureus antibiotic sensitivity prediction

We then addressed the more challenging problem of predicting strain antibiotic sensitivity 

among S. aureus infected subjects. When we tested the predictive models trained with DEG 

for the contrast of MRSA and MSSA on three pediatric PBMC microarray datasets50,51,54 

(comprising a total of 66 MRSA and 45 MSSA samples), we did not find predictive 

value (median of prediction areas under the curve (AUCs) close to 0.5; Supplementary 

Fig. 10d–f). And in all tests, the statistical difference of DEG-based prediction scores 

between MRSA and MSSA samples in the validation datasets was never significant. These 

results suggest that using host scRNA-seq data alone fails to identify robust molecular 

features for predicting the antibiotic sensitivity of the infected strain. Our observation echoes 

previous studies showing that in some challenging cases, differential expression analysis 

using RNA-seq data had limited power to identify robust features for disease-control sample 

classification55.

With MAGICAL we identified 53 circuit genes from the comparative multiomics data 

analysis between MRSA and MSSA (Supplementary Table 14). A model trained using 32 

circuit genes that were robustly differential in the discovery pseudobulk data (per gene 

discovery AUROC > 0.7, Supplementary Fig. 10c) best distinguished antibiotic-resistant 

and antibiotic-sensitive samples in all three validation datasets, with AUROCs from 0.67 

to 0.75 (Fig. 4b). And the statistical difference between prediction scores of MRSA 

and MSSA samples was significant (P = 9.2 × 10−3, two-sided Wilcoxon rank sum 

test). The success of the circuit-gene-based model demonstrated that MAGICAL captured 

generalizable regulatory differences in the host immune response to these closely related 

bacterial infections.

Discussion

MAGICAL addressed the previously unmet need of identifying differential regulatory 

circuits based on single-cell multiomics data from contrast conditions. Critically, it identifies 

regulatory circuits involving distal chromatin sites. The previously difficult-to-predict distal 

regulatory sites are increasingly recognized as key for understanding gene regulatory 

mechanisms. As MAGICAL uses DAS and DEG called from a pre-selected cell type, 

for less distinct cell types or conditions, it is harder for MAGICAL to infer circuits at 

cell-type resolution as there will be few candidate peaks and genes. Also, MAGICAL 

analyzes each cell type separately, and cell-type specificity is not directly modeled for 

disease circuit identification. Incorporating an approach to directly identify cell-type-specific 

circuits regulated in disease conditions would be valuable. In future work, we hope to extend 

the MAGICAL framework to improve circuit identification when cell types are poorly 

defined and to model cell-type specificity.
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Methods

Human participants

The COVID-19 study protocol was approved by the Naval Medical Research Center 

institutional review board (protocol number NMRC.2020.0006) in compliance with all 

applicable federal regulations governing the protection of human subjects. The S. aureus 
sepsis study protocol was reviewed and approved by the Duke Medical School institutional 

review board (protocol number Pro00102421). Subjects provided written informed consent 

prior to participation.

Statistics and reproducibility

No statistical methods were used to pre-determine sample sizes. No data were excluded from 

the analyses. The experiments were not randomized. The investigators were not blinded to 

allocation during experiments and outcome assessment.

S. aureus patient and control samples selection

Patients with culture-confirmed S. aureus bloodstream infection transferred to Duke 

University Medical Center were eligible if pathogen speciation and antibiotic susceptibilities 

were confirmed by the Duke Clinical Microbiology Laboratory. DNA and RNA samples, 

PBMCs, clinical data, and the bacterial isolate from the subject were cataloged using an 

institutional review board-approved notification of decedent research. We excluded samples 

with prior enrollment of the patient in this investigation (to ensure statistical independence 

of observations) or they were polymicrobial (that is, more than one organism in blood or 

urine culture). In total, 21 adult patients were selected (10 MRSA and 11 MSSA). None of 

them received any antibiotics in the 24 h before the bloodstream infection. Control samples 

were obtained from uninfected healthy adults matching the sample number and age range 

of the patient group. In total, 23 samples were collected from two cohorts: 14 controls 

(provided by Weill Cornell Medicine, New York, NY), and 9 controls (provided by the 

Battelle Memorial Institute, Columbus, OH). Meta information of the selected subjects are 

provided in Supplementary Table 6.

PBMC thawing

Frozen PBMC vials were thawed in a water bath at 37 °C for 1–2 minutes and placed on ice. 

Roswell Park Memorial Institute (RPMI) medium with 20% fetal bovine serum (FBS) (500 

μl) was added dropwise to the thawed vial, the content was aspirated and added dropwise to 

9 ml of RPMI/20% FBS. The tube was gently inverted to mix, before being centrifuged at 

300g for 5 min. After removal of the supernatant, the pellet was resuspended in 1–5 ml of 

RPMI/10% FBS depending on the size of the pellet. Cell count and viability were assessed 

with Trypan Blue on a Countess II cell counter (Invitrogen).

