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How might bacteriophages shape biological invasions?
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ABSTRACT Invasions by eukaryotes dependent on environmentally acquired bacterial 
mutualists are often limited by the ability of bacterial partners to survive and establish 
free-living populations. Focusing on the model legume-rhizobium mutualism, we apply 
invasion biology hypotheses to explain how bacteriophages can impact the competi­
tiveness of introduced bacterial mutualists. Predicting how phage-bacteria interactions 
affect invading eukaryotic hosts requires knowing the eco-evolutionary constraints of 
introduced and native microbial communities, as well as their differences in abundance 
and diversity. By synthesizing research from invasion biology, as well as bacterial, viral, 
and community ecology, we create a conceptual framework for understanding and 
predicting how phages can affect biological invasions through their effects on bacterial 
mutualists.
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MUTUALIST AVAILABILITY DRIVES HOST INVASIONS

B iological invasion is a fascinating and troublesome phenomenon: it causes major 
ecological and economic costs but also provides important ecological insights (1–3). 

An invasion occurs when a species introduced to a new range proliferates there and 
becomes pestiferous (4–6). The ability to invade is strongly influenced by the biota, either 
native or introduced, with which an introduced species interacts in the new range (7, 8).

Many eukaryotes depend on bacterial mutualists that are horizontally transmitted 
[Table 1 (9–13)]. These bacteria do not disperse with host propagules and instead 
infect the host from a free-living stage. Thus, for mutualist-dependent eukaryotes to 
invade, these horizontally transmitted symbionts must arrive independently and survive 
as free-living bacteria (4, 14–19). Bacteriophages, viruses that infect bacteria, strongly 
shape bacterial community composition (20–29). Thus, as a eukaryotic mutualist moves 
into a new range, its fate could hinge on the ecological and evolutionary outcomes 
of bacterium-bacteriophage interactions encountered there by the free-living bacterial 
symbionts on which it depends. Here, we explore how rhizobiophages, bacteriophages 
that specialize on rhizobia, could affect range expansions by legumes and rhizobia 
(Fig. 1), which is a well-studied model of mutualist-dependent invasion. To do so, we 
introduce invasion biology and then use it to predict how phages could influence an 
invasion by a mutualist-dependent eukaryote.

A MODEL SYSTEM: LEGUMES, RHIZOBIA, AND RHIZOBIOPHAGES

Legumes and rhizobia

Soil-dwelling rhizobia infect legume roots, populate intercellular spaces, and stimulate 
production of specialized organs called nodules (47). In each nodule, a subset of the 
intercellular rhizobium population is engulfed by host cells and encapsulated within an 
intracellular symbiosome. There, some rhizobia differentiate into specialized endosymbi­
otic cells called bacteroids, which reduce atmospheric di-nitrogen (N2) in mutualistic 
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exchange for photosynthates (48, 49). Within the nodule, symbiotic rhizobia can reach 
high cell densities (50–52), but once released from senescing nodules, rhizobia must 
survive the abiotic and biotic stresses of soil (53–62).

Free-living rhizobia survive as saprotrophs or persister cells in bulk soil [53, 54, 63, 
but see reference (64)], which is not penetrated by roots and holds few resources 
and inhabitants (65, 66). Fortunate cells eventually encounter a rhizosphere (67, 68), 
the ecologically complex habitat surrounding roots (69–72). Rhizobia can proliferate in 
rhizospheres of both legumes and non-legumes (73, 74), sometimes surviving for years 
without a legume host (75). The rhizosphere community is rich in both competitors (57, 
76–82) and natural enemies, such as rhizobiophages (83, 84).

