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Abstract

Numerous methodologies are used for blood RNA extraction, and large quantitative differ-

ences in recovered RNA content are reported. We evaluated three archived data sets to

determine how extraction methodologies might influence mRNA and lncRNA sequencing

results. The total quantity of RNA recovered /ml of blood affects RNA sequencing by impact-

ing the recovery of weakly expressed mRNA, and lncRNA transcripts. Transcript expression

(TPM counts) plotted in relation to transcript size (base pairs, bp) revealed a 30% loss of

short to midsized transcripts in some data sets. Quantitative recovery of RNA is of consider-

able importance, and it should be viewed more judiciously. Transcripts common to the three

data sets were subsequently normalized and transcript mean TPM counts and TPM count

coefficient of variation (CV) were plotted in relation to increasing transcript size. Regression

analysis of mean TPM counts versus transcript size revealed negative slopes in two of the

three data sets suggesting a reduction of TPM transcript counts with increasing transcript

size. In the third data set, the regression slope line of mRNA transcript TPM counts approxi-

mates zero and TPM counts increased in proportion to transcript size over a range of 200 to

30,000 bp. Similarly, transcript TPM count CV values also were uniformly distributed over

the range of transcript sizes. In the other data sets, the regression CV slopes increased in

relation to transcript size. The recovery of weakly expressed and /or short to midsized

mRNA and lncRNA transcripts varies with different RNA extraction methodologies thereby

altering the fundamental sequencing relationship between transcript size and TPM counts.

Our analysis identifies differences in RNA sequencing results that are dependent upon the

quantity of total RNA recovery from whole blood. We propose that incomplete RNA extrac-

tion directly impacts the recovery of mRNA and lncRNA transcripts from human blood and

speculate these differences contribute to the “batch” effects commonly identified between

sequencing results from different archived data sets.
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Introduction

Human blood has been recognized as an important diagnostic resource for centuries. Blood is

a complex fluid in continuous contact with all body tissues, thereby providing information

from a variety of unique compartments that include nucleated white blood cells (WBC), enu-

cleated red blood cells (RBC) and cell-free RNA: ribonucleoprotein complexes and ancillary

vesicular debris from assorted tissues in the body [1, 2]. Since blood collection is considered a

non-invasive procedure, it is frequently used for the evaluation of an assortment of disease

related biomarkers. In addition, the growing application of personalized medicine in the treat-

ment of chronic diseases has shown that RNA signatures can be employed to specifically opti-

mize treatment strategies best suited for the patient. This has supplied the impetus for the

development of a variety of unique methods for the collection, stabilization, and extraction of

RNA from blood.

In the clinic, blood is routinely collected in K2EDTA or ACD Vacutainer tubes, or with

blood collection tubes designed to stabilize RNA/DNA for subsequent extraction at some later

time (e.g., Pax Gene1 [3–5, 6, 8, 9, 12, 14–18, 20, 21, 24–26], Tempus1 [12, 14–17, 19–21,

23–26], RNAgard1 [8, 9]). Each of the various blood stabilization tubes have unique proprie-

tary ingredients designed to stabilize the nucleic acids. The extraction procedures routinely

employed to purify and recovery RNA from blood samples add additional variability since

they employ different extraction technologies such as: phenol-based extractions [3–11, 13, 22],

silica gel column purification procedures [3–6, 8–26], glass fiber extraction columns [26], mag-

netic bead extractions [16–17, 19, 23] and assorted blood cell enrichment methodologies cou-

pled with various extraction protocols [6, 8–11, 17]. The total quantity of RNA recovered from

whole blood differs significantly between these various extraction methodologies [3–26], but

the reported RNA purity (A260/280 > 1.9 and A260/230 ratios > 1.7) and integrity-based RIN val-

ues (RIN> 7) are in the acceptable range for microarray and RNA sequencing studies [27, 28].

Although investigators employing these different extraction technologies use decent quality

RNA considered acceptable for RNA sequencing, when the sequenced transcripts from identi-

cal samples are compared, greater variation is observed between methods than across different

blood samples [6, 8–11, 14, 16, 21, 26]. Therefore, although substantial amounts of data have

been generated with these various blood collection and extraction methodologies, attempts to

pool the data sets for more comprehensive meta-analysis have had limited success. Several

reports evaluating different extraction methodologies concluded that RNA yield contributes

significantly to technical variation across methods [11, 12, 14, 25, 29]. We reported that RNA

content in human blood ranges from 6–22 μg / ml [7], reaching concentrations greater than

previously reported in the literature [3–6, 8–26].

Advancements in next generation sequencing (NGS) have significantly reduced the cost of

RNA analysis and expanded the interest in applying RNA sequencing to an array of disease

conditions. Current dogma relating to the suitability of RNA for sequencing applications, sim-

ply based on RNA purity and integrity, is inadequate. Other criteria are needed to reduce vari-

ability and improve agreement across various extraction platforms. To address this question,

we evaluated three archived data sets in which blood was collected and extracted with different

methodologies, but the resulting raw sequencing counts were processed under identical condi-

tions to minimize analytical pipeline induced variability [27, 28]. We evaluated a variety of

parameters such as the number of gene calls, transcript size distributions and call variance

with the goal of identifying factor(s) that might reduce sequencing variability and provide a

testable explanation for the large batch effects frequently reported when comparing similar

sequencing data sets [29]. Based on our analysis, we propose that the differential recovery of

short to midsized mRNA and lncRNA transcripts during RNA extraction directly affects the
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character and breadth of the RNA library and its amplification, thereby disproportionally

altering RNA calls over the entire range of transcripts. In addition, we demonstrate that the

proportional relationship between transcript size and TPM counts, considered to be the funda-

mental requirement for RNA sequencing, is only attained when RNA is uniformly extracted

and recovered across a complete range of transcript sizes. To address these shortcomings, we

strongly recommend reporting RNA yield in all sequencing studies (e.g., μg RNA / ml of

blood). We encourage investigators to select RNA extraction protocols that provide a mean

RNA recovery approximating 14 μg RNA / ml of human whole blood [7] and that efficiently

recovery RNA over the entire range of transcript sizes.

