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ABSTRACT Bacteriophage comparative genomics is complex due to the mosaic nature 
of the genomes, and an underlying continuum of diversity confounds the identification 
of clear taxonomic boundaries. Nucleotide sequence comparison methods have been 
described for phage taxonomy, but they are computationally intensive and scale poorly 
as the number of sequenced phage genomes increases. Here, we describe PhamClust 
as a new bioinformatic approach for grouping phages according to their inter-genome 
relatedness. PhamClust calculates a proteomic equivalence quotient (PEQ) for each pair 
of phages based on amino acid sequence identity for those genes that are shared 
among phages. PEQ values span from 0% (no shared genes) to 100% (all genes shared 
at 100% identity), and using a large mycobacteriophage genome data set, we show 
that two-step clustering down to a PEQ of 25% constructs genome groupings (clusters) 
closely mirroring those constructed manually over time, with the differences attributable 
to historically arising incongruities rather than illogicalities in PhamClust. PEQ values 
can also faithfully divide clusters into subclusters, although the relationships are highly 
heterogeneous, with different PEQ values needed for the subdivision of different clusters. 
PhamClust can be used to assort any group of phages, including the RefSeq phage 
collection.

IMPORTANCE Bacteriophage genomes are pervasively mosaic, presenting challenges to 
describing phage relatedness. Here, we describe PhamClust, a bioinformatic approach 
for phage genome comparisons that uses a new metric of proteomic equivalence 
quotient for comparative genomics. PhamClust reliably assorts genomes into groups 
or clusters of related phages and can subdivide clusters into subclusters. PhamClust is 
computationally efficient and can readily process thousands of phage genomes. It is 
also a useful analytic tool for exploring the different types of inter-genome relatedness 
characteristic of phages in different clusters.
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B acteriophages are the most abundant and genetically diverse biological entities 
in the biosphere (1). Like bacteria, their evolution is shaped by both vertical and 

horizontal modes of inheritance, but pervasive horizontal genetic exchange (HGE) has 
given rise to highly mosaic phage genomes (2, 3). However, the contribution of HGE 
differs depending on phage host, lifestyle, and genome (4). In general, temperate phages 
engage in greater levels of HGE than lytic phages, perhaps reflecting recombination 
events occurring when they are integrated as chromosomal prophages (4). Nonetheless, 
pervasive genomic mosaicism presents a substantial challenge to taxonomic strategies 
for grouping phages according to their genomic relationships, and whole genome 
phylogenies are often amalgams of the many different and distinct phylogenies of the 
composite genes (5). Furthermore, comparison of a large number of phages isolated 
on Mycobacterium smegmatis suggests that there is an underlying continuum of phage 
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genetic diversity, and assortment into groups reflects differences in prevalence and 
sampling, rather than rigid biological barriers to genetic exchange (6).

Comparative analysis of mycobacteriophage genomes illustrates many of the 
challenges in representing phage genetic relationships. Over 2,200 genomes of 
individual mycobacteriophages have been sequenced and display substantial overall 
diversity (7). When a relatively small number of genomes had been sequenced, it 
was simple to group them into “clusters” based on overall DNA sequence similarity 
(8). As more genome sequences became available, there was evident heterogeneity 
within clusters, and this variation could be represented by division into subclusters, 
largely based on average nucleotide identity (ANI) comparisons. However, as the number 
of genomes increased, the threshold parameters reflecting these subcluster divisions 
appeared to be non-universal, and to vary for different genomic clusters (8, 9). The same 
phenomenon has been described for Enterobacteriaceae phages (10).

Nucleotide sequence comparisons are computationally intensive and have limitations 
when comparing highly mosaic genomes. VIRIDIC has been proposed as a nucleotide-
based system for phage taxonomy but it is computationally expensive, limiting the 
number of genomes that can be readily analyzed (11). Several alternative methods for 
approximating phage taxonomy have been described, including shared gene content 
analysis (4) facilitated by assortment of phage genes into groups (phams or phamilies) 
using BLASTP (12), kClust (6, 12) or more recently MMseqs2 (13, 14), and determination 
of shared phams (4). Similar gene content-based methods have been described for 
comparison of bacterial genomes including calculation of the percentage of conserved 
proteins (POCP) (15), alignment fraction (AF) of genes (16), and proteomic approaches 
(17, 18). These types of comparisons are generally computationally inexpensive for large 
sets of genomes because they do not require orthologous gene alignment; therefore, 
runtime is essentially constant with respect to genome size. These alignment-free 
metrics are poorly effective at distinguishing genomes that are less impacted by HGE, 
but alignment-based approaches such as ANI or average amino acid identity (AAI) (19) 
perform similarly poorly when comparing very distantly related genomes that primarily 
share horizontally transferred genes.