S. aureus scRNA-seq data generation

ScRNA-seq was performed (10x Genomics, Pleasanton, CA), following the Single Cell 3′ 
Reagents Kits V3.1 User Guidelines. Cells were filtered, counted on a Countess instrument, 

and resuspended at a concentration of 1,000 cells μl−1. The number of cells loaded on the 
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chip was determined based on the 10x Genomics protocol. The 10x chip (Chromium Single 

Cell 3′ Chip kit G PN-200177) was loaded to target 5,000–10,000 final cells. Reverse 

transcription was performed in the emulsion and complementary DNA was amplified 

following the Chromium protocol. Quality control and quantification of the amplified cDNA 

were assessed on a Bioanalyzer (High-Sensitivity DNA Bioanalyzer kit) and the library was 

constructed. Each library was tagged with a different index for multiplexing (Chromium 

i7 Multiplex Single Index Plate T Set A, PN-2000240) and quality controlled using a 

Bioanalyzer prior to sequencing.

S. aureus scRNA-seq data analysis

Reads of scRNA-seq experiments were aligned to human reference genome (hg38) using 

10x Genomics Cell Ranger software (version 1.2). The filtered feature-by-barcode count 

matrices were then processed using Seurat35. Quality cells were selected as those with 

more than 400 features (transcripts), fewer than 5,000 features, and less than 10% of 

mitochondrial content (Supplementary Fig. 4; Supplementary Table 7). Cell cycle phase 

scores were calculated using the canonical markers for G2M and S phases embedded in the 

Seurat package. Finally, the effects of mitochondrial reads and cell cycle heterogeneity were 

regressed out using SCTransform.

To integrate cells from heterogeneous disease samples, we first built a reference by 

integrating and annotating cells from the uninfected control samples using a Seurat-based 

pipeline. For batch correction, we identified the intrinsic batch variants and used Seurat to 

integrate cells together with the inferred batch labels. All control samples were integrated 

into one harmonized query matrix. Each cell was assigned a cell-type label by referring 

to a reference PBMC single cell dataset. The cell-type label of each cell cluster was 

determined by most cell labels in each. Canonical markers were used to refine the cell-type 

label assignment. This integrated control object was used as reference to map the infected 

samples.

To avoid artificially removing the biological variance between each infected sample 

during batch correction, we computationally predicted and manually refined cell types for 

each sample. All infection samples were projected onto the UMAP (Uniform Manifold 

Approximation and Projection) of the control object for visualization purpose. In total, 

276,200 high-quality cells and 19 cell types with at least 200 cells in each were selected 

for the subsequent analysis. Within each cell type, DEG between contrast conditions 

were first called using the Findmarkers function of the Seurat V4 package35 with default 

parameters. DEG with Wilcoxon test false discovery rate (FDR) < 0.05, |log2(FC)| >0.1 and 

actively expressed in at least 10% of cells (pct > 0.1) from either condition were selected. 

To correct potential bias caused by the different sequencing depth between samples, we 

ran DEseq256 on the aggregated pseudobulk gene expression data. Refined DEG passing 

pseudobulk differential statistics P < 0.05 and |log2(FC)| >0.3 were selected as the final DEG 

(Supplementary Table 10).
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Nuclei isolation for scATACseq

Thawed PBMCs were washed using phosphate-buffered saline (PBS) with 0.04% bovine 

serum albumin (BSA). Cells were counted and 100,000–1,000,000 cells were added to a 2 

ml microcentrifuge tube. Cells were centrifuged at 300g for 5 min at 4 °C. The supernatant 

carefully completely removed, and 0.1X lysis buffer (1x: 10 mM Tris-HCl pH 7.5, 10 mM 

NaCl, 3 mM MgCl2, nuclease-free H2O, 0.1% v/v NP-40, 0.1% v/v Tween-20, 0.01% v/v 

digitonin) was added. After 3 min incubation on ice, 1 ml of chilled wash buffer was added. 

The nuclei were pelleted at 500g for 5 min at 4 °C and resuspended in a chilled diluted 

nuclei buffer (10x Genomics) for scATAC-seq. Nuclei were counted and the concentration 

was adjusted to run the assay.

S. aureus scATAC-seq data generation

ScATAC-seq was performed immediately after nuclei isolation and following the Chromium 

Single Cell ATAC Reagent Kits V1.1 User Guide (10x Genomics, Pleasanton, CA). 

Transposition was performed in 10 μl at 37 °C for 60 min on at least 1,000 nuclei, before 

loading of the Chromium Chip H (PN-2000180). Barcoding was performed in the Gel 

Bead-in-Emulsion (GEMs) (12 cycles) following the Chromium protocol. After post-GEM 

cleanup, libraries were prepared following the protocol and were indexed for multiplexing 

(Chromium i7 Sample Index N, Set A kit PN-3000427). Each library was assessed on a 

Bioanalyzer (High-Sensitivity DNA Bioanalyzer kit).

S. aureus scATAC-seq data analysis

Reads of scATAC-seq experiments were aligned to human reference genome (hg38) using 

10x Genomics Cell Ranger software (version 1.2). The resulting fragment files were 

processed using ArchR25. Quality cells were selected as those with TSS enrichment >12, 

the number of fragments >3,000 and <30,000, and nucleosome ratio <2 (Supplementary Fig. 