Rhizobia can facilitate legume invasions

Legumes (Fabaceae) are potent invaders (85). They endanger native plants directly by 
competition and indirectly by increasing soil nitrogen (N) concentration, which hinders 
habitat restoration (86, 87) and facilitates non-leguminous invasive plants (88–91). A 
legume species usually partners with particular groups of rhizobia (69, 92–96) and 
obtains greater benefit from familiar, co-evolved rhizobia (37, 97–102). However, rhizobia 
and plants disperse independently (Fig. 1a), with senescing nodules releasing reproduc­
tive rhizobia into adjacent soil (103). Rhizobia passively disperse long distances by dust 
storms (104–107) and can also be moved with soil or co-transported with the roots 
of adult legume hosts (37–39, 108–116). Nevertheless, rhizobium genotypes are not 
cosmopolitan and often exhibit a significant biogeographic structure at various spatial 
scales (37, 117–121). Since novel habitats lack familiar rhizobia, establishing legume 
crops onto new continents requires inoculation with compatible rhizobia (122–125). 
Lacking such deliberate inoculation, range expansion by rhizobium-dependent wild 
legumes requires that familiar rhizobia either co-disperse or arrive independently (75, 76, 
93, 99, 126). How most symbiotic bacteria disperse remains poorly understood (127, 128).

For some legumes, greater soil mineral N can reduce the need for rhizobia (129), 
but for many legumes, successful invasion depends on the presence or introduction of 
compatible rhizobia (16, 76, 130–132). Despite this dependence, there are multiple cases 
in which rhizobial symbionts have apparently co-invaded with rhizobium-dependent 
legumes (37–39, 108, 112, 115), with legumes representing almost 10% of the invasive 
plants recorded for North America (85).

TABLE 1 Examples of environmentally acquired mutualistic bacteria that associate with invasive eukaryotic hosts

Invasive eukaryote Mutualistic bacterium References

Alnus glutinosa (European alder) Frankia sp. Schwob et al. (30)
Casuarina cunninghamiana (River oak) Frankia sp. Zimpfer et al. (31)
Gunnera tinctoria (Chilean rhubarb) Nostoc sp. Gioria and Osborne (32)
Hedera helix (European ivy) Bacillus amyloliquefaciens Soares et al. (33)

Myrica faya (firetree) Frankia sp.
Burleigh and Dawson; Vitousek et al.; Walker and 

Vitousek (34–36)

Various legumes Rhizobia (e.g., Bradyrhizobium sp.)
La Pierre et al.; Rodríguez-Echeverría et al.; 

Stepkowski et al. (37–39)
Agrilus mali (apple buprestid) Pantoea sp. and Pseudomonas orientalis Bozorov et al. (40)

Agrilus planipennis (emerald ash borer)
Streptomyces sp., Erwinia sp., and Burkholderia 

cepacia Vasanthakumar et al. (41)
Riptortus pedestris (a species of broad-headed 

bug) Burkholderia sp. Kikuchi et al.; Kikuchi et al. (42, 43)
Sirex noctilio (sirex woodwasp) Streptomyces sp. and γ-proteobacteria Adams et al. (44)
Various coreoid and lygaeoid stinkbugs Burkholderia sp. Kaltenpoth and Flórez; Kikuchi et al. (45, 46)
Various insects e.g., gut bacteria Lu et al. (15)
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FIG 1 (a) This cartoon depicts different paths along which an invaded community might assemble. In the center, the native 

community, depicted in cool colors, includes the native legume (LN), nodulated by its native rhizobium symbiont (RN), which 

also lives free in the soil and hosts native phage (PN). Biological entities from a hypothetical distant home range community, 

depicted in warm colors, can arrive via several pathways. On the left, a potted legume (LI) is co-introduced with rhizobium 

(RI) and phage (PI) from its home range. On the lower right, the introduced legume (LI) arrives as seed, with neither symbiont 

nor phage. On the top right, rhizobium from the distant home range is co-introduced with phage (RI + PI). Alternatively, in the 

center right, phage (PI) and/or rhizobium (RI) arrive independently. (b–g) When introduced rhizobia (RI) and native rhizobia 