Currently, the ~2,200 sequenced mycobacteriophage genomes have been sorted 
into 31 clusters (Clusters A, B, C, etc.), 12 of which are divided into subclusters (Subclus­
ters A1, A2, A3, etc.), and there are seven “Singletons,” each of which has no close 
relatives (20, 21). Cluster sizes vary enormously, with over 740 Cluster A phages, but 
fewer than five each for Clusters U, V, X, Y, Z, AA, AB, AC, AD, and AE (https://phag­
esdb.org). Recently, it has been shown that some Mycobacterium genomes are replete 
with integrated prophages, with over 1,700 new unique prophage sequences that are 
diverse and generally not closely related to the M. smegmatis phages (22). To facilitate 
integration of the phage and prophage data sets and simplify computationally efficient 
exploratory analyses of inter-genomic relatedness, we have developed PhamClust, a 
tool that calculates an index we refer to as the proteomic equivalence quotient (PEQ), 
which provides a global estimate of genome similarities. We have determined the PEQ 
values which most closely reconstruct the extant cluster and subcluster groupings 
and show that PhamClust can efficiently process over 4,000 phage and prophage 
genomes. PhamClust also offers an analytical tool for illustrating different genomic 
relationships within different clusters and subclusters, an important consideration for 
phage taxonomy. PhamClust can be applied to any set of phage genomes, including the 
GenBank RefSeq phage data set.

MATERIALS AND METHODS

Programming and availability

PhamClust is a command-line Python program compatible with Python 3.6 and above. It 
uses the Python bindings for the PARASAIL alignment library (23) to efficiently compute 
global alignments between orthologous genes shared by any pair of genomes. Sklearn 
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(https://pypi.org/project/scikit-learn) is used to perform hierarchical clustering based 
on calculated pairwise genomic distances, and Plotly (https://pypi.org/project/plotly) 
is used to generate heatmaps useful for visualizing the structure of resulting clusters 
and subclusters. PhamClust can be obtained from GitHub (https://github.com/chg60/
phamclust) or installed from PyPI (https://pypi.org/project/phamclust).

Description of command-line arguments

The command-line interface to PhamClust exposes several variables that can be used 
to alter the default behavior of PhamClust. These arguments, their descriptions, and 
default values can be seen by invoking PhamClust with the “--help” argument or visiting 
the documentation on GitHub but are also briefly described here. Users can choose 
between several metrics (see Pairwise genomic similarity calculations, below) to calculate 
intergenomic similarities as well as changing the thresholds and hierarchical clustering 
linkage types used for clustering and subclustering. Subclustering can be turned off 
entirely or set to be used only on clusters that include at least some target number 
of genomes. Finally, users can decide how many central processing unit (CPU) cores 
to leverage and whether to retain temporary files after the run completes (recommen­
ded for repeated runs, for example, to optimize alternative sets of suitable clustering 
thresholds).

Data

The pdm_utils toolkit (24) was used to retrieve the “Actino_Draft” database (version 465) 
(containing sequenced and annotated Actinobacteriophages) from http://databases.hat­
full.org, and to export all 2,121 mycobacteriophage proteomes as FASTA files of amino 
acid sequences. PhaMMseqs (14) was used with default settings to assort the 235,094 
protein sequences into 7,690 gene phamilies, with the “--pangenome” flag so that 
PhaMMseqs would export a tab-separated values (TSV) file containing genome-to-
pham-to-translation mappings used as the input file for PhamClust (Data Set S1).

Pairwise genomic similarity calculations

PhamClust can use any of the following metrics to compute the similarity between a pair 
of genomes:

1. Jaccard coefficient (JC) (25) is the size of the set of intersecting phams in a pair 
of genomes divided by the size of the union of phams in those genomes. Neither 
gene length nor presence of paralogs is considered.

2. Gene content similarity (GCS) (4) is the bi-directional proportion of shared phams 
in a pair of genomes.

GCS = (2 × PS)/(P1 + P2),
where PS is the number of phams shared by a pair of genomes, P1 is the number of 
phams in the query genome, and P2 is the number of phams in the target genome. Like 
JC, GCS does not account for gene length and paralogs.

3. POCP (15) is theoretically more accurate than GCS because it accounts for any 
paralogs present in either genome being compared. In paralog-free genomes, 
POCP is equivalent to GCS.

POCP = (C1 + C2)/(T1 + T2),
where C1 and C2 are the number of conserved proteins (including paralogs) in the query 
and target genomes, respectively. T1 and T2 are the total number of proteins in the query 
and target genomes, respectively. Gene length is not considered.
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4. AF (16) is calculated as (LC1 + LC2)/(LT1 + LT2), where LC1 and LC2 are the summed 
lengths of conserved proteins in the query and target genomes, respectively. LT1 
and LT2 are the summed lengths of all proteins in the query and target genomes, 
respectively.

5. AAI (19) is calculated as the length-weighted average percent identity between 
orthologous genes shared by a pair of genomes. Here, we modify the meaning to 
use Needleman-Wunsch global sequence alignments of orthologous gene pairs, 
rather than using two-way BLASTP alignments as in the original.

6. Proteomic equivalence (PEQ) is calculated as the product of AF and AAI. It thus 
accounts for both the proportion of shared genes between a pair of genomes, as 
well as the sequence identity within shared genes.

For each metric, the distance between a pair of genomes is calculated as 1.0 
minus similarity(genome1, genome2). By default, PhamClust uses PEQ to derive pairwise 
genomic similarities/distances, as this metric reflects global genomic relatedness better 
than the others.

Computing global sequence alignments

Needleman-Wunsch (26) global alignments were computed using the Python bindings 
for the PARASAIL alignment library (23). For any pair of sequences, the alignment was 
calculated using the BLOSUM62 substitution matrix (27) with affine gap penalties of 
−11/−1 for gap opening/extension, respectively. These are commonly used gap penalties 
for the BLOSUM62 matrix.