5a; Supplementary Table 8). The likelihood of doublet cells was computationally assessed 

using the addDoubletScores function and cells were filtered using the filterDoublets function 

with default settings. Cells passing quality and doublet filters from each sample were 

combined into a linear dimensionality reduction using the addIterativeLSI function with 

the input of the tile matrix (read counts in binned 500 bp across the whole genome) with 

iterations = 2 and var-Features = 20,000. This dimensionality reduction was then corrected 

for batch effect using the Harmony method57, via the addHarmony function. The cells 

were then clustered based on the batch-corrected dimensions using the addClusters function. 

We annotated scATAC-seq cells using the addGeneIntegrationMatrix function, referring to 

a labeled multimodal PBMC single cell dataset. Doublet clusters containing a mixture of 

many cell types were manually identified and removed. In total, 70,174 high-quality cells 

and 13 cell types with at least 200 cells in each were selected.

Peaks were called for each cell type using the addReproduciblePeakSet function with the 

MACS2 peak caller26 (Supplementary Fig. 5b). In total, 388,859 peaks were identified 

(Supplementary Table 9). Within each cell type, differentially accessible chromatin sites 

(DAS) between contrast conditions (MRSA versus control, MSSA versus control or MRSA 

versus MSSA) were called from the single cell chromatin accessibility count data using 

the getMarkerFeatures function25, with parameter settings as testMethod = wilcoxon, bias 
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= log10(nFrags), normBy = ReadsInPeaks, and maxCells = 15,000. Peaks with single cell 

differential statistics FDR < 0.05, |log2(FC)| >0.1, and actively accessible in at least 10% 

of cells (pct > 0.1) from either condition were selected as DAS. Owing to the high false 

positive rate in single-cell-based differential analysis58, we further refined the DAS by fitting 

a linear model to the aggregated and normalized pseudobulk chromatin accessibility data 

and tested DAS individually about their covariance with sample conditions56. Refined DAS 

passing pseudobulk differential statistics P < 0.05 and |log2(FC)| >0.3 between the contrast 

conditions were selected as the final DAS (Supplementary Table 11).

MAGICAL

To build candidate regulatory circuits, TFs were mapped to the candidate chromatin 

sites by searching for human TF motifs from the chromVARmotifs library59 using the 

addMotifAnnotations function (ArchR). The TF binding sites were then linked with the 

candidate genes by requiring them in the same TAD within boundaries. Then, a candidate 

circuit is constructed with a chromatin site and a gene in the same domain, with at least one 

TF binding at the site.

For each cell type (that is, the i-th cell type), MAGICAL inferred the confidence of TF–peak 

binding and peak–gene looping in each candidate circuit using a hierarchical Bayesian 

framework with two models: a model of TF–peak binding confidence (B) and hidden TF 

activity (T) to fit chromatin accessibility (A) for M TFs and P chromatin sites in KA, S, i cells 

with scATAC-seq measures from S samples; a second model of peak–gene interaction (L) 

and the refined (noise removed) regulatory region activity (BT) to fit gene expression (R) of 

G genes in KA, S, i cells with scRNA-seq measures from the same S samples.

AP × KA, S, i = BP × M, iTM × KA, S, i + NP × KA, S, i, (1)

RG × KR, S, i = LG × P , iBP × M, iTM × KR, S, i + NG × KR, S, i, (2)

AP × KA, S, i was a P by KA, S, i matrix with each element ap, KA, s, i representing the ATAC read count 

of p-th chromatin site (ATAC peak) in the kA, s-th cell in the s-th sample.

RG × KR, s, i was a G by KR, S, i matrix with each element rg, kR, s, i representing the RNA read count 

of g-th gene in the kR, s-th cell of the s-th sample.

NP × KA, s, i and NG × KR, S, i represented data noise corresponding to AP × KA, S, i and RG × KR, S, i.

BP × M, i was a P by M matrix with each element bp, m, i representing the binding confidence of 

the m-th TF on the p-th candidate chromatin site.

LG × P , i was a G by P matrix with each element lp, g, i representing the interaction between the 

p-th chromatin site and the g-th gene.

TM × KA, s, i was an M by KA, S, i matrix with each element tm, kA, s, i representing the hidden TF 

activity of the m-th TF in the kA, s-th ATAC cell of s-th sample.
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TM × KR, S, i was an M by KR, S, i matrix with each element tm, kR, s, i representing the hidden TF 

activity of the m-th TF in the kR, s-th RNA cell of s-th sample.

TM × KA, s, i and TM × KR, S, i were both extended from the same TM × S, i (with elements tm, s, i) by 

assuming that in the i-th cell type and the s-th sample, the m-th TF’s regulatory activities in 

all ATAC cells and all RNA cells followed an identical distribution of a single variable tm, s, i. 

Therefore, KA, S, i and KR, S, i can be different numbers and MAGICAL will only estimate the 

matrix TM × S, i.

To select high-confidence regulatory circuits, MAGICAL estimated the confidence 

(probability) of TF–peak binding BP × M, i and peak–gene interaction LG × P , i together with the 

hidden variable TM × S, i in a Bayesian framework.