(RN) compete, the various ways they might interact with phages lead to different invasion biology hypotheses, as described 

below. (b) Introduced rhizobia (RI) arrive without their familiar home range phages (PI), are not infected by native phages (PN), 

and compete with native rhizobia (RN) (“enemy escape”). (c) Both rhizobia and phages are introduced from the same distant 

population. If each rhizobium is preyed upon only by its familiar phage (gray lines absent), then each rhizobium might be 

regulated by its familiar phage; however, the relative magnitudes of the dark lines determine if invasion can occur. If either 

rhizobium is attacked by an unfamiliar phage, the gray lines between that pair are present (dark). Again, several outcomes 

are possible, as described below. (d) Native phages affect introduced rhizobia more negatively than native rhizobia (“biotic 

resistance” via “reverse spillover”). (e) Native phages are strongly amplified by introduced rhizobia but more negatively affect 

native rhizobia (“enemy spillback”). (f ) Introduced phages are strongly amplified by native rhizobia but more negatively affect 

introduced rhizobia (biotic resistance via “subsidized pathogen”). (g) Introduced phages more negatively affect native rhizobia 

than introduced rhizobia (“enemy spillover”). Note that panels d and e can occur, regardless of the presence of introduced

(Continued on next page)
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Rhizobiophages

Surprisingly little is known about rhizobiophage diversity. Early studies classified 
rhizobiophages by morphology into at least three families (Siphoviridae, Myoviridae, and 
Podoviridae), all within the order Caudovirales (83, 133). Next-generation sequencing 
has suddenly increased information about rhizobiophage genomes, revealing a broader 
taxonomic diversity (84, 134–143). However, owing to limited research, the number and 
diversity of described rhizobiophage genomes available on GenBank comprise only a 
fraction of the recorded genomes of their rhizobium hosts [e.g., see references (144–
147)].

The spatial structure of bacteriophage diversity is poorly described in general and 
known primarily from aquatic ecosystems (148–152). It is typically thought that the 
distribution of a bacteriophage is limited only by the presence of its host, though 
evidence to support this claim is still missing (153). Bacteriophages can passively move 
short distances in soil (23) [reviewed in reference (154)], and some phages, either as 
virions or as prophages, might disperse long distances with wind-borne dust [Fig. 
1a (155)] or as stowaways in transported soil. Accordingly, some phages are widely 
distributed (156–158). However, many phage communities are spatially structured (29, 
134, 150, 151, 159–162), and phage community composition in soil can vary immensely 
even across small spatial scales [>10 m (163–165)]. Communities of rhizobiophages differ 
strongly among nearby (<10 km distant) legume populations: phages from different 
agricultural fields of the same host legume rarely showed more than 88% average 
nucleotide identity (134), and an unpublished analysis of 141 genome sequences 
of Bradyrhizobium spp. from different continents found that all of the 31 detected 
prophages were unique (J. Van Cauwenberghe, unpublished data). These observa­
tions suggest that rhizobiophages disperse poorly over longer distances, but they 
might nonetheless accompany deliberately applied rhizobium inoculum. Sharma and 
colleagues (83) detected compatible rhizobiophages in locations where rhizobia were 
intentionally inoculated onto legumes introduced for afforestation and soil rehabilita­
tion. Often, however, rhizobia being developed for agricultural inoculum are screened for 
lysogeny (166, 167), and such efforts have been further facilitated by genomic methods 
(168).

Phage predation may affect rhizobium success

Mutualism theory predicts that when individual hosts interact with many symbionts, 
selection favors hosts that can choose the most cooperative symbionts (169–171). For 
example, legumes can constrain infection by compatible but less beneficial rhizobia (70, 
92, 172–178). However, legumes seldom control which genotypes nodulate them (118, 
131, 179–182), and legume choice cannot overcome rhizosphere effects (53, 172, 180, 
183, 184). For example, crop nodules are rarely occupied by the most effective nitrogen 
fixers (125, 185, 186) because those genotypes fail to compete in the rhizosphere (54, 
186, 187). Instead, the nodulation chances of a rhizobium genotype increases with its cell 
density in the rhizosphere (184, 188, 189), which means it must compete effectively (125, 
190) and survive natural enemies in the rhizosphere (191, 192).