Computing genome-wide nucleotide identity

Genome-wide BLASTN (28, 29) nucleotide identities were calculated for all pairs of 
mycobacteriophages in the data set. BLASTN was run between all pairs of genomes with 
an E-value cutoff of 1 × 10−5, culling limit of 1 (for example, to avoid double-counting 
degenerate repeat regions), and low-complexity masking disabled; resulting HSPs were 
processed to derive the total number of identical bases N found in all significantly similar 
regions for each pair of genomes. By summing the number of identical bases in HSPs 
from both source-to-target and target-to-source BLASTN searches and dividing by the 
summed genome lengths, a bi-directional genome-wide percent identity was obtained 
for each genome pair.

RESULTS

PhamClust workflow

The workflow for PhamClust begins with the identification of a set of annotated phage 
genomes for which the potential coding sequences have been identified. The predicted 
protein sequences are then sorted into groups of related “phamilies”’ using PhaMMseqs 
(30). PhaMMseqs records the genome-to-pham-to-translation mappings in a TSV file 
(e.g., Data Set S1), which is used as the input file for PhamClust. Genome names in 
the input file are assumed to be unique (which is true for the mycobacteriophage 
data set), and each genome’s pham-to-translation mappings are loaded into a set-like 
data structure that facilitates efficient comparison of genomes based on shared phams. 
Once genomes have been loaded into PhamClust, pairwise distance matrices can 
be calculated using various metrics (see Materials and Methods) although proteomic 
equivalence (PEQ) is the default function (Fig. 1). Pairwise distances can be calculated 
in parallel, allowing efficient comparison of thousands of phage genomes, with runtime 
scaling approximately linearly with the number of CPU cores utilized. The full distance 
matrix is hierarchically clustered to a user-specified distance threshold, and optionally 
subclustered if indicated. Cluster and subcluster matrices are written to a chosen 
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FIG 1 Workflow for PhamClust and genome comparisons. Annotated phage genomes can be compared by PhamClust 

following assembly of phage gene phamilies using PhaMMseqs, which can export a TSV file mapping genomes to phams 

to translations. PhamClust uses the data in this TSV file to calculate inter-genomic similarities (using PEQ by default) and 

populate a pairwise similarity matrix. The genomes are pre-clustered by complete linkage with similarity ≥75% to identify 

groups of highly homogeneous genomes; representatives of these groups are then clustered by average linkage with 

similarity ≥25% to form genome clusters. Non-singleton clusters can be optionally subclustered using single linkage with 

similarity ≥60%. For inter-genomic similarity calculations, five other metrics (JC, GCS, POCP, AF, and AAI) are available for use. 

For each of the clustering steps, users can specify different similarity thresholds and linkage types than those used by default.
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output directory, along with heatmaps showing the relatedness of genomes within each 
non-singleton cluster (Fig. 1).

Proteomic equivalence correlates strongly with genome-wide nucleotide 
identity

PEQ is a metric designed to accommodate two key parameters of phage genome 
relationships: the number of shared genes and the extent of amino acid sequence 
similarity between the shared genes. It provides values between 1.0 and 0, where 1.0 
reflects that all genes are shared and have 100% amino acid identity, and 0 indicates 
that there are no shared genes with amino acid sequence similarity greater than the 
detection threshold for pham assembly (equivalent to ~15% global amino acid identity 
with PhaMMseqs). A total of 2,248,260 data rows were obtained by pairwise comparison 
of all 2,121 mycobacteriophage genomes available at the time of the analysis (June 2022; 
Data Set S1). For every unique genome pair, the following measurements were made: JC, 
GCS, POCP, AF, AAI, proteomic equivalence (PEQ), and genome-wide nucleotide identity 
(gNI). We first compared the extant metrics of JC, GCS, POCP, AF, and AAI with gNI (Fig. 2A 
through E) and displayed the pairwise values as scatterplots. Most pairwise comparisons 
(88.8%) are between phages that have little or no nucleotide sequence similarity, and 
this tendency is reflected in the marginal histograms of each subplot, where the bulk of 
data points is found in the bottom left quadrant (Fig. 2).

Because phage genomes only rarely encode paralogous copies of genes, GCS and 
POCP values differ slightly for only some pairs of phages (Fig. 2B and C). These metrics 
have virtually indistinguishable relationships with gNI, and both consistently overesti­
mate genome relatedness, especially as gNI decreases below 50% (Fig. 2B and C). 
Curiously, although mycobacteriophage clusters have ostensibly been grouped using 
a GCS threshold of 35% in the last several years, we observe large number of genome 
pairs in the same cluster that fall below this GCS threshold (as low as about 25%) (Fig. 
2B). Many of these are likely historically entrenched and pre-date use of the 35% GCS 
threshold, while others may result from the fact that gene content-based distances do 
not satisfy triangle inequality. A bifurcating pattern is observed for AF (Fig. 2D) similar 
to the relationships previously described between gene content distances (1 minus GCS) 
and Mash distances (4, 31) and likely reflects differences in rates of horizontal gene 
transfer between different lineages of phages. AAI also shows a bifurcating pattern (Fig. 
2E) which may result from different rates of mutation between genomes sharing either 
primarily vertically or primarily laterally inherited genes. Each of these five metrics has 
a non-linear relationship with gNI, complicating their usage for understanding genome 
relationships.

In contrast, proteomic equivalence (PEQ) has a roughly linear relationship with gNI 
(Fig. 2F). One notable departure is that when gNI is above 50%, PEQ tends to be slightly 
lower than gNI. This is likely a result of imperfect genome annotations with some open 
reading frames (ORFs) being omitted or being annotated with variable translational start 
codons. These will have a more adverse effect on PEQ when genomes are closely related 
than if they are more distantly related. When gNI is below 50%, PEQ tends to be slightly 
higher than gNI; in this case, PEQ likely provides a better estimate of global genome 
relatedness, because homologous but long-diverged proteins can be recognized even 
when nucleotide sequence similarities are no longer statistically significant. We note that 
computing the BLASTN values for this analysis required ~60 hours with 16 processing 
cores, whereas PEQ analyses took ~20 minutes using the same cores.

PhamClust constructs phage clusters that mirror extant cluster assignments

To evaluate PhamClust outputs and to help calibrate PEQ thresholds, we compared 
PhamClust with a large set of mycobacteriophage genomes that have been assorted 
into clusters, subclusters, and singletons, using manual methods over a period of time. 
PEQ values can thus be established that largely mirror these extant groupings. However, 
we recognize that the extant cluster/subcluster assignments are likely imperfect in that 
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FIG 2 Scatterplots illustrating the relationships between protein-anchored genome similarity indices and genome-wide BLASTN identity. (A–F) Each dot 

represents a pair of mycobacteriophage genomes, colored teal if they have been manually assorted into the same genomic cluster, or red if they are in different 

clusters. The closer each metric correlates with BLASTN identity, the greater the number of comparisons that fall along the dashed black line on the diagonal of 

each subplot. For each subplot, the best fit linear model is shown (red dashed line) along with the line equation and Pearson R2 value. The marginal histograms 

show that by far the most pairwise comparisons between phages show little or no detectable sequence similarity. The relationships between gNI and (A) JC, (B) 

GCS, (C) POCP, (D) AF, (E) AAI, (F) PEQ are shown.
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they have been assembled stepwise by addition of phages to the data set over a 
30-year period. Nonetheless, the extant structure is sound with mostly minor and known 
discrepancies. For example, Subcluster A1 phages share the general features of other 
Cluster A phages, but are more distantly related and could arguably constitute a new 
cluster. In general, changes as such have not been implemented to secure correspond­
ence with the published literature. Nonetheless, investigation of the PEQ values that 
reconstitute the extant assignments is a useful starting point for evaluating PhamClust. 
From there, we can explore discrepancies between PhamClust and extant assignments 
and learn about the impact of PEQ values on the clustering.

As a starting point, we found that a PEQ value of 25% differentiated well between 
intra-cluster and inter-cluster values (Fig. 3). However, initial efforts to cluster genomes 
down to this threshold resulted in the collapse of several clusters (P, I, and N; B and W; H 
and U) due to the existence of phages which clearly belong to one of these groups but 
also share extensive HGE-driven similarity to individual phages in another group. We thus 
used PhamClust to perform clustering in two iterations based on pairwise PEQ. In the 
first iteration, we hierarchically clustered genomes by complete linkage using a threshold 
of PEQ ≥ 75%. Hierarchical clustering proceeds in order from most-to-least related pairs 
of genomes, and complete linkage requires that as genomes are evaluated for entry into 
a cluster, they must meet or exceed the chosen similarity threshold with each of the 
extant members of the cluster in order to join the cluster. Clustering in this way results 
in homogeneous groups sharing most of their genes at high average percent identity; 
this homogeneity allows us to choose a good representative for merging related groups 
in the second iteration of clustering. The representative was chosen for each group by 
selecting the genome with the highest average pairwise PEQ to the remaining members 
of that group (i.e., the cluster medoid). Representatives were then hierarchically clustered 
with each other by average linkage using a threshold of PEQ ≥ 25%. By average linkage, 
a genome can only join a cluster if its mean similarity to all extant members (here again, 
genomes are added to clusters in descending order of similarity) of the cluster meets or 
exceeds the target threshold.

This two-step clustering workflow produced 33 clusters and 7 singletons, in close 
alignment to the extant groupings of 31 clusters and 7 singletons (Table 1). To compare 
the two, we assessed whether the PhamClust assignments agreed with extant cluster 
designations for each pairwise genome analysis. This yielded a confusion matrix (Table 1) 
from which PhamClust’s global precision (1.0) and sensitivity (0.734) could be calculated 
relative to the current assignments at PhagesDB.org (20). PhamClust’s overall output 
assignments are encouraging and indicate that PhamClust is not prone to clustering 
unrelated (or very distantly related) genomes. We note that the sensitivity appears to be 
low due to a high false negative rate (Table 1).