P B, T , L ∣ A, R ∝ P R ∣ L, B, T P A ∣ B, T P L P B P T . (3)

Based on the regulatory relationship among chromatin sites, upstream TFs, and downstream 

genes (as illustrated in Fig. 1), the posterior probability of each variable can be 

approximated as:

P T ∣ A, B ∝ P A ∣ B, T P T , (4)

P B ∣ A, T ∝ P A ∣ B, T P B , (5)

P L ∣ R, B, T ∝ P R ∣ L, B, T P L . (6)

Although the prior states of bp, m, i and lp, g, i were obtained from the prior information of TF 

motif–peak mapping and topological-domain-based peak–gene pairing, their values were 

unknown. We assumed zero-mean Gaussian priors for B, L and the hidden variable T by 

assuming that positive regulation and negative regulation would have the same priors, which 

is likely to be true given the fact that there were usually similar numbers of upregulated 

and downregulated peaks and genes after the differential analysis. We set a high variance 

(non-informative) in each prior distribution to allow the algorithm to learn the distributions 

from the input data.

bp, m, i normal μB, σB
2 , (7)

tm, s, i normal μT, σT
2 , (8)

  lp, g, i normal μL, σL
2 . (9)

where μB, σB
2 , μT, σT

2 , and μL, σL
2  are hyperparameters representing the prior mean and 

variance of TF–peak binding, TF activity, and peak–gene looping variables.
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The likelihood functions P(A∣B,T) and P(R∣L,B,T) represent the fitting performance of the 

estimated variables to the input data. These two conditional probabilities are equal to the 

probabilities of the fitting residues NP × KA, s, i and NG × KR, S, i, for which we assumed zero-mean 

Gaussian distributions.

A ∣ B, T normal μNA, σNA
2 , σNA

2 inverse gamma  αNA, βNA , (10)

R ∣ L, B, T normal μNR, σNR
2 , σNR

2 inverse gamma αNR, βNR , (11)

where μNA, σNA
2  and μNR, σNR

2  are hyperparameters representing the prior mean and variance 

of data noise in the ATAC and RNA measures. Here, the variance of the signal noise is 

modeled using inverse gamma distributions, with hyperparameters αNA, βNA  and αNR, βNR  to 

control the variance of fitting residues (very low probabilities on large variances).

Then, the posterior probability of each variable defined in equations (4)–(6) was still a 

Gaussian distribution with poster mean μ and variance σ as shown below:

bp, m, i normal μB, m, i, σB, m, i
2 , (12)

t m, s, i normal μT , m, s, i, σT , m, s, i
2 , (13)

l p, g, i normal μL, i, σL, i
2 . (14)

Gibbs sampling was used to iteratively learn the posterior distribution mean and variance of 

each set of variables and draw samples of their values accordingly.

For the TF–peak binding events, the posterior mean μB, m, i and variance σB, m, i
2  were estimated 

specifically for m-th TF since the number of binding sites and the positive or negative 

regulatory effects between TFs could be very different.

μB, m, i = ∑s ∑k tm, s, i ap, ks, i − ∑m′ bp, m′, itm′, s, i σB
2 + μB, tσNA

2

∑s KA, stm, s, i
2 σB

2 + σNA
2  and

σB, m, i
2 = σNA

2 σB
2

∑s KA, stm, s, i
2 σB

2 + σNA
2 .

(15)

For TF activities, the posterior mean μT , m, s, i and variance σT , m, s, i
2  were estimated specifically 

for the m-th TF and s-th sample using chromatin accessibility data as follows:

μT , m, s, i = ∑p ∑k bp, m ap, k, s, i − ∑m′ bp, m′tm′, s σT
2 + μTσNA

2

∑p KA, sbp, m, i
2 σT

2 + σNA
2  and

σT , m, s, i
2 = σNA

2 σT
2

∑p KA, sbp, m, i
2 σT

2 + σNA
2 .

(16)
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Then, based on the estimated distribution parameters of μT , m, s, i and σT , m, s, i
2  of t m, s, i, for the 

kR, s-th RNA cell in the same s-th sample we draw a TF regulatory activity sample as 

t m, kR, s, i. For p-th peak, we were able to reconstruct its chromatin activity in the RNA cell as 

ap, kR, s, i = ∑m bp, m, it m, kR, s, i, and for g-th gene, we further estimated the interaction confidence l p, g, i

between p-th peak and g-th gene. The peak–gene interaction distribution parameters μL, i and 

σL, i
2  were estimated as follows:

μL, i = ∑s ∑k ap, kR, s, i rg, k, s, i − ∑p′ lg, p′ap′, kR, s, i σL
2 + μLσNR

2

∑s ∑kR, s ap, kR, s, i
2σL

2 + σNR
2

 and

σL
2 = σNR

2 σL
2

∑s ∑kR, s ap, kR, s, i
2σL

2 + σNR
2

.
(17)

In n-th round of Gibbs estimation, after learning all distributions, we estimated the 

confidence of each linkage by linearly mapping the sampled values of bp, m, i and l p, g, i in 

the range of (−∞,∞) to probabilities in (0, 1) as follows:

P state bp, m, i ∣ n = 1 =
exp bp, m, i − μB, m, i /2σB, m, i

2

exp bp, m, i − μB, m, i /2σB, m, i
2 + exp 0 − μB, m, i /2σB, m, i

2 . (18)

P state lp, g, i ∣ n = 1   =
exp l p, g, i − μL, i /2σL, i

2

exp l p, g, i − μL, i /2σL, i
2 + exp 0 − μL, i /2σL, i

2 . (19)

Binary state samples were then drawn based on the confidence of each linkage and were 

then used to initiate the next round of estimations. After running a long sampling process 

(in total, N rounds) and accumulating enough samples on the binary states of TF–peak 

bindings and peak–gene interactions, we calculated the sampling frequency of each linkage 

as a posterior probability.