Rhizobiophages are abundant in soils (193–195), especially in legume rhizospheres 
(133, 196, 197), where they can reduce rhizobium nodulation rates and plant growth 
(198, 199). Phage density is correlated with the decline of free-living (saprophytic) 
rhizobia in soil (200), and rhizobiophage infection can strongly regulate rhizobium 

FIG 1 (Continued)

phages, and that panels f and g can occur, regardless of whether native phages can attack introduced rhizobia. Lines indicate 

the direction of the interaction effect. Arrowheads indicate interactions that increase fitness of the biological entity at which 

the arrowheads point, while a flathead indicates interactions that decrease fitness of the receiving partner. Interactions and 

partners depicted in gray might be either present or absent, as described above. Arrow thickness indicates the magnitude of 

the interaction effect.
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populations (201–209). Applying particular rhizobiophages can improve legume crop 
production by controlling highly competitive rhizobium genotypes that are inefficient 
N2 fixers (202, 203). Rhizobiophages might similarly influence the relative competitive 
success of native versus introduced rhizobia.

APPLYING INVASION BIOLOGY THEORIES TO LEGUME-RHIZOBIUM-RHIZOBIO­
PHAGE SYSTEMS

As with infectious disease epidemics, complex ecological interactions drive the fates 
of biotic invasions. After an infectious agent is introduced to a host population, the 
agent can either disappear, lodge as a commensal, or spread. Similarly, depending 
on the ecological interactions it encounters, an introduced species could immediately 
disappear, quietly persist with no apparent effect on the native community, or become 
pestiferous, disrupting the native community, either ecologically or economically or 
both.

Lytic bacteriophages influence bacterial community composition by causing heavy 
mortality on specific bacteria (20–27, 29, 210, 211). Temperate phages following the 
lysogenic pathway produce more complex effects. They can confer benefits to their 
hosts, such as superinfection exclusion (212–214) and auxiliary metabolic genes (215, 
216), but still turn lethal when they activate their lytic pathway. Thus, bacteriophages 
might alter the success or failure of bacterial symbionts that can drive the population 
expansion of introduced eukaryotic hosts. Invasion biology theory helps analyze the 
many paths along which rhizobiophages could indirectly influence legume invasions 
(Fig. 1b through g).

Invasion theory (217) proposes mechanisms by which biotic interactions might either 
facilitate invasion (Fig. 1b, e, and g) or produce “biotic resistance,” i.e., the ability of a 
native community to resist exotic invasion (Fig. 1c, d, and f). For example, suppressive 
soils rich in phages that infect Ralstonia solanacearum can resist establishment by that 
plant pathogen (218). Similar mechanisms might be responsible for the aforementioned 
failure of inoculated rhizobia to competitively occupy either soil (54, 186, 187) or nodule 
communities (125, 185, 186). We hope this paper stimulates testing of the hypotheses 
described below.

The earliest invasion biology hypothesis derives from an assumption underlying 
classical biological control of crop pests (219); i.e., organisms proliferate when introduced 
in a new range because they arrived without the natural enemies that controlled 
them in the home range [“enemy escape” or the “enemy release hypothesis” (4, 7, 
220–222); Fig. 1b]. Eukaryotic hosts commonly proliferate after dispersing over long 
distances without viral enemies (223). For example, plant species introduced to the U.S. 
are infected with 24% fewer virus species (224) than in their European home ranges. 
If eukaryotic hosts arrive and associate with mutualistic bacteria that have dispersed 
without bacteriophage enemies, the host and bacteria might similarly co-proliferate in 
the new range. Thus, introduced rhizobia that have escaped compatible rhizobiophages 
from their home range might outcompete native rhizobia, which remain regulated by 
their own rhizobiophage enemies, thereby facilitating a legume invasion.