Methods

Ethics approval and consent to participate

The blood samples employed in this study were collected in accordance with the approved pro-

tocol provided by the Chesapeake Research Review, LLC. CIRBI Protocol # Pro00009509 [7].

Participants received a written informed consent form that was signed and witnessed in accor-

dance with Chesapeake IRB guidelines. Participants provided witnessed signed informed con-

sent documents specifically approved by Chesapeake IRB guidelines. All methods were

performed in accordance with the relevant guidelines and regulations as outlined in the Decla-

ration of Helsinki. The ethics requirements for the other archived data cited in this report are

available in the public forum and were previously met when the data were originally published

[33, 34].

RNA extraction, sequencing, and data analysis

In an earlier report, we analyzed human whole blood RNA concentrations and differential

blood cell counts in thirty-five individuals ranging in age from 50–89 years of age [7]. Fasting

venous blood was collected with K2EDTA Vacutainer tubes, stored at room temperature for

about ~ 15 minutes and aliquoted into RNAzol-BD [7]. The blood: RNAzol-BD lysates were

aggressively shaken to solubilize denatured proteins before storage at -70 C. Extraction of large

RNA transcripts greater than 200 base pairs (bp) was performed according to the manufac-

ture’s protocol (https://www.mrcgene.com/product/rnazol-bd). The two hundred bp cutoff

was established based on Bioanalyzer electropherogram plots of total, large and small RNA

profiles [30]. The RNA was DNase-treated, and 1 μg of large RNA was sent to the University of

Cincinnati Genomics, Epigenetics and Sequencing Core Facility for sequencing. After passing

quality control analysis, the samples were depleted of globin and ribosomal transcripts prior to

library formation and sequencing on the Illumina HiSeq 2000 platform (GSE169359). Stan-

dard procedures were employed to evaluate the quality of the raw data and the resulting

FASTQ data files held 53–77 million single-end reads [31, 32].

We surveyed the Sequenced Reads Archives public repository (https://www.ncbi.nlm.nih.

gov/sra) to select additional data sets for comparison. Archived data set one contained nine

normal controls (GSE109313) ranging in age from 18–70 years of age was included in our

analysis [33]. In this study, blood was collected with PAXgene collection tubes and then

extracted with the PAXgene RNA extraction kit. A total of 500 ng of RNA was ribo-depleted

and used for poly(A) selection. A second archived data set contained twelve control subjects

(GSE112057) of unreported age [34]. Blood samples were collected in Tempus blood collection

tubes and the RNA was extracted with the Tempus Spin RNA Isolation kit. The FASTQ data

files held 21.5–49.3 million double-end reads.

These data sets represent diverse RNA extraction methodologies, providing an opportunity

to examine how different extraction procedures might impact sequencing results. To minimize
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data processing variability, all three data sets were processed through our pipeline under iden-

tical conditions, as outlined in an earlier report [31]. Briefly, FASTQ data files were trimmed

and processed. Single-end reads were aligned to reference genome GRCh37.p13[hg19] using

the BowTie2 aligner supporting gapped alignments. Cufflinks and HTSeq software were used

to provide quality control for our analysis [31]. All counts were expressed as DeSeq-normal-

ized TPM (Transcripts Per Kilobase Million).

A list of 25,354 sequenced read assignments was identified with the annotated reference

genome. RNA transcripts containing < 0.1 TPM count were designated as 0 and RNA tran-

scripts with means < 0.1 TPM counts were omitted from the analysis. The original source files

were screened for copy number variants [32, 35, 36] and multiple assignments for individual

genes were removed and expressed as a single gene ID. These data sets were used to compare

and evaluate mRNA and lncRNA size distribution and transcript expression levels.

Characterization of reference genome RNA transcript lengths

We examined the list of known RNA sequences from reference genome GRCH37.p13[hg19]

to establish a baseline for comparison of transcript lengths in the three data sets [37]. This ref-

erence genome contained 258,705 entries ranging in size from 5 to 347,561 bp’s sequences (S1

Table) with both mRNA and lncRNA sequences as well as known RNA sequences lacking a

name or function (32,686 entries). The blue filled area in Fig 1 depicts the size and number of

named transcripts assigned to each size interval (left y-axis). Each RNA transcript was assigned

to an interval (bin, n = 200) based on Log10 size range of 1 to 360,000 base pairs (e.g., Log10

0–5.556 bp using a 0.028 increment interval). To improve the clarity of the transcript size dis-

tribution plot in Fig 1, the gene Log10 scale was limited to values of 1.7–4.4 thereby covering a

size range of 50 to 30,000 bp’s.