P state bp, m, i = 1 = ∑n state bp, m, i ∣ n
N

P state lp, g, i = 1 = ∑n state lp, g, i ∣ n
N

(20)

MAGICAL analysis of S. aureus single-cell multiomics data

For each cell type, given DAS and DEG of contrast conditions (MRSA versus control, 

MSSA versus control or MRSA versus MSSA), MAGICAL was first initialized by mapping 

prior TF motifs from the chromVARmotifs library to DAS using addMotifAnnotations 

(ArchR). Because there is no PBMC cell type Hi-C data publicly available, we are using 

TAD boundaries from a lymphoblastoid cell line, GM12878, which was originally generated 

by EBV transformation of PBMCs60. The TAD boundary structure is closely conserved 

between the lymphoblastoid cell lines and primary PBMC61 and between cell types62,63. We 

Chen et al. Page 16

Nat Comput Sci. Author manuscript; available in PMC 2023 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



called TAD boundaries from a GM12878 cell line Hi-C profile63 using TopDom64. About 

6,000 topological domains were identified. For each contrast, we built candidate circuits 

by pairing DAS with TF binding sites with DEG in the same domain. MAGICAL was run 

10,000 times to ensure that the sampling process converged to stable states. This process was 

repeated for all cell types and the top 10% high confidence circuit predictions were selected 

from each cell type for validation analysis.

MAGICAL analysis of COVID-19 single-cell multiomics data

As a proof of concept for contrast condition, single-cell multiomics data analysis, 

MAGICAL was applied to a public PBMC COVID-19 single-cell multiomics dataset5 with 

samples collected from patients with different severity and heathy controls. For each of 

the three selected cell subtypes (CD8 TEM, CD14 Mono, and NK), from the original 

publication we downloaded DEG for two contrasts: mild versus control and severe versus 

control. For each of the selected cell types, DAS were called respectively for mild versus 

control and severe versus control using ArchR functions and thresholds as introduced in 

the paper. MAGICAL was initialized by mapping TF motifs from the chromVARmotifs 

library to DAS using addMotifAnnotations (ArchR). As explained above, we used TAD 

boundary information of ~6,000 domains identified in the GM12878 cell line63 as prior to 

pair DAS with TF binding sites and DEG. Then, the initial candidate regulatory circuits 

were constructed. Respectively for mild and severe COVID-19, MAGICAL was run 10,000 

times to ensure that the sampling process converged to stable states. This process was 

repeated for the three selected cell types. The chromatin sites and genes in the top 10% 

predicted high confidence circuits in each cell type were selected as disease associated.

COVID-19 PBMC samples of validation scATAC-seq data

To validate chromatin sites associated with mild COVID-19, PBMC samples were obtained 

from the COVID-19 Health Action Response for Marines (CHARM) cohort study, which 

has been previously described65. The cohort is composed of Marine recruits who arrived at 

Marine Corps Recruit Depot—Parris Island for basic training between May and November 

2020, after undergoing two quarantine periods (first a home quarantine, and next a 

supervised quarantine starting at enrollment in the CHARM study) to reduce the possibility 

of SARS-CoV-2 infection at arrival. Participants were regularly screened for SARS-CoV-2 

infection during basic training by PCR, serum samples were obtained using serum separator 

tubes at all visits, and a follow-up symptom questionnaire was administered. At selected 

visits, blood was collected in BD Vacutainer CPT Tube with Sodium Heparin and PBMC 

were isolated following the manufacturer’s recommendations. We used PBMC samples 

from six participants (five males and one female) who had a positive COVID-19 PCR test 

and had mild symptoms (sampled 3–11 days after the first PCR positive test), and from 

three control participants (three males) who had a PCR negative test at the time of sample 

collection and were seronegative for SARS-CoV-2 immunoglobulin G. New scATAC-seq 

data were generated following the same protocol as described in “S. aureus scATAC-seq data 

generation” (Supplementary Table 2).
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COVID-19 PBMC scATACseq data analysis

Reads of scATAC-seq experiments were aligned to human reference genome (hg38) using 

10x Genomics Cell Ranger software (version 1.2). The resulting fragment files were 

processed using ArchR25. Quality cells were selected as those with TSS enrichment >12, 

a number of fragments >3,000 and <30,000, and a nucleosome ratio <2. The likelihood of 

doublet cells was computationally assessed using the addDoubletScores function and cells 

were filtered using the filterDoublets function with default settings. A total of 15,836 high-

quality cells in the infection group and 9,125 cells in the control group were selected after 

QC analysis (Supplementary Fig. 3; Supplementary Table 3). These cells were combined 

into a linear dimensionality reduction using the addIterativeLSI function with the input of 

the tile matrix (read counts in binned 500 bp across the whole genome) with iterations = 

2 and var-Features = 20,000. The cells were then clustered using the addClusters function. 