Disparities between PhamClust and manually derived genome clusters

Closer inspection revealed the sources of the two additional clusters assigned by 
PhamClust, relative to extant genome clusters. The first of these is an additional cluster 
containing all 189 of the genomes currently grouped in Subcluster A1. This change alone 
accounts for 96,957 (98.6%) of the false negative values from lost links between the other 
513 phages in Cluster A (513 × 189 = 96,957). Subcluster A1 itself has good cohesion, 
with reasonably high average PEQ between members of this group (Fig. S2). However, 
members of Subcluster A1 share on average less than 25% PEQ with other Cluster A 
members and are therefore much more distantly related to them (Fig. S2). Reducing the 
PEQ threshold enough to merge Subcluster A1 with the rest of Cluster A results in a 
cascade of other cluster mergers whose end result bears little resemblance to the manual 
groupings. Overall, the inclusion of Subcluster A1 in Cluster A is inconsistent with other 
cluster assignments, although to retain association with previously reported analyses we 
do not propose formal re-assignment. As such, PhamClust has made suitable and 
appropriate assignments for the Subcluster A1 phages, and if not for the historical 
precedent, they would form a separate cluster. We note, however, that the extant Cluster 
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A—including Subcluster A1—could be considered a supercluster as previously described 
(10). We also note that the relatedness of Subcluster A1 to the rest of Cluster A is similar 
to that between phages in Clusters B and W, between Clusters H and U, and among 
Clusters P, I, and N, which might also be considered superclusters in this scheme.

FIG 3 Mycobacteriophage clusters can be approximated by PEQ ≥ 25%. Each panel shows a box-and-whisker plot mapping inter-cluster (left) versus intra-cluster 

(right) PEQ distributions for genomes in a cluster. Box-and-whisker parameters use the R ggplot2 package default values: boxes correspond with the 25th 

through 75th quartiles with a line drawn at the median; whiskers above and below the boxes stretch to either a 1.5x of the interquartile range (IQR) or the 

min/max data point—whichever is closer to the box; outlying points above or below 1.5x IQR are also shown. The red dashed line is drawn at PEQ = 25%, the 

threshold which best differentiates between clusters. Cluster names are indicated in the title of each panel, with the number of genomes in each cluster in 

parentheses. Those clusters which have been further subclustered have the cluster size indicated in red text.
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The remaining 1,386 false negatives (1.4%) are contributed by the second “extra” 
cluster generated by PhamClust, containing the seven genomes designated as 
Subcluster F2 (Table 1); this change affects links with the 194 remaining Cluster F phages 
(Fig. S3). Like the Subcluster A1 phages, the Subcluster F2 phages have good internal 
cohesion, but overall they are distantly related to other members of Cluster F. Both 
represent cases where PhamClust’s decision to leave the A1 and F2 phages out of Cluster 

TABLE 1 Confusion matrix comparing PhagesDB clusters to PhamClust clusters

PhagesDB cluster PhamClust cluster Size True positivesa True negativesb False positivesc False negativesd

A1 4 189 149,094 498,069 0 96,957
A2–14,16–20 1 513 N/Ae N/Ae N/Ae N/Ae

B 2 359 64,261 316,279 0 0
C 6 162 13,041 158,679 0 0
D 13 21 210 22,050 0 0
E 7 114 6,441 114,399 0 0
F1,3–5 3 194 18,742 192,960 0 1,358
F2 20 7 N/Ae N/Ae N/Ae N/Ae

G 9 65 2,080 66,820 0 0
H 18 10 45 10,555 0 0
I 21 7 21 7,399 0 0
J 11 38 703 39,577 0 0
K 5 163 13,203 159,577 0 0
L 8 66 2,145 67,815 0 0
M 17 15 105 15,795 0 0
N 12 38 703 39,577 0 0
O 14 21 210 22,050 0 0
P 10 43 903 44,677 0 0
Q 15 20 190 21,010 0 0
R 19 8 28 8,452 0 0
S 16 17 136 17,884 0 0
T 22 7 21 7,399 0 0
U 28 3 3 3,177 0 0
V 25 4 6 4,234 0 0
W 23 6 15 6,345 0 0
X 30 2 1 2,119 0 0
Y 26 4 6 4,234 0 0
Z 31 2 1 2,119 0 0
AA 32 2 1 2,119 0 0
AB 24 5 10 5,290 0 0
AC 27 4 6 4,234 0 0
AD 29 3 3 3,177 0 0
AE 33 2 1 2,119 0 0
DS6A DS6A 1 0 1,060 0 0
IdentityCrisis IdentityCrisis 1 0 1,060 0 0
Kumao Kumao 1 0 1,060 0 0
LilSpotty LilSpotty 1 0 1,060 0 0
MalagasyRose MalagasyRose 1 0 1,060 0 0
MooMoo MooMoo 1 0 1,060 0 0
Sparky Sparky 1 0 1,060 0 0

Cumulative 2,121 272,335 1,877,610 0 98,315
aNumber of genome pairs correctly included in this group.
bNumber of genome pairs correctly left out of this group.
cNumber of genome pairs incorrectly included in this group.
dNumber of genome pairs incorrectly left out of this group.
eValues are shared with the cell above.

Methods and Protocols mSystems

September/October 2023  Volume 8  Issue 5 10.1128/msystems.00443-23 10

https://doi.org/10.1128/msystems.00443-23


A and Cluster F, respectively, is more consistent with level of intra-cluster cohesion 
observed in the remaining clusters at PhagesDB.

Comparison of all inter-cluster and intra-cluster PEQ values within each of the extant 
clusters illustrates the variety of relationships in different clusters (Fig. 3). For most 
clusters, the PEQ threshold value of 25% clearly separates the inter-cluster and intra-clus­
ter values, consistent with PhamClust appropriately making these assignments. In a few 
instances, the inter-cluster distances include some comparisons that are about the PEQ 
= 25% threshold, notably in Clusters P, I, and N, which as noted above could conceivably 
meet the description of collectively forming a supercluster (Fig. 3). However, in only three 
extant clusters (Cluster A, Cluster F, and Cluster K) do the intra-clusters values fall below 
the PEQ = 25% threshold (Fig. 3), giving rise to the discrepancies discussed above. Most 
importantly, these comparisons illustrate that the relationships between phages within a 
cluster can be highly variable and cluster-specific. For example, there are similar number 
of Cluster C and Cluster K genomes, but the intra-cluster PEQ values are distinct both in 
average values and the variation (Fig. 3). Likewise, there are similar number of Cluster M 
and Cluster O phages, but their intra-cluster PEQ distributions are quite distinct (Fig. 3).

Non-uniformity of cluster diversity precludes use of a “universal” subcluster 
threshold

To further explore these intra-cluster variations, we investigated how PEQ values can 
be used to compare PhamClust-derived subcluster designations relative to extant 
subcluster assignments. Twelve clusters (A, B, C, D, F, G, H, I, K, L, M, P) have extant 
divisions derived primarily from nucleotide similarities, and we examined inter-subclus­
ter and intra-subcluster PEQ values for each of these clusters (Fig. 4). First, we explored 
the overall relationship between PEQ value and assortment of genomes into groups that 
align with extant subclusters. To do so, we used single-linkage clustering to subdivide 
each cluster using PEQ thresholds ranging from 50% to 70%; for each threshold, we 
calculated the Matthews correlation coefficient (MCC; unbiased accuracy score) between 
the predicted groups and extant subclusters (Fig. 4A; Table 2). Among the tested values, 
60% PEQ gave the highest MCC score (0.9882), although this is likely weighted toward 
clusters with the largest number of genome members, and Clusters A, B, and C alone 
account for ~58% of phages in the data set.

A closer inspection of the impact of PEQ on subdivisions within clusters shows that 
although the 60% PEQ value discriminates well between inter-subcluster and intra-sub­
cluster groups for many clusters, some clusters split at different PEQ values (Fig. 4B; Table 
2). For example, a 60% PEQ threshold does relatively poorly at alignment of subdivisions 
in Clusters H and K, and only somewhat better for Clusters I and P (Table 2). For Clusters 
H, I, and K, the PEQ values giving optimal alignment are below the 60% PEQ threshold, 
whereas for Cluster P it is above the 60% PEQ cutoff value (Table S1).

These observations suggest that there is no single PEQ threshold value that replicates 
our previous subdivision of clusters. This is further illustrated by comparing the mean 
inter-subcluster and intra-subcluster PEQ values and their distributions (Fig. 4B). For 
clusters such as A, F, and K, the distributions overlap, and as noted above, PEQ values of 
50% and 57% are better discriminators for Clusters F and K (Fig. 4B). For Cluster A, the 19 
extant subclusters are generally well defined by PhamClust, but Subcluster A2 is notably 
diverse (Fig. S2) and includes some low intra-subcluster PEQ values (Fig. 4B; Fig. S2). 
Subcluster A2 could arguably be divided into separate subclusters. In contrast, Cluster F 
appears to have very little natural partitioning (Fig. S3) and the members of Subcluster 
F1 show a similar range of pairwise PEQ values as is seen across the entirety of Cluster A, 
although these appear as a continuum of values rather than discrete partitions. Cluster 
K likewise has relatively poor discrimination of inter-subcluster and intra-subcluster PEQ 
values (Fig. 4B; Fig. S4), and the subcluster divisions are less clear; some subclusters (e.g., 
K1 and K6) could arguably be further divided. One Subcluster K4 phage (Boilgate) has 
been reassigned to a new subcluster (K8) as a result of PhamClust’s output.
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FIG 4 Mycobacteriophage subclusters can be approximated by PEQ ≥ 60%. (A) All of the extant mycobacteriophage clusters 

were subclustered by single-linkage with PEQ values in the range of 50% to 70% by steps of 2.5%. Resulting subclusters were 

compared to the extant subclusters and the MCC was calculated across all clusters per PEQ threshold to estimate how closely 

the resultant subcluster space globally compares with the extant space. MCC values range from −1 to 1, where 1 indicates 

that all edges perfectly agree with the reference data set, 0 indicates that the outcome was no better than random guessing, 

and −1 indicates that all edges perfectly disagree with the reference data set. (B) Each panel shows a box-and-whisker plot 

mapping inter-subcluster (left) versus intra-subcluster (right) PEQ distributions for genomes in a cluster. Cluster names are 

indicated in the title of each panel; box-and-whisker parameters are as described in Fig. 3. A red dashed line is drawn at PEQ = 

60%, the threshold whose resultant subclusters most closely mirror the extant subcluster space (MCC = 0.98816).
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It is plausible that the variation in cluster subdivisions and the correlations with 
extant subcluster groups could arise from misplacement of genomes in the manual 
assemblies, rather than from inherent differences in intra-cluster relationships. We 
therefore examined PhamClust outputs that are agnostic to the extant groupings (Fig. 5). 
To do so, we used single-linkage, average-linkage, and complete-linkage PEQ values to 
determine the relationships between PEQ values and the number of subclusters formed; 
this was calculated for the 12 divided clusters from PEQ values of 25% to 97.5% in steps 
of 2.5% (Fig. 5). Although the extant number of subclusters generally mirror grouping 
using single-linkage PEQ values between 0.5 and 0.7 (Fig. 5), the relationships differ 
greatly among clusters. For example, for some clusters, there is a substantial separation 
of the patterns for the three different linkage methods. It is striking, for example, that at 
the 60% PEQ value, the three linkage methods give the same number of subdivisions for 
Cluster B, but for Cluster F at the 60% PEQ value the number of subdivisions differ by 
more than 10-fold for different linkage methods (Fig. 5). Furthermore, some clusters (e.g., 
Cluster B) have a seemingly sigmoidal relationship between PEQ and the number of 
subclusters formed, whereas for others (e.g., Cluster A) this is much less evident. There is 
thus no universal set of relationships within groups of related phage genomes (i.e., 
clusters).

Clustering the phage RefSeq data set using PhamClust

Because PhamClust can quickly and rapidly assemble the complex mycobacteriophage 
genomes, it seems likely that it could be readily applied to other phage genome 
collections. To explore this, we used PhamClust to assort genomes in the GenBank 
RefSeq phage collection, using PEQ threshold values of 25% and 60% for cluster and 
subcluster groupings, respectively (Data Set S2). The 4,981 genomes were assembled 
into a total of 884 groups, of which 50% (441) are multi-genome clusters and 50% are 
unclustered genomes (i.e., singletons). To assess the validity of the output, we manually 
compared the groupings with those reported previously for a set of phage genomes 
of the Enterobacteriaceae (10). At the cluster level, we were able to map 53 of the 56 
previously defined clusters to genomes within the RefSeq data set. Of these, 52 (98%) 
mapped precisely to PhamClust-predicted groups, illustrating excellent agreement. Only 
one of the extant clusters shows disagreement, the T4-like phages, described as the 
Lytic2 group in reference (10). Two phages (Lw1 and RB43) both assigned to Subcluster 
Lytic2I (10) map in a different PhamClust group (#171) than the other phages (#8) 
(Data Set S2). However, this is unsurprising as these have very low levels of similarity 
to other Lytic2 phages as shown by nucleotide dotplot and other analyses (10). There 
is reasonably good agreement between the PhamClust output and the subcluster 
groupings of Grose and Casjens (10), but the alignments differ among clusters, reflecting 
the cluster variations reported previously (10), and mirroring our observations with the 
mycobacteriophages shown above.

DISCUSSION

We have described here a new bioinformatic tool for investigating phage genome 
relationships and constructing groupings of related phages. PhamClust compares 
genomes based on their PEQ, a genome similarity metric that accounts for both the 
proportion of genes shared between genomes and the evolutionary distances of the 
shared genes based on amino acid sequence similarity. PEQ values are determined 
for each pair of genomes in a data set, and the genomes can then be assorted into 
groups using either single-linkage, average-linkage, or complete-linkage methods. When 
PhamClust is used to sort 2,121 mycobacteriophages into groups using an average-link­
age threshold of 25% PEQ, it closely recapitulates the extant set of “clusters”. The minor 
differences arise from historically fixed idiosyncrasies in extant cluster assignments and 
not from errant assignments made by PhamClust.

Comparing phage genomes using PhamClust requires a three-step process. The first 
is to use the previously described algorithm “PhaMMseqs” to assemble the protein 
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sequences of annotated ORFs into phamilies of related genes, yielding a data set that 
maps the genomes, phamilies, and amino acid sequences. This is then used as input data 
for PhamClust that assigns PEQ values for every pairwise genome comparison. Finally, 
PhamClust uses these PEQ values to form clusters of related genomes with PEQ cutoff as 
a user-defined variable (Fig. 1).

Comparison of the PEQ values produced by PhamClust with other methods 
for genome comparisons suggests that it more closely mirrors overall nucleotide 
sequence similarity than using Jaccard coefficient, gene content similarity, percentage 
of conserved proteins, the aligned fraction, or average amino acid identity. This is 
notable as VIRIDIC (11), which assigns phages to genus- and species-level groups, 
uses a nucleotide sequence similarity approach that is computationally demanding. In 
contrast, PhamClust (coupled with PhaMMseqs) is computationally efficient and can 
process relatively large sets of phage genomes. In our hands, VIRIDIC struggled to 
analyze more than half of the ~2,100 mycobacteriophage genomes examined in this 

TABLE 2 Outcomes from using the globally optimal PEQ threshold for subclustering

Cluster Size Expecteda Observedb True positivesc True negativesf False positivese False negativesd MCCg

A 702 19 19 38,907 206,942 101 101 0.9969
B 359 13 14 29,807 34,448 0 6 0.9998
C 162 2 3 12,562 477 0 2 0.9978
D 21 2 2 190 20 0 0 1
E 114 1 1 6,441 0 0 0 N/A
F 201 6 8 17,593 2,310 6 191 0.9545
G 65 5 4 1,547 531 2 0 0.9975
H 10 2 3 22 16 0 7 0.7265
I 7 2 3 10 10 0 1 0.9091
J 38 1 1 703 0 0 0 N/A
K 163 7 10 3,529 8,262 77 1,335 0.7755
L 66 5 5 638 1,507 0 0 1
M 15 3 3 43 62 0 0 1
N 38 1 1 703 0 0 0 N/A
O 21 1 1 210 0 0 0 N/A
P 43 6 4 632 231 40 0 0.8954
Q 20 1 1 190 0 0 0 N/A
R 8 1 1 28 0 0 0 N/A
S 17 1 1 136 0 0 0 N/A
T 7 1 1 21 0 0 0 N/A
U 3 1 1 3 0 0 0 N/A
V 4 1 1 6 0 0 0 N/A
W 6 1 1 15 0 0 0 N/A
X 2 1 1 1 0 0 0 N/A
Y 4 1 2 2 0 0 4 N/A
Z 2 1 1 1 0 0 0 N/A
AA 2 1 1 1 0 0 0 N/A
AB 5 1 3 3 0 0 7 N/A
AC 4 1 2 3 0 0 3 N/A
AD 3 1 1 3 0 0 0 N/A
AE 2 1 1 1 0 0 0 N/A

Cumulative 113,951 254,816 226 1,657 0.9882
aExtant number of subclusters as found in PhagesDB.
bObserved number of subclustering when using PhamClust with PEQ ≥ 60% by single-linkage.
cNumber of genome pairs in the same subcluster in PhamClust output and at PhagesDB.
dNumber of genome pairs in different subclusters in PhamClust and at PhagesDB.
eNumber of genome pairs in the same subcluster in PhamClust output but not at PhagesDB.
fNumber of genome pairs in different subclusters in PhamClust output but not at PhagesDB.
gMatthews correlation coefficient (unbiased accuracy score): −1 indicates that every pair of genomes was mis-classified, while 1 means every pair of genomes was correctly 
classified.
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FIG 5 Mycobacteriophage clusters show non-uniform heterogeneity. Each panel shows the number of subclusters resulting from each PEQ threshold by 

single-linkage (blue), average-linkage (red), or complete-linkage (green) in each of the clusters which have been manually subclustered. A red dashed line 

indicates the current number of manually determined subclusters for each cluster. For each cluster, there exists at least one PEQ/linkage pair producing the same 

number of subclusters as has been determined manually. For most clusters, the membership of these subclusters is not markedly different from the manually 

determined subclusters.
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study, suggesting it is likely not scalable to all current phage entries in the ReqSeq 
database (~5,000). In contrast, we have previously demonstrated that PhaMMseqs can 
be used to quickly and accurately perform pham assembly for all RefSeq genomes, and 
here we showed that the combination of PhaMMseqs and PhamClust is readily scaled 
to ~2,100 phage genomes; we have similarly used it for comparative analysis of ~4,300 
phage and prophage genomes (32). PhamClust was also able to analyze the collection 
of nearly 5,000 RefSeq phage genomes, requiring only 2.5 hours of runtime on a laptop 
with eight cores (16 threads) and with the resulting clusters closely mirroring published 
expert-curated groupings, for the two largest groups of phages (Enterobacteriaceae and 
Mycobacterium phages) for which extant groupings are available. PhamClust may thus be 
a broadly useful tool for phage taxonomy.

An underlying challenge to forming groupings of phages based on sequence 
relatedness is that the genomes are pervasively mosaic resulting from horizontal genetic 
exchange (2). These HGE events do not require extensive sequence homology and 
there are few constraints as to which genomes participate in genetic exchange (2). 
Any grouping of genomes according to their relatedness thus likely reflects differences 
in environmental prevalence and isolation biases rather than hard biological divisions 
resulting from barriers to exchange (6). However, this is revealed most clearly by 
comparison of a large number of genomes of phages isolated on a single common host 
strain of bacteria, and the mycobacteriophages form a unique data set in this regard. 
Nonetheless, related groups of phages can be constructed using PhamClust, and the 
description of these groups (e.g., “Clusters”, “Families”, etc.) is a user decision. However, 
we predict that when much larger phage sequence data sets are available, the division 
into major groupings will become more challenging, and that a universal PEQ value is 
less justifiable. This is thus expected to mirror the current situation encountered when 
examining individual clusters to see if subdivision is warranted. PhamClust clearly shows 
that some mycobacteriophage clusters warrant subdivision based on current param­
eters, but the relationships between genomes are qualitatively different in different 
clusters. As such, an intra-cluster PEQ threshold of value of 60% can be used as a starting 
point for exploring cluster subdivisions, but then each cluster warrants further analysis 
and subsequent adjustments.

PhamClust provides a useful analytic tool for exploring this heterogeneous aspect 
of phage genome relationships. Interestingly, the number of subclusters formed varies 
with PEQ value, but the relationships are cluster-specific. For example, because of the 
sigmoidal-like relationship in Cluster B phages (Fig. 5), the number of subclusters varies 
little over a span of PEQ values from 50% to 70%. In contrast, for Cluster A phages, 
the number of potential subclusters varies about fivefold over a similar PEQ span. The 
reasons for these differences are interesting but not yet clear, and it is likely that phage 
lifestyle, host environments, phage host range, phage-encoded recombination systems, 
variability in host range mutability, and phage-encoded DNA replication systems, all play 
important roles.
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