Regardless of whether they escape home range phages, introduced bacteria also 
encounter “unfamiliar phages”. If evolutionary pressures (e.g., ongoing local adapta­
tion and negative frequency-dependent selection) overcome constraints (e.g., genetic 
distance and fitness trade-offs), phage host ranges might evolve to encompass 
previously unfamiliar bacteria (e.g., Fig. 1d through g). Thus, enemy release could be 
fleeting [e.g., see references (4, 225–228)], with the fate of introduced rhizobia depend­
ing on how they and native rhizobia interact with phages.

Native phages that can infect introduced rhizobia might hamper co-proliferation 
of introduced legumes and rhizobia (biotic resistance via “reverse spillover”; Fig. 1d). 
Alternatively, native phages could facilitate invasion by spilling back onto native bacteria 
from introduced bacteria [(229, 230) Fig. 1e]. Such “enemy spillback” (231, 232), also 
called “local pathogen accumulation” (233), could occur if native phages only rarely 
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infect introduced rhizobia (thereby producing little change in the density of introduced 
rhizobia) but persistently achieve unusually large burst sizes when they do. Because 
spillback from introduced rhizobia might increase phage density, the phenomenon 
might be detected by comparing phage abundance in the presence versus absence 
of introduced rhizobia. Both reverse spillover and enemy spillback can occur in either the 
presence or the absence of introduced phages (hence the gray lines in Fig. 1d and e)

Non-native phages co-introduced with rhizobia could also either deter or promote 
co-proliferation and invasion of introduced rhizobia and legumes. Introduced phages 
might deter invasion simply by continuing to specialize on and regulate co-introduced 
rhizobia (Fig. 1c). Introduced phages could also deter rhizobium invasion by proliferating 
more luxuriantly on occasionally infected native rhizobia but most negatively affecting 
the density of introduced rhizobia (biotic resistance via “subsidized pathogen” [(14) Fig. 
1f]. This subsidy of the introduced pathogen could arise if native rhizobia are either more 
abundant or because they produce comparatively larger burst sizes than introduced 
rhizobia. We know of no examples of this phenomenon.

Alternatively, introduced phages that infect native bacteria (either rhizobia or 
other competitors) could facilitate legume-rhizobium invasion by spilling over onto 
and decimating competing native bacterial communities [“enemy spillover,” a form of 
“apparent competition” (234–236); Fig. 1g]. Although not yet documented for rhizobia, 
this phenomenon has been observed in other microbial introductions (212, 230, 237, 
238). Enemy spillover can occur, e.g., when introduced bacteria carry a prophage, which 
allows them to outcompete native bacteria that lack resistance to this phage [i.e., 
phage-mediated allelopathy (239)]. A prophage that is induced in only a few of its 
lysogenic hosts might continue to replicate lytically on competing susceptible hosts, 
which could then be eliminated, while protecting its lysogenic hosts via superinfection 
exclusion (212–214). In a recent study simulating bacterial invasions in vitro, bacteria 
dispersing to nearby patches could outcompete native bacteria only when carrying 
phages to which the latter were susceptible (240).

Thus, regardless of the path along which an invaded community assembles (Fig. 1a), 
phages can influence invasion by mutualist bacteria. In some scenarios, phages facilitate 
legume invasion (Fig. 1b, e, and g), whereas in others, they hamper invasion (Fig. 1c, 
d, and f). Key questions, then, are (i) how often do rhizobia disperse to a new range 
without their co-evolved rhizobiophages? (ii) how likely is it that rhizobiophage host 
ranges include or acquire novel rhizobia? (iii) which rhizobia (native or introduced) will 
be most negatively affected by phages? and (iv) how will rhizobiophage effects on a 
rhizobium community cascade onto host legume populations?

Whether a phage will affect a novel host bacterium (e.g., spillover) more negatively 
than its original host (e.g., spillback) depends largely on the relative effectiveness of 
mechanisms involved in the various stages of infection. These mechanisms include 
the ability of the phage to attach to each host [e.g., as quantified by adsorption 
rates (241)], the effectiveness of rhizobium intracellular defense mechanisms, such as 
restriction-modification systems, CRISPR-Cas systems, abortive infection, and assembly 
interference [reviewed in references (242–244)], or resistance conferred by prophages 
[i.e. superinfection exclusion (242, 245)], and the phage’s ability to overcome these 
defenses [reviewed in reference (246)]. How phages will influence outcomes of bacterial 
competition also depends on population and community-level processes, as discussed 
below.

ECO-EVOLUTIONARY FACTORS INFLUENCE HOW RHIZOBIOPHAGES AFFECT 
LEGUME-RHIZOBIUM INVASION

Rhizobiophages might influence legume invasions by lowering rhizobium density. 
Indeed, early experiments using single-strain inoculation found that adding rhizobioph­
ages sometimes reduced rhizobium density (205) but not always (206). However, 
we think rhizobiophages are more likely to influence legume invasions by altering 
the composition of rhizobium communities (201–203, 205–207, 209). Accordingly, in 
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experiments creating tripartite microbial communities containing rhizobiophages that 
infect one of two competing rhizobia, phage-resistant strains often occupy a higher 
percentage of nodules than phage-sensitive strains (202, 203, 206, 207). For example, 
a phage specialized on Bradyrhizobium japonicum USDA 117 altered the competitive 
outcome between USDA 117 and B. japonicum USDA 110 by reducing in-soil popula­
tion size and nodule occupancy of its USDA 117 host (202, 203). Such results suggest 
that rhizobiophages alter apparent competition among rhizobium taxa. Indeed, simple 
mathematical models of bacterial interactions with lytic phages produce numerical 
dynamics akin to other predator-prey models (247). However, overlapping temporal 
scales of evolutionary and numerical dynamics can drive continuing fluctuations 
following initial community assembly, necessitating a new conceptual framework (24, 
28, 248).

Below, we outline some of the decisive factors known to determine how phage 
communities affect the structure of bacterial communities and suggest, given these 
principles, which rhizobium community, introduced or native, will be most negatively 
affected by novel phages. We also consider how these effects might cascade up to affect 
the invasion potential of a host legume.

Coevolution

The interdependence of bacterial and phage fitness often produces a co-evolutionary 
arms race (24, 249, 250): bacteria experience selection for various defensive traits 
[e.g., alterations to receptors by which bacteriophages attach or mechanisms that 
recognize and degrade phage DNA or block bacteriophage replication (244, 251)], 
but bacteriophage populations evolve the ability to use different attachment sites or 
evade recognition by bacterial hosts (246, 252). A co-evolving partner that fails to 
counter-adapt quickly faces extinction [i.e., the red queen hypothesis (253)]. Phages 
typically evolve faster and become locally adapted: more infective on sympatric than 
allopatric bacteria [e.g., see references (254, 255)]. Thus, naturally occurring phage-bacte­
ria interaction networks usually consist of modules involving local phages adapted to 
related bacteria (136, 256–258) from nearby locations (24, 134, 254, 255, 259). Since the 
genetic distance between familiar versus recently encountered hosts influences whether 
a bacteriophage can infect unfamiliar hosts (258, 260) and introduced rhizobia often 
occupy genetic clusters distinct from native rhizobia (37, 116), phages might not infect 
unfamiliar rhizobia.

Specialization

Both phage host range (i.e., the number of types of bacteria a phage can infect and 
lyse) and the breadth of bacterial resistance (i.e., the number of types of phages a 
bacterium can resist) are measures of specialization which strongly influence microbial 
community composition. Generalists, i.e., phages that can infect and lyse more types 
of bacteria or bacteria that can resist infection by more types of phages, should be 
more successful than specialists, unless generalization involves trade-offs (261, 262). For 
example, most ways by which bacteria prevent phage infection are costly to bacterial 
growth (263–266), which limits how many types of phage a bacterium can resist and 
could also cause bacteria to lose resistance to other phages (267). Similarly, specialist 
phages might infect and lyse few types of bacteria but obtain larger burst sizes or higher 
adsorption rates than do generalist phages attacking those same bacteria (268, 269). 
Thus, the fitness benefits a phage obtains from each bacterium type trade off with the 
number of bacterial types it can infect and the phylogenetic distances among them [e.g., 
see references (269–274)].

Accordingly, phages are usually specialized within a locality. For example, some 
rhizobiophages associated with common bean rhizobia were extreme specialists, 
infecting less than 1% of tested rhizobia (134). However, phages within a community 
can vary in host range: some rhizobiophages are generalists, infecting more than 90% of 
local, closely related hosts (134). Phages infecting via more conserved surface receptors 
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may infect a more phylogenetically diverse range of hosts (275, 276). However, even 
generalist phages are rarely able to infect more than a few taxa and, if so, would only 
infect certain strains within each taxon (261, 277, 278).

The genetic distance between familiar versus recently encountered bacteria reduces 
the likelihood a phage can infect such unfamiliar hosts (258, 260). Adapting to new 
bacteria is most difficult for phages highly specialized on distantly related hosts (258, 
260, 271). However, even minor mutations (271, 279, 280) can add new host species 
or genera (225, 270, 281). Thus, phages might be maladapted only during the initial 
encounter with novel bacteria (14, 282), e.g., in plant pathogens (232, 283). Native 
rhizobiophages might adapt to a rapidly expanding population of introduced rhizobia, 
or introduced rhizobiophages might adapt to the numerically dominant native rhizobia.

Relative abundance

Frequency-dependent selection favors phages that adopt abundant hosts (284), which 
causes those hosts to decline. Multiple studies have documented this “kill-the-winner” 
process (26, 285–287). Thus, the relative effect of phages on introduced or native 
rhizobium communities may depend largely on the initial relative abundances of both 
communities. Newly introduced rhizobia are likely to be rare (288), which selects for 
phages that can infect and drive down the abundance of native rhizobia relative to 
introduced rhizobia. These phages could be either introduced phages, with shifted 
host ranges, or native phages. Indeed, if introduced phages evolve to infect the 
more abundant members of the native rhizobium community, they might disrupt the 
community enough to benefit introduced rhizobia (spillover). As introduced rhizobia 
proliferate and become invasive, however, selection on phages would reverse. Thus, 
delayed eco-evolutionary feedback could yield fluctuating-selection dynamics (289).

Diversity

Rhizobium communities are highly diverse (145, 290, 291), comprising strains with 
various phage resistance profiles (134), but the diversity of rhizobiophages is still poorly 
known (136). It is unclear whether and how bacterial diversity predicts how novel phages 
might structure a host community comprising both familiar and novel bacteria. It is also 
poorly known how bacterial diversity affects phage evolution [but see reference (274)] 
and how such evolution could feed back to affect the host community. In kill-the-winner 
dynamics, “winning” phages can increase bacterial diversity by functioning as keystone 
predators (292), but a more diverse host community may be more likely to contain 
bacteria that can survive a greater variety of phages [sampling effect (293)]. Nonethe­
less, a less diverse bacterial community comprising generalists with relatively broad 
phage resistance [e.g., with few phage receptors or with effective broad spectrum 
phage-defense systems (294–299)] might still be more resilient to more different phages 
than is a more diverse community of specialists, each resistant to a different phage (e.g., 
due to more specialized phage-defense systems).

In general, richer phage communities can better control microbial communities 
(300, 301), either by including phages with larger or more rapidly expanding host 
ranges (300–303) or by including a greater diversity of specialized phages, each of 
which attacks different bacterial hosts [sampling effect (293)]. Experiments using phages, 
either to modify bacterial communities in marine and freshwater systems or to combat 
pathogenic bacteria in medicine and agriculture (27, 154, 304–307), generally find that 
cocktails of multiple phages provide broader and more durable (i.e., reduced rate at 
which phage resistance evolves in bacterial hosts) bacterial control than obtained by 
deploying phages individually (27, 305, 308). However, bacteria are more likely to evolve 
generalized resistance to a more diverse community of phages (309, 310). For example, 
Betts et al. (310) found that more diverse phage communities caused selective sweeps of 
lipopolysaccharide (LPS) synthesis gene mutations, which conferred broad resistance. 
Nevertheless, introducing even a low-diversity phage community might sufficiently 
disturb the competitive balance within a bacterial community to compromise its 
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resistance to invasion. Bacterial communities are generally composed of a few dominant 
genotypes and many rarer genotypes (311, 312), so the decline or eradication of a single 
dominant genotype via a kill-the-winner process could create a dynamic cascade in 
which previously rarer genotypes become dominant (26, 287).

Dispersal affects diversity

The diversity of introduced communities of phages and bacteria depends on their 
respective large-scale population structure and their introduction histories. Communities 
and populations usually become genetically depauperate as they disperse over long 
distances (313, 314), suggesting that native communities of phage and bacteria are likely 
to be more diverse than those established by a single, small introduction. However, 
if either phages and/or bacteria have been introduced multiple times from multiple 
locations, then the introduced communities might be very diverse (313, 315–318). 
Rhizobia co-invading with legume hosts often exhibit evidence of multiple introductions 
(108, 116), possibly by accompanying more than one species of congeneric legume hosts 
(39, 116, 319, 320). It would be interesting to compare the diversity of rhizobiophages 
in such communities with those found in rhizobium communities formed by single 
introductions.

Pleiotropic effects of phage resistance in rhizobia

Rhizobiophages can potentially influence legume fate when they select rhizobia with 
phage resistance traits that share pleiotropic effects with symbiosis or mutualism traits. 
Phage resistance traits in rhizobia may trade off with their abilities to engage with 
legumes such as rhizosphere colonization (321), nodulation (322, 323), or nitrogen 
fixing efficiency (205, 322). Some bacteriophage-resistant mutants of Bradyrhizobium 
japonicum (324) have alterations in cell surface LPSs, which are also common sites of 
phage attachment (323). Defective LPS prevents nodulation by disabling communication 
between legumes and rhizobia (190, 325, 326). Alternatively, phage resistance can be 
associated with more and larger nodules, higher nitrogenase activity (327, 328), and 
enhanced host nitrogen content (329). Finally, such pleiotropic effects are not always 
observable (330). Thus, if rhizobia evolve resistance to novel phages, any pleiotropic 
effects of these traits could either disrupt or improve their cooperation with familiar 
legumes, depending on the magnitude and direction of pleiotropy.

CONCLUSIONS AND FUTURE DIRECTIONS

Dependency in rhizobial mutualists appears to be an Achilles’ heel for many invading 
legumes (16, 37, 93, 112). Thus, legume invasions might be either foiled or promoted by 
the evolutionary and ecological effects of native and/or co-introduced bacteriophage 
enemies. The probability of enemy escape is initially determined by the likelihood 
that the enemy arrives in the new range and subsequently by the adaptive potential 
of the phages and bacteria, which determines whether introduced rhizobia might be 
hampered by new enemies or can enjoy the benefits provided by enemy spillover and 
enemy spillback (Fig. 1).

Our ability to predict the relative probabilities of these various scenarios, both in 
this system and among other eukaryotes dependent on mutualists infectiously acquired 
from the environment, is hampered by how little is known about these processes (enemy 
escape, spillover, biotic resistance via reverse spillover, biotic resistance via subsidized 
pathogen, and spillback) in this and other bacterium-bacteriophage systems. Progress in 
this area depends upon identifying bacteriophage communities associated with rhizobia 
and legumes, and characterizing the ecological and evolutionary interactions among 
these populations in both native and non-native habitats. Invasions of other eukaryotes 
dependent on infectiously acquired bacterial mutualists should receive similar attention.
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