We annotated scATAC-seq cells using the addGeneIntegrationMatrix function, referring to 

a labeled multimodal PBMC single cell dataset. Doublet clusters containing a mixture of 

many cell types were manually identified and removed.

Peaks were called for each cell type using the addReproduciblePeakSet function with 

peak caller MACS226 (Supplementary Fig. 3). In total, 284,525 peaks were identified 

(Supplementary Table 4). For each of the three selected cell types (CD8 TEM, CD14 Mono, 

and NK), chromatin sites with single cell differential statistics FDR < 0.05 and |log2(FC)| 

>0.1 between COVID-19 and control conditions and actively accessible in at least 10% of 

cells (pct > 0.1) from either condition were selected. Refined peaks passing pseudobulk 

differential statistics P < 0.05 and |log2(FC)| >0.3 between the contrast conditions were 

finally selected as the validation peak set (Supplementary Table 5).

COVID-19 circuit peaks and genes accuracy evaluation

The number of infection-associated peaks/genes reported by each COVID-19 study would 

be different owing to the difference in the number of recruited patients and collected cells. 

To overcome the issue caused by the imbalanced number between discovery and validation 

datasets or between differential peaks/genes and circuit sites/genes, in each comparison, 

the larger peak/gene set was randomly downsampled to match the smaller number of peaks/

genes in the other set. The precision (site reproduction rate) is calculated to assess the 

accuracy of each peak/gene set.

MAGICAL analysis of 10x PBMC single-cell true multiome data

For benchmarking, MAGICAL was applied to a 10x PBMC single-cell multiome dataset 

including 108,377 ATAC peaks, 36,601 genes, and 11,909 cells from 14 cell types. 

MAGICAL used the same candidate peaks and genes as selected by TRIPOD11 for fair 

performance comparison. Two different priors were used to pair candidate peaks and genes: 

(1) the peaks and genes were within the same TAD from the GM12878 cell line; (2) the 

centers of peaks and the TSS of genes were within 500 kbp. MAGICAL inferred regulatory 

circuits with each prior and used the top 10% of predictions for accuracy assessment. High-

confidence peak–gene interactions predicted by TRIPOD on the same data were directly 

downloaded from the supplementary tables of their publication11. Two baseline approaches 

of peak–gene pairing were included: pairing all peaks with a gene if they are in the same 
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TAD or pairing only the nearest peak to a gene based on their genomic distance. To fairly 

assess the accuracy of MAGICAL weighted peak–gene interactions and the results (paired 

or non-paired) from TRIPOD or baseline approaches, we selected the top 10% of predictions 

by MAGICAL as the final peak–gene pairing. We overlapped these pairs with the curated 

3D genome interactions in blood context from the 4DGenome database19 and calculated the 

precision for each approach.

MAGICAL analysis of GM12878 cell line SHARE-seq data

For benchmarking, MAGICAL was also applied to a GM12878 cell line SHARE-seq 

dataset10. For fair comparison, MAGICAL used the same candidate peaks and genes as 

selected by FigR18. MAGICAL was initialized with two different priors to pair candidate 

peaks and genes: (1) the peaks and genes were within the same prior TAD from the 

GM12878 cell line; (2) the centers of peaks and the TSS of genes were within 500k 

bps. MAGICAL inferred regulatory circuits under each setting and used the top 10% 

predictions for accuracy assessment. High-confidence peak–gene interactions predicted by 

FigR were directly downloaded from the supplementary tables of the original publication10. 

Similarly, the top 10% predictions by MAGICAL and interactions paired by the two baseline 

approaches mentioned above were selected. We overlapped peak–gene interactions predicted 

by each approach with GM12878 H3K27ac HiChIP chromatin interactions20 for precision 

evaluation.

Validating predicted peak–gene interactions

To assess the precision of the predicted circuit peak–gene interactions, we assumed a 

correctly inferred peak–gene pair should be also connected by a chromatin interaction 

reported by Hi-C or similar experiments. To check this, each peak was extended to 2 

kb long and then checked for overlap with one end of a physical chromatin interaction. 

For genes, we checked whether the gene promoter (−2 kb to 500 b of TSS) overlapped 

the other end of the interaction. Precision was calculated as the proportion of overlapped 

chromatin interactions among the predicted peak–gene pairs. The significance of enrichment 

of overlapped chromatin interactions was assessed using hypergeometric P value, with all 

candidate peak–gene pairs as background.