Transcript size does not follow a normal distribution and there is an obvious peak of 28,182

transcripts at ~550–566 bp. Most of the transcripts falling within this size range consist of

lncRNA [38, 39]. In addition, larger transcripts (e.g.,> 1,000 bp’s) code for mRNA genes with

multiple variants. To avoid averaging mRNA length measurements, transcript size is based on

the size of variant one.

To further characterize the size distribution of the RNA reference genome depicted in Fig

1, we downloaded two additional files from NCBI containing annotated lists of mRNAs

(82,961) and lncRNA transcripts (10,782) relevant to the same reference genome (right y-axis).

Although the annotations for lncRNA transcripts relating to assigned function and accepted

identification labels are not as mature as the assignments for mRNA transcripts, the size distri-

bution of lncRNA is interspersed among the mRNA genes [38] and it may provide informa-

tion relating to transcript recovery during RNA extraction. The three sequenced experimental

data sets described in this study were evaluated in relation to the size distribution of the

mRNA and lncRNA reference files depicted in Fig 1 (S1 Table of Transcript sizes).

In our analysis, single-pair sequencing transcripts were assigned to a single gene ID [31, 32]

and specific variants were not identified. Therefore, variant one was selected to represent the

gene length assignment of genes with multiple size variants. Based on the selection of variant

one, a list of 19,608 NCBI mRNA transcripts was identified for our analysis (Fig 1, red line,

right y-axis). These RNA transcripts range in size from 180 (ETDC) to 43,816 (MUC16) bp (S1

Table). Since less information is available relating to the predominant size of specific lncRNA’s

[38, 39], multiple size designations for specific lncRNA transcripts were averaged and a second

list of 6,725 unique lncRNA transcripts was identified (Fig 1, green line, right y-axis). The estab-

lished transcript size of the NCBI reference genome was used as the basis for characterizing the

sequenced RNA in the three experimental data sets (S1 Table of Transcript Sizes).
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Characterization of RNA size distributions in experimental samples

The aligned reads from the three data sets were evaluated with SAMtools to quantify the num-

ber of reads per transcript [31]. Transcripts with mean raw counts� 3 were used to establish a

baseline minimum count prior to TPM transcript size normalization. After TPM size adjust-

ment, the source file containing a list of 25,354 transcripts was further evaluated. To provide

the largest pool of transcript candidates, a preliminary list of transcripts was selected by limit-

ing individual TPM counts to values > 0.1.

Fig 1. The size distributions of NCBI transcripts. The solid blue fill depicts the size of 226,019 RNA transcripts from

reference genome GRCh37.p13[hg19]. RNA transcripts ranging in size from 5 to 347,561 bp were assigned to an

interval (200 bins) based on their Log10 base pair dimension (left y-axis). The x-axis scale range in Fig 1 is truncated

and limited to transcripts ranging in size from 5–30,000 bp. The red line represents the size distribution of 19,608

mRNA transcripts (right y-axis) in which variant one represents the size designation of genes containing multiple size

variants. The green line depicts the size distribution of 6,725 lncRNA transcripts. The black arrow identifies the 200 bp

size cutoff for the RNAzol-BD extraction protocol [30]. A sizable proportion of the RNA depicted around 550–560 bp

is associated with lncRNA transcripts [38]. The size dimensions of the mRNA and lncRNA transcripts used in our

analysis overlap considerably.

https://doi.org/10.1371/journal.pone.0291209.g001
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Analytical methods

Statistical calculations were performed using the Microsoft Windows Excel Platform using the

Analysis ToolPak application (Excel, version 2304 within Microsoft 365, Version 16.0. 16327).

ToolPak is Charles Zaiontz’s Real Statistics Resource Pack for Excel 2010, 2013, 2016, 2019,

2021 or 365 for Windows (Release 8.7). RAnGER data management software previously

described in detail [32, 35] was employed to establish gene count minima, consolidate copy

number variants [36], and perform standard statistical calculations. One-way ANOVA was

employed in conjunction with Student-Newman-Keul’s range test to evaluate computed

means across the three data sets (S3 Normalization and Statistical Analysis).

Results

Overview of sequencing Results for RNA recovered from whole blood by

different methodologies

The selected data files differ markedly in the way RNA was extracted and processed prior to

RNA sequencing. We speculated that an examination and comparison of the sequencing

results might indicate how these methods impact variability during RNA sequencing.

After processing the FASTQ data files, we looked at the total number of sequenced transcripts

with mean TPM counts> 0.1 that corresponded to the NCBI reference genome. A summary of

the analysis is presented in the Fig 2A table. The total number of identified transcripts ranged

from 10,042 to 15,082 (33.4% difference) representing 55.4, 39.6 and 59.5% of the 25,354 anno-

tated transcripts in the C9, C12 and C35 data sets, respectively. To further characterize these tran-

scripts, mRNA and lncRNA transcripts with TPM Counts> 0.1 and known bp size assignments

(Fig 1, S1 Table) were used to evaluate the original lists of total sequenced transcripts. Among the

three data sets, mRNA and lncRNA transcripts with bp size assignments accounted for 84.8 and

6.70% of the identified transcripts, respectively. Collectively, total mRNA and lncRNA transcripts

in the three data sets constitute 91.5% of the sequenced transcripts while transcripts with unas-

signed bp size assignments account for only 8.5% of the transcripts. Therefore, the transcripts

with known bp size assignments should provide a representative assessment of the sequencing

results. The RNA used for sequencing in the C9 and C35 data sets, on average, improved mRNA

and lncRNA recovery relative to the C9 data set by 24 and 56%, respectively (S2).

To consider how RNA recovery affected reported transcript size, 19,608 mRNA and 6,725

lncRNA reference genome transcripts with known size assignments were used to characterize

the sequenced mRNA and lncRNA transcripts identified in the data sets (S1 and S2). In the

C35 data file, 11,882 mRNA transcripts and 1,195 lncRNA transcripts with known size mea-

surement assignments were identified (Fig 2A). The 13,077 mRNA and lncRNA transcripts

identified in the C35 data set was almost identical to the number of mRNA and lncRNA tran-

scripts identified in the C9 data set (13,002) even though the two data sets were processed with

markedly different methods (e.g., EDTA Vacutainer followed by phenol-based extraction with

globin and mRNA depletion vs. PAXgene blood collection with silica gel column purification

and poly-A selection). In contrast to the C9 and C35 data sets, fewer mRNA (24%) and

lncRNA (56%) transcripts were identified in the C12 data set (Tempus blood collection with

silica gel column purification of total RNA). The total number of transcripts identified in the

C35 data set was 7 to 33% higher than in the other two data sets; however, a core group of 8721

mRNA transcripts was identified in all three data files and used in subsequent studies (Fig 2B).

If the number of mRNA transcripts identified in the C9 and C35 data sets is due to an

improved recovery of RNA, one might expect to see more transcripts with TPM counts < 1

due to an improved recovery of low expression transcripts. Fig 2C clearly supports this
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inference. The total number of transcripts with TPM counts < 1 is greater within the C9 and

C35 data set (C9 = 3413, C12 = 81 and C35 = 4409). Furthermore, the distribution of C9 and

C35 transcripts presented in Fig 2C is shifted towards smaller transcripts as compared to C12.

In summary, different numbers of sequenced mRNA and lncRNA transcripts were recovered

with different extraction methodologies and in some cases, these differences are due to the

improved recovery of weakly expressed short to midsized transcripts (Fig 2A and 2C).

Size distribution of sequenced mRNA and lncRNA recovered with different

extraction methodologies

To consider if a disproportionate recovery of RNA transcripts occurred during RNA extrac-

tion, the number of recovered transcripts was portrayed graphically in Fig 3, as a function of

Fig 2. Overview of transcripts in three sequenced data sets. FASTQ-formatted data files from the three data sets were aligned and the mapped reads were

assembled into transcripts. A) Tabular summary of identified sequenced RNA transcripts. The largest number of sequenced mRNA and lncRNA transcripts

with TPM counts> 0.1 was found in the C35 data set, but the total number of transcripts with known bp size measurements was almost identical in the C9 and

C35 data sets. In contrast, the number of mRNA and lncRNA transcripts was ~27% lower in the C12 data set (C35: 13,077 vs C12: 9,563 identified mRNA and

lncRNA transcripts). B) Venn Plot analysis of the sequenced transcripts in the C9 (14,051), C12 (10,042) and C35 (15,082) data files identified 8721 mRNA and

481 lncRNA transcripts common to all three data sets. C) Size distributions of the total sequenced transcripts with mean TPM counts< 1. The number of

sequenced transcripts with mean TPM counts< 1 is markedly higher in the C9 and C35 data sets implying an improved ability to detect weakly expressed

transcripts.

https://doi.org/10.1371/journal.pone.0291209.g002
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transcript size. The size distribution of 19,608 mRNA genes (Fig 3A, red circles) and 6,725

lncRNA transcripts (Fig 3B, red circles) from the reference genome are presented with the size

distributions of the transcripts recovered from the three data sets. The identified mRNAs and

lncRNA for C9 (yellow), C12 (purple) and C35 (green) data sets were assigned a size designa-

tion and plotted relative to transcript size (Fig 3A and 3B). To improve clarity, only transcripts

between 200 and 30,000 bp were reported. While the mRNA size plots for the C9 and C35 data

sets overlap, the C12 transcript size distribution is smaller and shifted slightly to the right sug-

gesting that short and midsized transcripts were omitted. When compared to the 2,752 small-

est transcripts identified in the NCBI mRNA reference list that range in size from 200–1260

bp, the C9, C12 and C35 data sets contained 43.9, 24.7 and 42.4% of the reference transcripts,

respectively.

The lncRNA transcripts between 200 and 30,000 bp identified in the NCBI reference list are

depicted in Fig 3B (red circles). The biggest difference between the lncRNA reference list and

the transcript profiles is the small number of identified lncRNA transcripts in the C9, C12 and

C35 data sets, 15.2, 7.3, and 17.8% respectively. Like the mRNA profiles in Fig 3A, differences

in the relative number of recovered lncRNA transcripts were most notable among the short

and midsized transcripts in the three files.

Fig 3. Size distribution of mRNA and lncRNA sequenced transcripts extracted with different methodologies. The size

distribution of mRNA A) and lncRNA B) transcripts identified in the NCBI transcript reference list is plotted in relation to

increasing transcript size measurements ranging from 200 to 30,000 bp (red circles) and used to provide a reference for

sequenced RNA recovered from three independent data sets. The number of mRNA transcripts and their size distribution in

the C9 and C35 data sets closely overlap while the C12 data set contains fewer total transcripts and a noticeable reduction of

short and midsize transcripts. A smaller number of total lncRNA transcripts were identified in the C9 and C35 data sets and

their distributions overlap. Similarly, to the mRNA size distributions in Fig 3A, the short and midsized lncRNA transcripts

were also visibly diminished in the C12 data set.

https://doi.org/10.1371/journal.pone.0291209.g003
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Analysis of 8,721 transcripts common among the three data sets

A foundational assumption in RNA sequencing predicts that the relative number transcript

counts should be proportional to the size of the transcript. We used the 8,721 transcripts iden-

tified in all three data sets to see if this assumption held true for RNA extracted with the vari-

ous methods.

All three data sets were adjusted to an equivalent number of total counts (200,000, S3)

before preparing scatter graphs of the mean TPM counts plotted in relation to transcript

lengths. Fig 4A–4C represents the normalized mean transcript expression levels for the three

data sets plotted in relation to increasing transcript size over a range of 200 to 30,000 bp (Log10

2.3–4.4). After normalizing the three files to an identical number of total counts, the calculated

mean for the 8,721 individual mRNA transcripts was 22.93 (solid red lines). The regression

slope line for each distribution is depicted by the red-dashed line in each panel. The dashed

red lines should have a slope of zero if the above assumption holds true.

The plots of the C9 and C12 data sets have negative regression slope lines of -1.1144 and

-0.6469, respectively. The slope line of the C35 scatter plot approximates zero (-0.0643) and the

distribution of mRNA transcript counts remains proportional to the relative size of the tran-

scripts. The breadth of the scatter plot at any given transcript size range is explained by differ-

ences in the level of gene expression for transcripts of equivalent size. The three distribution

plots represent an identical number of transcripts (8,721), so the computed slope lines could

only be different from zero if TPM counts were disproportionate relative to transcript size. The

C35 data set was the only file in which the number of TPM counts were proportional to the size

of the transcript. It is also important to note that simply increasing the total number of

sequenced transcripts in the C9 data set by poly-A selection did not correct or reduce the nega-

tive slope line of the mean transcript TPM count vs transcript size relationship. In fact, the nega-

tive slope line was 1.7-fold greater in the C9 data set than in the C12 data set. This result further

emphasizes the importance of efficient transcript recovery on RNA sequencing outcomes.

Coefficient of variation estimates of transcript variability

It is well known that variability, as estimated by the standard deviation (SD), increases in pro-

portion to the calculated mean. To compare the variability among transcripts with different

mean TPM counts, the coefficient of variation (CV) was employed. As previously noted, nor-

malized TPM counts were used in these comparisons. To determine how this variability was

affected by transcript size, scatter plots of the mean TPM count CV values for the C9, C12 and

C35 data sets are presented in Fig 5A–5C. The distribution plot of the 8,721 transcript TPM

count CV’s is plotted as a function of transcript size (Log10 bp). The solid red line (- 0.5 Log10)

represents a mean TPM count CV of ~ 0.31 or 31% for the 8721 transcripts. The scatter plot of

the TPM count CV for the C9 and C12 data sets are similar and the positive regression slope

lines suggest that the variability is increasing in relation to transcript size.

In contrast to the C9 and C12 data sets, the distribution plot of the mean TPM count CV

values across the range of transcripts in the C35 data is uniform and decreases slightly, indicat-

ing the variability was greater among the smallest transcripts. This would be consistent with

the premise that smaller transcripts yield fewer sequencing fragments, thereby providing fewer

and more variable sequencing results [40, 41]. Finally, the narrow range of CV scatter across

transcript size indicates that the C35 data file has the smallest overall level of variability as mea-

sured by the CV of 32.7% (C9 CV = 55% and C12 CV = 52%, respectively).

Based on our analysis of the 8721 transcripts common to all three data sets, using the mean

TPM counts, and their variability presented in Figs 4 and 5, we speculated that the differences

in the recovery of short and midsized transcripts contributes to these observed changes.
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Slope and intercept analysis of all transcripts in the three data sets

In our initial analysis of transcript TPM counts vs transcript size presented in Fig 4, total TPM

counts were normalized across the three data sets and the regression analysis was limited to

8721 common transcripts. It is possible that the different slopes and intercepts observed in Fig

4, were influenced by the TPM count normalization or the selection of a reduced number of

Fig 4. Relationship of transcript mean TPM counts to transcript size among 8721 transcripts identified in all

three data sets. The mean TPM count for the individual transcripts was plotted in relation to the transcript size. The

normalized sample mean of 22.93 is depicted by the solid red line. The mRNA transcript distribution plots depicted for

C9 and C12 are similar, and both display negative regression lines (red dashed line). The solid and dashed red lines

depicting the sample mean and regression line, respectively, of the C35 data sets are almost parallel. Since the total

number of transcripts in all three data sets are identical, this result could only occur if the relative distribution of

counts assigned to the distinct size transcripts has changed.

https://doi.org/10.1371/journal.pone.0291209.g004
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total transcripts. To examine this possibility, we computed the individual slope and intercept

values for the lncRNA and mRNA transcripts with known size measurements and TPM

counts > 0.1 in all 56 samples. Since the individual samples have different numbers of total

TPM counts and identified transcripts, regression analysis of the individual samples is likely to

contain the greatest variability among the three data sets. The results of this comprehensive

analysis are presented in the Box plots depicted in Fig 6.

Fig 5. Impact of transcript size on sequencing variability. The positive slope line depicted by the red dashed line in

the C9 and C12 data sets suggests that variability is increasing in relation to transcript size. Unlike the C9 and C12 data

sets, the CV distribution within the C35 data set is less variable and more evenly distributed across all transcript sizes.

The regression slope line of CV dispersion in the C35 data set is negative suggesting that the smaller mRNA transcripts

are more variable, and the CV values decline with increasing transcript size.

https://doi.org/10.1371/journal.pone.0291209.g005
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One Way Analysis of Variance of the computed slopes (C9: -0.600 ± 0.198, C12:

-0.650 ± 0.083, and C35: 0.096 ± 0.038, Mean, SD) and intercepts (C9: 2.539 ± 0.620, C12:

3.142 ± 0.267, and C35: -0.083 ± 0.124, Mean, SD) of the regressed transcript-TPM counts vs

transcript-size relationships in the three data sets clearly demonstrate that the slope and inter-

cept of the C35 data set is markedly different than the values identified in the C9 and C12 data

sets (df = 2, 53, slope: F = 411, P< 5.3E-33, Intercept: F = 711 P< 5.24E-39). Furthermore, the

observed slopes and intercepts of the samples in the C35 data set are consistent with the expec-

tations that form the basis for RNA sequencing analysis.

The colored area within each box plot represents approximately 50% of the values identified

between the 25 and 75 percentile and the solid black line represents the sample median. In Fig

6, note the shift in the sample median from the mean in the C9 and C12 data sets relative to

the C35 sample group and the degree of dispersion between the slopes and intercepts of the

data sets. Regression analysis of the sequencing results of the individual samples without TPM

count normalization or the survey of identical transcripts in the various data sets did not alter

the unique slope and intercept profiles previously described in Fig 4. But the degree of sample

dispersion is reduced in the C35 data set vs that noted for the C9 and C12 samples. A detailed

summary of the statistical analysis is provided in S3.

Discussion

A variety of methodologies are available for the extraction and recovery of RNA from whole

blood. In addition, novel collection tubes, such as PAXgene and Tempus tubes, also can be

employed for RNA stabilization [3, 4, 6, 8, 12–21, 23–26]. Although published microarray and

RNA sequencing studies consistently use “good quality” RNA that is defined by A260/280,

A260/230 ratios and RIN values, differences in gene expression are frequently reported and

findings are difficult to replicate across various experimental platforms. The resulting differ-

ences observed between similar studies performed using different extraction methodologies

preclude pooling the data for more potentially informative “meta” analysis, irrespective of the

fact that these sequencing studies begin with “good quality” RNA. Apparently, extracted RNA

is not identical across studies even though it has been deemed “good quality.” Since the quality

and integrity of the RNA are theoretically identical, other factors must be contributing to the

Fig 6. Box plots depicting the mean (x) slope (A) and intercept (B) values for individuals in the C9, C12, and C35 data sets. All

identified mRNA and lncRNA transcripts with a TPM count> 0.1 were regressed in relation to transcript size. The average number of

mRNA and lncRNA transcripts with TPM counts> 0.1 and known transcript size in the three data sets were 12,164 ± 500.7, 9108 ± 6.68

and 11,847 ± 261.1, respectively. The mean slope and intercept values recorded for the three data sets were proportional to values

previously noted in Fig 4.

https://doi.org/10.1371/journal.pone.0291209.g006
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variability of the sequencing results. In this report, we compared three NCBI archived data sets

of RNA sequencing results where markedly different extraction methods were used to obtain

RNA from the blood of human control subjects. We sought to identify additional factors con-

tributing to the disparate results commonly reported for sequencing results. Table 1 summa-

rizes the factors addressed in this study.

In our initial survey of the sequencing results, we detected sizeable differences between the

three data sets in the total number mRNA and lncRNA transcripts, as noted in Fig 2A. The

number of sequenced transcripts in the C12 data file was ~28.5 and 33.7% lower than in either

the C9 or C35 data sets even though the raw FASTQ files were processed identically. Further-

more, the identification of lncRNA transcripts in the C12 data set also was reduced by more

than 50%. This is a substantial difference since total RNA was extracted for RNA sequencing

in this data set. When evaluating RNA extraction, greater importance should be given to the

quantity of RNA obtained per volume of blood (Table 1, A).

In our initial survey of mRNA and lncRNA transcripts, we identified major differences in

the total number of transcripts as noted in Fig 2A. An examination of the number of tran-

scripts with TPM counts < 1 among the three data sets also identified larger numbers of

weakly expressed transcripts in the C9 and C35 data sets (Fig 2C). This finding implies that

there is an improvement in the recovery of smaller and weakly expressed RNA transcripts in

these two data sets. Therefore, the quantitative recovery of RNA is of considerable importance,

and it should be viewed more judiciously (Table 1, B).

Table 1. Summary of sequencing results recovered from data sets employing different extraction methodology.

Item Experimental Parameter Comment:

A Extraction Capacity The largest number of mRNA and lncRNA transcripts recovered

from the FASTQ data files were found in the C35 data set (Fig 2A).

Total transcript recovery was improved in relation to the C9 and

C12 data sets by 6.8 and 33.4%, respectively).

B Extraction Efficiency The ability to efficiently recover short or weakly expressed

transcripts independent of transcript size. The largest number of

small and midsized transcripts with TPM counts < 1 was identified

in the C35 data set (C9 = 3,413, C12 = 88 and C35 = 4,409, Fig 2A

and 2C).

C Recovery of small to midsized RNA

transcripts

A comparative survey of mRNA and lncRNA transcripts based on

transcript size revealed the differential loss of short to midsized

transcripts in some data sets (Fig 3).

D Proportional relationship of transcript

counts to transcript size

The C35 data set was the only file in which the number of

transcript counts could be shown to increase in parallel to

transcript size, thereby fulfilling a fundamental precept of RNA

sequencing (Fig 4C).

E Experimental error is independent of

transcript size

The coefficient of variation in the C35 data set was uniformly

expressed over the entire range of transcript sizes (Fig 5C). In

contrast, the CV increased in proportion to transcript size in the C9

and C12 data sets (Fig 5A and 5B), possibly due to incomplete

transcript recovery.

F Differential gene expression If short to midsized mRNA and lncRNA transcripts are not

efficiently and quantitatively extracted from whole blood, the

increased variability attributed to transcript recovery across

samples cannot be distinguished from differential gene expression.

G RNA extraction In additional to relying on the stability and purity of RNA

recovered from whole blood, greater efforts should be directed at

establishing criterion for evaluating the efficiency and capacity of

the RNA extraction protocols that are routinely used for RNA

sequencing.

https://doi.org/10.1371/journal.pone.0291209.t001
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To gain additional perspective on the transcript size relationships of the known mRNA and

lncRNA transcripts identified in the three data sets, the sequenced RNA transcripts were

ranked according to their size measured in base pairs (bp’s). The size distribution of sequenced

mRNA and lncRNA transcripts recovered from the three data files is depicted in Fig 3A and

3B. The mRNA and lncRNA transcripts identified in the three data files are superimposed

with the list of mRNAs and lncRNA transcripts from the NCBI reference files. A comparison

of the mRNA and lncRNA transcript size distributions in the three data files, to the know tran-

script sizes of the NCBI reference genome, provides some perspective on the range of tran-

scripts recovered during RNA extraction (Fig 3A and 3B). The visible absence of weakly

expressed short to midsized mRNA and lncRNA transcripts in the C12 data set supports the

conclusion that these transcripts may not be efficiently recovered in some extractions (Table 1,

C).

Although major differences exist in the total number of identified transcripts between the

three data files, 8721 common transcripts were identified in all three data sets (Fig 2B). When

examining these transcripts, one would expect some degree of commonality since they repre-

sent blood drawn from healthy control subjects and they are expressed at sufficient levels to be

detectable in all three data sets. When examined in relation to transcript size, the normalized

mean TPM counts identified among the short to midsized transcripts in the C9 and C12 data

sets appeared to be disproportionately higher than the mean TPM counts of largest transcripts.

This unexpected result contradicts the long-held view that the number of sequencing calls

should be proportional to the relative size of the transcript. However, the transcript count dis-

tributions in the C35 data set displayed proportional numbers of mean TPM counts across the

entire transcript size range of 200 to 30,000 bp Fig 4C. We recommend confirming that the

number of transcript counts remain proportional to the relative size of the sequenced tran-

scripts (Table 1, D).

After observing differences in the slope lines of the transcript TPM count distributions

across transcript lengths, it was of interest to see how these changes might impact data set vari-

ability. Since the CV is typically employed to evaluate the precision of a technique, ideally one

would expect the CV to remain stable and independent of any changes in transcript size.

Therefore, the coefficient of variation was employed to characterize transcript normalized

TPM count mean variance among the three data sets. The CV plots for the C9 and C12 data

sets (Fig 5A and 5B) are similar; however, the profile of the C35 data set displayed a much

smaller range of dispersion over the entire transcript size range with a mean CV of 32.7%

thereby approximating the inter-individual CV of 30.7% for total blood RNA concentrations

[7]. The scatter plot slope line of the mRNA transcript means and their respective CVs, in the

C35 data set, remained constant (slopeffi 0) over the entire range of transcript sizes from 200

to 30,000 bp’s (Figs 4C and 5C). Therefore, when analyzing RNA sequencing data files, it may

be useful to confirm that experimental error is evenly distributed and independent of tran-

script size (Table 1, E).

Many studies have been published to identify the factors that contribute to sequencing vari-

ability; however, our overall understanding has not progressed beyond the fact that RNA stabi-

lization and extraction are fundamental sources of this variation [3–26]. Initial efforts to

explain differences in the number of mapped reads identified protocol differences relating to

the selection of RNA species [5, 27, 42]. rRNA and globin make up a substantial number of

total RNA transcripts and if they are not removed prior to library formation, they will consti-

tute most of the sequencing reads. Therefore, selection of total RNA versus poly-A selected

RNA, or globin and rRNA depletion, have a major impact on library complexity and the num-

ber of mapped reads [27, 42]. The development of dependable and reproducible ribosomal

and globin depletion protocols has significantly improved the number of exonic and intronic
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reads that can now be detected during RNA sequencing [5, 14, 43–45]. Protocols that use total

RNA extraction in conjunction with globin and ribosomal RNA-depletion procedures demon-

strate significant improvement in the total number of mapped reads.

Although the mRNA and lncRNA transcript size distributions of the C9 and C35 data sets

are identical (Fig 3A), the normalized transcript mean and CV distribution plots for these two

data files are markedly different (Figs 4–6). While RNA transcript recovery is important, it is

of equal importance to demonstrate that the sequenced transcripts exhibit a proportional tran-

script size/TPM count relationship as depicted in Fig 4C. Although similar numbers of total

transcripts are recovered in both data sets, only the sequenced genes in the C35 data set show

this proportionality. Apparently, the presence of a large number of transcripts is unable to cor-

rect deficiencies in RNA recovery and sustain the proportional transcript size/TPM count rela-

tionship observed in the C35 data set.

Based on the overview of the three data sets employed in this study, we speculate that the

inefficient recovery of weakly expressed short to midsized RNA transcripts has a significant

impact on RNA sequencing results. Sultan et.al. [5] previously reported an improved recovery

of short RNA transcripts during phenol-based extractions and proposed that these transcripts

are lost during complicated and tedious silica column-based extractions. Yip et.al. [21] has also

reported that sample processing-dependent differences in gene expression were due to the loss

of transcripts during RNA extraction. Therefore, it is reasonable to conclude that the loss of as

many as 30–50% of the mRNA and lncRNA transcripts directly impacts the character and size

of the resulting sequencing library. Sequencing results are further compromised during library

amplification by a reduction in the total number of recovered transcripts as well as the incom-

plete and variable recovery of other transcripts resulting in over and under amplification of

segments of the resulting library (Figs 4 and 5). If the primary character of the RNA library is

skewed or misrepresented in any way, library amplification will further distort the sequencing

results. Therefore, it is critically important to extract and efficiently recovery the complete

range of transcripts from the blood during RNA extraction. The subsequent removal of globin

and ribosomal RNA transcripts provides the best opportunity for the construction of a “com-

plete” library that can be representatively amplified thereby significantly reducing the between

file variance (Table 1, F).

We previously reported that the average RNA content in human whole blood is 14.58 μg /

ml of blood with inter-individual variations ranging from 6.7 to 22.7 μg / ml (Inter-individual

CV of 30.7% and intra-individual CV of 5.9%, [7]). Since the variation in inter-individual

RNA recovery spans a 3.4-fold range, RNA extractions must have sufficient capacity to effi-

ciently cover this dynamic range of blood RNA concentrations. Based on an average blood

concentration of 14.58 μg of RNA / ml of blood, sequencing 1 μg of RNA from the C35 sam-

ples constitutes ~7% of the RNA in the sample. Previously reported column-based RNA yields

for human blood are much lower ranging 1–8 μg of RNA / ml of blood [3, 4, 6, 8, 12–21, 23–

26]. Using 1 μg of RNA from these extractions would constitute 12–100% of the RNA from the

sample. The impact of these dramatic quantitative differences requires additional consider-

ation, and we encourage investigators to pay greater attention to the amount of total RNA that

is recovered during blood RNA extraction. Furthermore, we strongly recommend that the

quantity of recovered RNA should be reported for every sample used for RNA sequencing and

included in all publications. If the expected range of total RNA is routinely recovered and effi-

cient globin and ribosomal RNA depletion protocols are employed there is a greater opportu-

nity for a “highly complex” library to be identified in every sample and representatively

amplified thereby significantly reducing sample variance [27, 42, 46].

In conclusion, we believe that differences in RNA recovery resulting from incomplete RNA

extraction is a primary source of the RNA sequencing batch effects previously reported in the
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literature. The disproportionate loss of short to midsize mRNA and lncRNA transcripts during

RNA extraction excludes these transcripts from any subsequent downstream application such

as qPCR, RNA microarray analysis or RNA sequencing. This issue may be extremely impor-

tant when studying physiological pathways containing large numbers of short regulatory

genes, such as cytokines, as well as the physiological role of short lncRNA transcripts [15, 16].

We speculate that these issues are further exacerbated when the cDNA libraries are amplified

prior to qPCR or RNA sequencing. Finally, if the efficiency of RNA transcript recovery

changes from sample-to sample with various extraction methodologies, it becomes impossible

to determine the extent to which RNA recovery or the level of differential expression are con-

tributing to the observed TPM count differences (Table 1, G). Although the methodological

improvements mentioned here do not leap to the forefront when analyzing RNA sequencing

data, addressing these concerns using the steps outlined here may uncover information buried

in the data and strengthen study conclusions.

Supporting information

S1 File. Distribution of TPM counts across individual samples. Maximum number of tran-

scripts (N) identified in the C9, C12 and C35 data sets after processing FASTQ data files under

identical conditions. A) A total of 12,059, 9,978 and 10,616 transcripts were found in every

sample in the C9, C12 and C35 data sets, respectively. Further analysis identified meaningful

numbers transcript counts as the number of samples per file was sequentially decreased to one.

For example, in the C35 data set, 233 lncRNA transcripts were found in only 1 of the 35 sam-

ples but the counts ranged from 3.5–613 with a mean of 55.9 ± 85.9 TPM counts. Transcripts

within this count range clearly represent legitimate gene expression values and thereby may

provide some indication of the sensitivity of the extraction process.

(XLSX)

S2 File. Normalization and statistical analysis. Summary of the experimental rationale and

ANOVA statistical analysis.

(DOCX)

S1 Table. List of NCBI reference genome transcripts, mRNA and lncRNA transcripts with

base pair size assignments. To evaluate RNA recovery, transcripts in reference genome

GRCH37.p13[hg19] [37] were used to identify the sequenced transcripts in the three data files.

The lists of 19,608 mRNA and 6,725 lncRNA transcripts used to identify sequenced mRNA

and lncRNA transcripts in the three data set are provided.

(XLSX)
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