GWAS enrichment analysis

To assess the enrichment of GWAS loci of inflammatory diseases in circuit chromatin 

sites in each cell type, significant GWAS loci were downloaded from GWAS catalog46 for 

inflammatory diseases and control diseases. GREGOR66 was used to assess the enrichment 

of GWAS loci at which either the index single nucleotide polymorphism (SNP) or at least 

one of its LD proxies overlaps with a circuit chromatin site, using pre-calculated LD data 

from 1,000 G EUR samples. The enrichment P value of each disease GWAS was converted 

to a z-score. With each cell type, enrichment scores for traits with fewer than five overlapped 

GWAS SNPs with circuit sites were hold out. Also, as all reference data used by GREGOR 

is hg19-based, genome coordinates of testing regions were mapped from hg38 to hg19.
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Predicting S. aureus infection state

To refine circuit genes for predicting infection diagnosis in microarray gene expression 

data, the capability of each circuit gene on distinguishing infection and control samples, or 

MRSA and MSSA samples, was assessed using sample level pseudobulk gene expression 

data, aggregated from the discovery scRNA-seq datasets. The total number of reads of each 

sample was normalized to 1 × 107. The normalized RNA read counts across all samples 

were then log and z-score transformed. For each circuit gene, a discovery AUROC was 

calculated by comparing the scRNA-seq gene-expression-based sample ranking against the 

contrasted sample groups. Circuit genes were prioritized based on AUROCs. An SVM 

model was trained using the top-ranked circuit genes as features and their normalized 

pseudobulk expression data as input. The model was then tested on independent microarray 

datasets. The microarray gene expression data was also log and z-score transformed to 

ensure a similar distribution to the training data. For comparison, top DEG prioritized 

by discovery AUROC or by other approaches like the minimum redundancy maximum 

relevance algorithm or LASSO regression were also tested on the same microarray datasets.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

The 10x PBMC single cell multiome dataset can be 

downloaded from https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/

1.0.0/pbmc_granulocyte_sorted_10k. Users will need to provide their contact information to 

access the download webpage where the filtered feature barcode matrix (HDF5 format) can 

be downloaded. The reference multimodal PBMC single cell dataset (H5 Seurat data file) 

can be downloaded from https://atlas.fredhutch.org/nygc/multimodal-pbmc/. The GWAS 

catalog database can be accessed at https://www.ebi.ac.uk/gwas/docs/file-downloads. SNPs 

associated with each disease used in this paper can be extracted from the downloadable file 

“All associations v1.0”. Home sapiens chromatin interactions data can be downloaded from 

https://4dgenome.research.chop.edu/Download.html. Home sapiens TF ChIP-seq profiles 
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can be downloaded at http://cistrome.org/db/. Users can also provide their customized 

peaks in BED format to the server http://dbtoolkit.cistrome.org/ and identify TFs that 

have a significant binding overlap. Home sapiens candidate enhancers annotated by 

ENCODE can be downloaded at https://screen.encodeproject.org/. The chromVARmotifs 

library is available at https://github.com/GreenleafLab/chromVARmotifs. The source single 

cell data collected in this study is publicly accessible at the GEO repository (https://

www.ncbi.nlm.nih.gov/geo/, accession no. GSE220190) and the Zenodo repository67. 

Source data for Figs. 2–4 is available with this manuscript.
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Fig. 1 |. Overview of MAGICAL for mapping disease-associated regulatory circuits from scRNA-
seq and scATAC-seq data.
a, Disease-modulated regulatory circutis. In the 3D genome, the altered gene expression in 

cells between disease and control conditions can be attributed to the chromatin accessibility 

changes of proximal and distal chromatin sites regulated by TFs. b, MAGICAL framework. 

To identify disease-associated regulatory circuits in a selected cell type (including ATAC 

assay cells and RNA assay cells from samples being compared), MAGICAL selects DAS 

as candidate chromatin sites (peaks) and DEG as candidate genes. Then, the filtered ATAC 

data and RNA data of DAS and DEG are used as input to a hierarchical Bayesian framework 

pre-embedded with the prior TF motifs and TAD boundaries. The chromatin activity A 
is modeled as a linear combination of TF–peak binding confidence B and the hidden TF 

activity T, with data noise contamination NA. The gene expression R is modeled as a linear 

combination of B, T, and peak–gene looping confidence L, with data noise contamination 

NR. MAGICAL estimates the posterior probabilities P(B|A,T), P(T|A,B), and P(L|R,B,T) by 

iteratively sampling variables B, T, and L to optimize against the data noise NA and NR 

in both modalities. Finally, regulatory circuits with high posterior probabilities of B and 

L (for example, a high confidence circuit with inferred interactions between TF1, Site2, 

and Gene1) are selected. c, Results validation. We evaluate the accuracy and cell-type 

specificity of the inferred peak–gene looping interactions by checking their enrichment 

with cell-type-matched chromatin interactions in Hi-C experiments. For the identified TFs, 

chromatin sites, and genes in circuits, we checked the accuracy of each using independent 
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ChIP-seq, scATAC-seq, and scRNA-seq data. Finally, as a demonstration of the utility of 

MAGICAL, we used the circuit target genes as features to predict disease states.
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Fig. 2 |. Validation of COVID-19-associated circuit chromatin sites and genes.
a, We applied MAGICAL to a COVID-19 PBMC single-cell multiomics dataset and 

identified circuits for the clinical mild and severe groups. We validated the MAGICAL-

selected circuit sites and genes using newly generated and independent COVID-19 single-

cell datasets. b, UMAPs of a newly generated independent scATAC-seq dataset including 

16,000 cells from six people with COVID-19 and 9,000 cells from three controls showed 

chromatin accessibility changes in CD8 TEM, CD14 Mono, and NK cell types. c,d, The 

precision of MAGICAL-selected circuit sites is significantly higher than that of the original 

DAS, the nearest DAS to DEG, or all DAS in the same TAD with DEG. e,f, The precision of 

circuit genes are significantly higher than that of DEG. c,e, For mild COVID-19, MAGICAL 

identified 645 sites in CD8 TEM, 599 sites in CD14 Mono, and 148 sites in NK, regulating 

153 genes, 183 genes, and 60 genes, respectively. d,f, For severe COVID-19, MAGICAL 

identified 78 sites, 202 sites, and 62 sites in the three cell types, regulating 25 genes, 81 

genes, and 26 genes, respectively. c–f, Precision is defined as the proportion of the selected 

sites and genes to be differentially accessible and differentially expressed in the same cell 

type between infection and control conditions in independent datasets. Results are presented 

as bar plots where the heights represent the precision and the error bars represent the 95% 

confidence interval. Significance is evaluated using a two-sided Fisher’s exact test and P 
values between bars are shown.

Chen et al. Page 27

Nat Comput Sci. Author manuscript; available in PMC 2023 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3 |. MAGICAL accurately identified distal regulatory chromatin sites and epi-driven genes 
associated with S. aureus infection.
a, We collected PBMC samples from 10 subjects infected with MRSA, 11 with MSSA, 

and 23 uninfected control subjects and generated sample-paired scRNA-seq and scATAC-

seq data using separate assays. b, UMAP of integrated scRNA-seq data with 18 PBMC 

cell subtypes. c, UMAP of integrated scATAC-seq data with 13 PBMC cell subtypes. 

Under-represented subtypes including cDC1, CD4 TEM, CD8 CTL, pDC, and Plasmablast 

(representing less than 5% of cells in the scRNA-seq data in total), were not recovered from 

the scATAC-seq data. d, The number of MAGICAL-identified regulatory circuits in contrast 

analysis for each cell type. e, The number of shared and specific circuits between cell types. 

f, Enrichment of circuit peak–gene interactions in each cell type with cell-type-specific 
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pcHi-C interactions. g–i, We specifically analyzed MAGICAL-identified regulatory circuits 

for CD14 Mono. g, TF motif enrichment analysis in circuit sites showed that AP-1 proteins 

are mostly significantly enriched at chromatin regions with increased accessibility in the 

infection condition. The log2(FC) is calculated for each TF by dividing the number of 

binding sites with increased chromatin activity in the infection condition by the number of 

sites with decreased activity. h, In total, 633 circuit sites were identified by MAGICAL. 

Compared with all accessible chromatin sites, an increased proportion of circuit sites were 

in the range of 15 kb to 25 kb relative to gene TSS. In the curve, the center points represent 

the FC between the proportions of circuit sites and background sites at each location. The 

upper and lower points represent the 95% confidence interval. i, The circuit genes were 

significantly enriched with experimentally confirmed epigenetically driven genes (epi-genes) 

in monocytes. All significance was assessed using adjusted P values from a one-sided 

hypergeometric test.
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Fig. 4 |. MAGICAL-identified circuit genes robustly predict S. aureus infection and bacteria 
antibody sensitivity.
a, Circuit genes in common to MRSA and MSSA infections achieved a near-perfect 

classification of S. aureus infected and uninfected samples in multiple independent datasets 

(one adult dataset and two pediatric datasets). b, Circuit genes that differed between MRSA 

and MSSA showed predictive value of antibiotic sensitivity in independent patient samples 

(three pediatric datasets).

Chen et al. Page 30

Nat Comput Sci. Author manuscript; available in PMC 2023 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	MAGICAL framework
	Comparative analysis of performance
	MAGICAL analysis of COVID-19 single-cell multiomics data
	MAGICAL analysis of S. aureus single-cell multiomics data
	S. aureus infection prediction
	S. aureus antibiotic sensitivity prediction

	Discussion
	Methods
	Human participants
	Statistics and reproducibility
	S. aureus patient and control samples selection
	PBMC thawing
	S. aureus scRNA-seq data generation
	S. aureus scRNA-seq data analysis
	Nuclei isolation for scATACseq
	S. aureus scATAC-seq data generation
	S. aureus scATAC-seq data analysis
	MAGICAL
	MAGICAL analysis of S. aureus single-cell multiomics data
	MAGICAL analysis of COVID-19 single-cell multiomics data
	COVID-19 PBMC samples of validation scATAC-seq data
	COVID-19 PBMC scATACseq data analysis
	COVID-19 circuit peaks and genes accuracy evaluation
	MAGICAL analysis of 10x PBMC single-cell true multiome data
	MAGICAL analysis of GM12878 cell line SHARE-seq data
	Validating predicted peak–gene interactions
	GWAS enrichment analysis
	Predicting S. aureus infection state
	Reporting summary

	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |

