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ProRefiner: an entropy-based refining
strategy for inverse protein folding with
global graph attention

Xinyi Zhou 1, Guangyong Chen 2 , Junjie Ye3, Ercheng Wang2,4,
Jun Zhang 5, Cong Mao5, Zhanwei Li2, Jianye Hao3, Xingxu Huang2, Jin Tang2 &
Pheng Ann Heng1,2

Inverse Protein Folding (IPF) is an important task of protein design, which aims
to design sequences compatible with a given backbone structure. Despite the
prosperous development of algorithms for this task, existing methods tend to
rely on noisy predicted residues located in the local neighborhood when gen-
erating sequences. To address this limitation, we propose an entropy-based
residue selection method to remove noise in the input residue context. Addi-
tionally, we introduce ProRefiner, a memory-efficient global graph attention
model to fully utilize the denoised context. Our proposed method achieves
state-of-the-art performance on multiple sequence design benchmarks in dif-
ferent design settings. Furthermore, we demonstrate the applicability of Pro-
Refiner in redesigning Transposon-associated transposase B, where six out of
the 20 variants we propose exhibit improved gene editing activity.

Computational Protein Design, which is to design proteins with spe-
cific structures or functions1, has been a powerful tool to prompt the
exploration of sequence or topology space not yet visited by evolu-
tionary process2–4 and discover proteins with better properties5. It has
enabled success inmembrane protein design6, enzymedesign7, etc. As
one of the sub-tasks of Computational Protein Design, Inverse Protein
Folding (IPF), the problem of finding amino acid sequences that can
fold into a given three-dimensional (3D) structure8, is of great impor-
tance as hosting a particular function often presupposes acquiring a
specific backbone structure.

How to model and utilize residue interactions has been the focus
of various IPF algorithms. In traditional methods, energy functions are
designed to approximate backbone-sequence compatibility. Residue-
pair interaction modeling is usually derived from databases by lever-
aging statistical preferences for particular residue pairs in a simplified
local environment to estimate inter-residue energies5,9,10. The increas-
ing computational complexity limits the statistical estimation ofmulti-
residue interactions that are conditional on a more fine-grained
representation of the local environment10,11.

In recent years, deep learning has been widely and successfully
applied to protein structure modeling and prediction12,13, due to its
ability to automatically learn complex non-linear many-body interac-
tions from data. There have been efforts to solve IPF with deep
learning4,14,15. Early methods often model protein structures as
sequences of independent residues16,17 or atom point clouds4,15 and
adopt a non-autoregressive decoding scheme as demonstrated in
Fig. 1a. Their independence assumption prevents them from learning
complex residue interactions and limits their performance. Some
recent works use proximity graphs to represent protein structures,
where residues are nodes and residue interactions are directly mod-
eled as edges. Typically, a masked encoder-decoder architecture with
an autoregressive decoding method is used (shown in Fig. 1b)18–21.
Recently, a similar decoding scheme has been proposed in ABACUS-R
(shown in Fig. 1c)22. This method assumes all neighbor residue types
are known when decoding a central residue. Starting from a random
initial sequence, it updates residues recursively based on their neigh-
borhood until convergence. However, the dependency on previous
predictions has proven to be prone to the error accumulation
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problem23,24. Noisy residue information is introduced into the context
and propagated through the graph structure, while recovering a target
residuewouldbe easier andmore accurate ifmorehigh-quality residue
interactions were available and utilized.

We summarize the above issues as the selection and utilization of
high-quality residue interactions. To address these issues, we propose a
protein sequence design model ProRefiner. The model is tasked with
BERT25-like sequence inpainting conditioned on protein structures.
Specifically, we mask random residues on sequences during training.
Themodel takes themaskedpartial sequences andbackbone structures
as input and learns to reconstruct the whole sequence. During infer-
ence, the input partial sequence to ProRefiner could be constructed in
two ways. In partial sequence design scenarios where only some resi-
dues need to be designed, the remaining residues can naturally serve as
an oracle partial input sequence, whereas in entire sequence design
settings, we introduce an entropy-based residue selection technique to
utilize predictions from existing models. Specifically, given a sequence
generated by an inverse folding model, which is referred to as the base
model, we include residues with highly confident predictions into the
partial sequence and mask less valuable predictions with low con-
fidence. Here we use entropy to approximate the base model’s con-
fidence in its predictions. In our experiments, the precision among the
residues with the lowest 10% entropy is around 99%. By masking out
high-entropy residues, a significant amount of noise can be effectively
removed from the input residue environment. ProRefiner then gen-
erates the whole sequence in one shot based on the denoised partial
sequence. Compared to previous left-to-right sequence design models,
ProRefiner learns to exploit global residue interactions by training with
partial sequence input. Its one-shot generation manner, together with
the proposed residue selection technique, ensures higher-quality resi-
due interactions and faster generation speed. It can be used as an add-
on module to refine the results of existing methods.

ProRefiner’s model architecture is a stack of memory-efficient
global graph attention layers as shown in Fig. 2. Attention mechanism
has been proven effective in modeling global dependencies for
sequential data26. However, adapting attention to the graph domain is
challenging. Specifically, the attentionmechanism calculates attention
weights between any two nodes based on their features. For graphs,
this requires storing andmanipulating a square matrix of size equal to
the number of nodes, which neglects the sparsity of graph structures
and increases the memory complexity to quadratic in terms of node
count, posing scalability issues27,28. Some methods circumvent this by
confining attentionwithin node neighborhoods, losing the global view
that makes attention powerful18,29,30.

Moreover, these methods do not fully utilize edge features, as
they only contribute to attention computationwithout the ability to be
updated or influence node feature updates18,27,29,31. However, edge

features have been proven to be critical in protein structure
modeling20. In summary, to address these limitations, we aim to design
an attention-based model tailored for graphs that (1) is memory effi-
cient, (2) maintains a global view of dependencies, and (3) fully
incorporates edge features.

In particular, a K-nearest neighbor graph is constructed from the
backbone structure. Informative node features and edge features are
extracted (detailed in Section Methods), and send to a stack of
memory-efficient global graph attention layers. In each layer, every
residue node globally attends to other residues. An attention score is
calculated fromboth node and edge features to determine the amount
of information that a target residue gathers from another residue. For
residue pairs that are not directly connected by an edge, a learnable
pseudo-edge feature is used for attention calculation. Each layer learns
a separate pseudo-edge feature that is sharedbyall non-existing edges.
The attention score is then used to weight and sum up node and edge
features to produce updated node features. Edge features are also
updated by the new node features. Finally, the model generates the
sequence from the node features from the last layer in one shot. This
memory-efficient global graph attention layer allows for global residue
attention while eliminating the need for fully-connected graph con-
struction by learning pseudo-edge features. Residues are able to
leverage global interactions and whole-structure features.

Our experiment results demonstrate that our method is effective
in handling both entire sequence design and partial sequence design
settings. In particular, we validated ProRefiner on the task of single-
point mutant design of Transposon-associated transposase B, as a
special case of partial sequence design where only one residue can be
modified. The proposed ProRefiner successfully identified six variants
with improved gene editing activity out of the 20 mutants recom-
mended by the model.

Results
ProRefiner is trained on CATH v4.2 training set containing
18,204 structures18.

Entire Sequence Design
ProRefiner can serve as an add-on module to refine the sequences
designed by existing basemodels.We demonstrate this application on
entire sequence design.We experimentwith the recent inverse protein
folding models as follows.

• GVP-GNN19 trained on the same training set as ProRefiner. We
use the official codebase and default parameters provided by19

to train and evaluate the model.
• ProteinMPNN20 trained on selected PDB structures clustered

into 25,361 clusters.We use the 48 edges, 0.20Å noise version of
pretrained model weights.

Fig. 1 | Different ways of utilizing interresidue features. a Nonautoregressive decoding scheme. b Autoregressive decoding scheme. c Decoding scheme proposed in
ABACUS-R. d Our proposed method.
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• ProteinMPNN-C with the same architecture as ProteinMPNN
but trained on the same training set as ProRefiner for fair
comparison.

• ESM-IF121 trainedonCATHv4.3 training setwith 16,153 structures
and 12 million additional structures predicted by Alphafold213.
We use the pretrained model weights released by the official
codebase.

We conduct experiments on the following three benchmarks.
• CATH. CATH v4.2 dataset18 is a standard dataset for IPF training

and evaluation. We evaluate on its test split of 1120 structures.
• TS50. TS50 is a benchmark set of 50 protein chains proposed

by17. It has been used by a number of previous works15,32,33. There
are four structures shared between TS50 and CATH.

• Latest PDB. We collect the latest published structures in PDB to
validate the model’s ability to generalize to new structures. We
select protein structures released after 01/01/2022 with a single
chain of length less than 500 and resolution < 2.5 Å, resulting in

1975 protein structures. There are no structures that overlap
between Latest PDB and the other two benchmarks.

We report twometrics on all benchmarks: sequence recovery and
native sequence similarity recovery (nssr)34. A pair of residues is con-
sidered similar and contributes to the nssr score if their
BLOSUM62 score35 > 0. Compared with recovery which only considers
residue identity, nssr takes residue similarity into account and pro-
vides a more specific comparison between two sequences. Addition-
ally, we report perplexity metric in Supplementary Table 1.

In Table 1, we report themedian recovery rates and nssr scores of
ProRefiner with different base models in comparison to the base
model themselves. Among all the base models, ESM-IF1 achieves the
best performance, highlighting the effectiveness of data augmenta-
tion. ProRefiner consistently achieves high recovery rates and nssr
scores even with relatively poor base models, demonstrating its
ability to refine the input partial sequences. Additionally, when partial
sequences with higher quality are available, ProRefiner outperforms

Table 1 | Median sequence recovery rates and nssr scores of ProRefiner with different base models on three benchmarks

CATH TS50 Latest PDB

n = 1120 n = 50 n = 1975

Recovery% nssr% Recovery% nssr% Recovery% nssr%

GVP-GNN 41.27[40.63, 41.75] 60.81[60.24, 61.54] 44.02[41.60, 47.49] 63.59[61.80, 66.30] 48.02[47.67, 48.19] 66.23[65.92,66.44]

ProRefiner+GVP-GNN 49.89[48.96, 50.29] 67.93[67.33, 68.44] 53.75[48.49, 56.86] 69.33[68.11, 73.33] 57.77[57.43, 58.11] 74.18[73.91, 74.42]

ProteinMPNN 42.22[41.49, 43.03] 60.56[60.00,61.18] 43.88[42.21, 46.22] 61.44[59.72, 63.58] 49.62[49.31, 49.85] 66.45[66.17, 66.67]

ProRefiner+ProteinMPNN 51.14[50.44, 52.14] 69.05[68.42,69.54] 53.66[52.24, 56.93] 71.22[69.49, 73.44] 59.30[58.94, 59.63] 75.26[75.11, 75.58]

ProteinMPNN-C 44.94[44.26, 45.70] 63.79[63.25, 64.29] 49.05[45.83, 52.42] 67.87[65.00,69.70] 55.34[54.98, 55.70] 71.52[71.23, 71.76]

ProRefiner+ProteinMPNN-C 50.82[50.00, 51.55] 69.06[68.50, 69.64] 54.46[50.93, 57.99] 71.43[70.20, 73.74] 60.42[60.05,60.70] 75.88[75.63, 76.07]

ESM-IF1 55.25[54.32, 56.14] 71.56[70.75, 72.36] 55.78[52.39, 58.43] 72.02[69.74, 73.81] 63.20[62.78, 63.53] 77.33[76.92, 77.69]

ProRefiner+ESM-IF1 57.84[57.04, 58.48] 74.11[73.48, 74.64] 57.81[55.50, 62.30] 75.25[71.97, 77.55] 65.69[65.26, 66.06] 79.66[79.34, 80.00]

Data in brackets reports the 95% confidence interval of the median, estimated from 10,000 bootstrap samples.
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Fig. 2 | The model architecture of ProRefiner. A partial sequence, either given or
constructed from a base model’s generation, and the backbone structure are
encoded to obtain the graph features. Several memory-efficient global graph

attention layers are employed to propagate the graph features and learn global
residue interactions. Finally the whole sequence is generated in one shot.
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the ESM-IF1 model which uses 12 million additional structures for
augmentation. Entropy-based residue selection is used to remove
noise in base models’ predictions for the subsequent refinement by
ProRefiner. To validate its effectiveness, we remove the selection
operation and send the entire predicted sequence to ProRefiner.
Resulted recovery rate on CATH is plotted in Fig. 3a. Removing
entropy-based selection results in a large drop in sequence recovery
especially when the basemodel’s recovery is low. This result supports
the idea that the noise in the input residue context can significantly
limit sequence generation quality and lead to suboptimal sequence
designs. Using entropy-based selection to filter out low-quality resi-
due predictions is an effective strategy for improving sequence
recovery. The fact that the recovery drop is more pronounced when
the basemodel’s recovery is low suggests that the selection operation
is particularly important when the input sequence information is less
reliable.

In Fig. 3b, we show the confusion matrix of ProRefiner + ESM-IF1
on CATH. A darker cell means a larger portion of the residues of the
native type ispredicted to be the corresponding type on the horizontal

axis. It can be observed that the residue types the model tends to
confuse are also physicochemically similar types, such as ILE vs VAL
and GLU vs LYS. Two-sidedMantel test36 also shows that the confusion
matrix is highly correlated with the BLOSUM6 amino acid substation
matrices35 (p value = 0.0001). In Fig. 3c and d, we break down the
sequence recovery on CATH to different amino acid types and sec-
ondary structures (H stands for 310 helix, α helix and π helix, E for
isolated beta-bridge residue and strand, and C for bend, turn and coil).
Our method shows improvement in the recovery of both hydrophilic
and hydrophobic residues, with slightly greater improvement seen for
residues located on bends, turns or coils.

We assess whether the designed sequences can fold into the tar-
get backbones by predicting their structures with Alphafold2. Fig. 3e
and f show the results on proteins with PDB codes 2KCD (https://doi.
org/10.2210/pdb2KCD/pdb) and 3A57 (https://doi.org/10.2210/
pdb3A57/pdb) respectively. We observe that the sequences refined
by ProRefiner are predicted to fold into structures more similar to
native ones than those designed by ESM-IF1, as evidenced by higher
TM-scores37 and lower root-mean-square deviation (RMSD).
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Fig. 3 | Model performance analysis on entire sequence design. a Sequence
recovery with and without entropy-based residue selection on CATH dataset (n =
1120 structures). The inner box plots show the first quartile, median and the third
quartile. Whiskers in box plots extend to the most extreme data point that lies
within 1.5 times the inter-quartile range (IQR) from thenearest quartile.bConfusion
matrix of ProRefiner + ESM-IF1 onCATHdataset (n = 1120 structures). c,d Sequence
recovery breakdown to hydrophilic and hydrophobic residues and residues on

different secondary structures onCATHdataset (n= 1120 structures). Theboxplots
show the first quartile, median and the third quartile. Whiskers in box plots extend
to the most extreme data point that lies within 1.5 times IQR from the nearest
quartile. e, f The predicted structures of sequences designed by ProRefiner + ESM-
IF1 and ESM-IF1 for two structures (2KCD and 3A57), compared to the native ones.
Alphafold2 is employed to fold the designed sequences. Source data are provided
as a Source Data file.

Article https://doi.org/10.1038/s41467-023-43166-6

Nature Communications |         (2023) 14:7434 4

https://doi.org/10.2210/pdb2KCD/pdb
https://doi.org/10.2210/pdb2KCD/pdb
https://doi.org/10.2210/pdb3A57/pdb
https://doi.org/10.2210/pdb3A57/pdb


Partial sequence design
For partial sequence design, ProRefiner fills in the unknown residues
based on partial input without the need for base models. To ensure a
fair comparison, we evaluate ProRefiner alongside GVP-GNN and Pro-
teinMPNN-C, which are trained on the identical training set used for
ProRefiner. Both models are autoregressive models. They implement
partial sequence design by replacing the decoded residues with the
given fixed amino acids when available during the autoregressive
decoding. Additional results for ESM-IF1 model on partial sequence
design canbe found in SupplementaryTable2.Weevaluate themodels
on the following two benchmarks.

• EnzBench. EnzBench is a standard sequence recovery bench-
mark consisting of 51 proteins38. Designing algorithms are
required to recover the native residues on protein design shells
with other residues fixed. This benchmark is designed to test the
algorithm’s ability tomodel protein binding and overall stability.

• BR_EnzBench. BR_EnzBench34 aims to test the algorithm’s ability
to remodel the chosen protein structure. It randomly selects 16
proteins from EnzBench and uses the Backrub server39 to create
an ensemble of 20 near-native conformations for each protein.
To further increase the designing difficulty, all residues on the
design shell aremutated to alanine, and conformations are then
energy-minimized.

When evaluated on EnzBench and BR_EnzBench, identities of
residues not on design shells are fixed and available to models.
Recovery rates and nssr scores for residues on design shells are
reported in Table 2. ProRefiner achieves the highest recovery and nssr
on both benchmarks. We further analyze the recovery rate on
EnzBench for different amino acids and secondary structures, as
shown in Fig. 4a and b. ProRefiner significantly improves the recovery
of both hydrophobic and hydrophilic residues and surpasses other
models on all secondary structures. We employ Alphafold2 to fold the
designed sequences and compare the recovered design shell struc-
tures. Fig. 4c shows thedesigned structures of 1Y52 (https://doi.org/10.
2210/pdb1Y52/pdb) and 1Y2U (https://doi.org/10.2210/pdb1Y2U/pdb),
which have 19 and 13 designable residues respectively. Design shell
residues are shown by atoms. ProRefiner better recovers the design
shell structures, with higher TM-scores and lower RMSD. More results
and discussion on structure recovery can be found in Supplementary
Table 3–5.

Application on transposon-associated transposase B
Transposon-associated transposase B (TnpB) is thought to be the
ancestor of Cas12, the type V CRISPR effector40,41. TnpB (408 amino
acids) in the D.radiodurans ISDra2 element has been demonstrated to
function as a hypercompact programmable RNA-guided DNA
endonuclease42, and its miniature size is suitable for adeno-associated
virus-based delivery. However, TnpB exhibits moderate gene editing
activity in mammalian cells, limiting its therapeutic application.

We aim to improve the editing activity of TnpB through the design
of single-point mutations. We consider the design of a single-point
mutation as a partial sequence design, where only one residue is des-
ignable, and all others are fixed. With the empirical intuition that a
more positively charged surfacemight potentially improve activity, we
restrict themutation target to themost positively charged amino acid,
arginine (R), and restrict the candidate mutation sites to surface resi-
dues. We leverage sequence designmodels to compute a quality score
for every candidate site, as illustrated in Fig. 5a. For each site to be
examined, we mask this site in the native sequence to get the input
partial sequence, and the input backbone structure is the wild-type
backbone predicted by Alphafold213. The model then predicts the
identity of the masked site in the form of a probability distribution
over all amino acid types. We expect that a model that can effectively
learn residue interactions will tend to give a higher probability to the

types that aremore compatible with the given residue context. Hence,
we take the predicted probability for R as a measure of mutant stabi-
lity. Furthermore, we consider the distance between the Cα of the site
and the center of the predicted binding site43, as empirically mutation
sites close to the binding site are more likely to bring improvements.
The two scores are combined to obtain a quality scoremeasuring how
likely mutation sites can yield stable and improved mutants. All can-
didate sites are ranked by their quality score and the top 20 are taken
as the recommended mutation points.

Our proposed ProRefiner and ProteinMPNN-C are employed for
mutant design following the above procedure. 20 mutation points
recommended by two models are displayed in Fig. 5b. To test TnpB
variants activity in human cells (HEK293T), plasmids encoding the
TnpB variants fused with N- and C-terminal nuclear localization (NLS)
sequences and reRNA construct targeting a EMX1 site in human
genomic DNA (gDNA) were transiently transfected into HEK293T cells.
After 96h, gDNA was extracted and analysed by sequencing for the
presence of insertions and deletions (Indels) at the targeted cleavage
sites. CRISPResso2 is used to analyse Indels, with parameters as fol-
lows: minimum of 80% homology for alignment to the amplicon
sequence, quantification window of 20 bp and ignoring substitutions
to avoid false positives. Experiments show that 6 arginine substitutions
designed by ProRefiner exhibit above 1.2-fold improvement in indel
activity relative to TnpB WT, and 3 by ProteinMPNN-C. Results are
given in Fig. 5c. Additionally, off-target of the variant with the highest
activity, TnpB K84R, is compared with the TnpB WT. As shown in
Fig. 5d, the increase in activity leads to a degree of non-specific clea-
vage as expected, which may compromise the nuclease’s specificity.

This experiment demonstrates that the proposed ProRefiner is
effective at modeling residue interactions within a structural envir-
onment and generating sequences that best fit a given 3D context. It
can be used in combination with other property measures to redesign
existing proteins and improve their stability or other qualities that
depend on protein stability.

Discussion on model designs
We examine several key designs in ProRefiner model architecture. Our
investigation revealed that the introduced global attention layers
could learn and exploit meaningful residue interactions. Specifically,
we identity the residues to which a target residue pays the most
attention, indicated by the highest attention scores. It’s observed that
many important residue interactions are well learned and represented
by the attention operation. Fig. 6a–c provide examples for three
typical chemical bonds in protein structures, where the target residues
are shown in blue, and the three residues with the highest mean
attention scores are shown in orange. For example, in the case of HIS 9
on 2KCD (https://doi.org/10.2210/pdb2KCD/pdb), LEU 5 is among its
most attended residues. HIS 9 forms a hydrogen bond with LEU 5 on
the α helix and this interaction is well learned by the attention layers.
Similarly, ILE 70 on the sheet heavily attends to ASN 54, which it forms
a hydrogen bond with. For T4-lysozyme (https://doi.org/10.2210/
pdb1LYD/pdb), ASP 70 forms a hydrogen bond with LEU 66 and a salt
bridge with HIS 31, and both residues are among its most attended
residues. The attention operation also captures a disulfide bond
between CYS 99 and CYS 94 of human Ero1-alpha (https://www.
uniprot.org/uniprotkb/Q96HE7/entry).

We further validate the effectiveness of two key components in
ProRefiner: global attention mechanism and partial sequence input.
Two models are trained for ablation study: (1) a model without the
global attention view, where residues only attend to their graph
neighbors, and pseudo edge features are therefore not used; and (2) a
model without partial sequence input during training, where all resi-
dues aremasked.We compare the recovery rates of ablatedmodels on
CATH (using base model ESM-IF1), EnzBench and BR_EnzBench.
Results are given in Table 3. It is observed that removing either
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component results in a drop inmodel performance and we get p value
< 0.05 bypaired two-sided t-test on all datasets, indicating a significant
improvement of introducing the global attantion view and input par-
tial sequence. Notably, the model without partial sequence input
exhibits a significantly larger performance degradation on BR_Enz-
Bench, indicating that when input structures are not accurate, the
ability to utilize sequence information becomes more important. We

also test the robustness of thesemodels to the input residue noise. For
sequences generated by base model ESM-IF1, we mask different per-
centages of residues with the highest entropy, and plot the model’s
median recovery rate on the CATH benchmark in Fig. 6d. The model
trained without partial sequence cannot really utilize input partial
sequence, and thus exhibits relatively stable performance. The
recovery rate of the other two models first increases as more noisy

Na�ve structure
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Fig. 4 | Model performance analysis on partial sequence design. a, b Sequence
recovery breakdown to hydrophilic and hydrophobic residues and residues on
different secondary structures on EnzBench dataset (n = 51 structures). The box
plots show the first quartile, median and the third quartile. Whiskers in box plots
extend to the most extreme data point that lies within 1.5 times IQR from the

nearest quartile. c The predicted structures of sequences designed by ProRefiner
and ProteinMPNN-C for two structures (1Y52 and 1Y2U), compared to the native
ones. Design shells are plotted in atoms. Alphafold2 is employed to fold the
designed sequences. Source data are provided as a Source Data file.

Table 2 | Median sequence recovery rates and nssr scores on EnzBench and BR_EnzBench

EnzBench BR_EnzBench

n = 51 n = 320

Recovery% nssr% Recovery% nssr%

GVP-GNN 41.38[36.36, 42.86] 57.89[55.00,63.16] 29.41[27.27, 31.58] 47.83[47.37, 52.17]

ProteinMPNN-C 52.00[50.00, 59.09] 70.00[65.00, 77.78] 40.91[40.00,42.48] 60.00[59.09,60.87]

ProRefiner 57.89[55.00,63.64] 73.68[70.59, 78.26] 43.48[41.64, 44.44] 60.87[59.09, 63.64]

Data in brackets reports the 95% confidence interval of the median, estimated from 10,000 bootstrap samples.
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residues are removed, and drops slightly when too many residues are
masked and less sequence information is left. The model with a global
attention view consistently outperforms the model with local view,
demonstrating a better ability to leverage the input residue context, as
residue information is available to every node, not just the ones close
to them.

Finally, we compare the performance of the proposed memory-
efficient global attention layers against the original global attention
layers. We use ProRefiner - PsFeat to denote the model that uses the
vanilla global attention layers without learning pseudo-edge fea-
tures. Figure 6e illustrates the runtime and GPU memory utilization
of the two models. The measurements are obtained by 16 indepen-
dent runs. ProRefiner exhibits linear time and memory complexity,
whereas ProRefiner - PsFeat introduces quadratic complexity due to
the construction of fully connected graphs. The predictive perfor-
mance of the two models is presented in Fig. 6f. We experiment on
CATH benchmark with base model ESM-IF1 for entire sequence
design and EnzBench and BR_EnzBench benchmarks for partial
sequence design. The results indicate that while ProRefiner shows
slightly greater performance variance on certain benchmarks,
its overall performance remains similar and comparable to that of
ProRefiner - PsFeat. Additionally, we compare the predictive

performance of the twomodels on other tasks and report the results
in Supplementary Table 6.

Discussion
In this work, we attempt to take a step towards better modeling and
learning of inter-body interactions within protein structures, by pro-
posing a method for inverse protein folding. We develop a two-
pronged approach that incorporates a residue selection technique and
amemory-efficient global graph attentionmodel, whichwork jointly to
achieve effective selection and utilization of high-quality residue
interactions. Our experiments demonstrate that the proposed Pro-
Refiner is able to capture meaningful inter-residue bonds and achieve
high sequence recovery on several protein design benchmarks. We
also apply themodel to redesign TnpB and successfully discovered six
mutants with enhanced editing activity. Our results highlight the
potential of our method to facilitate the design of proteins with
improved functional properties. Additionally, the memory-efficient
graph attention module proposed herein provides an efficient means
of modeling graph-structured data where global dependencies are
critical. Potential future research directions could involve the appli-
cation of this module to other protein-related tasks and the examina-
tion of other biomolecules.
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Fig. 5 | The procedure and results of TnpB single-point mutation design. a The
process of computing the quality score of one target mutation site on TnpB WT
sequence. b The mutation sites recommended by ProteinMPNN-C and ProRefiner
are marked in red and blue respectively. c The improvement of variants recom-
mendedby ProteinMPNN-C and ProRefiner in indel activity relative to TnpBWT. All
statistical analysis were performed on n = 3 biologically independent experiments
and data is shown as themean± SDof three biological replicates. d Indel formation

at the on-target and off-target sites observed for TnpB WT and TnpB K84R. Off-
target sites are chosen following50. All statistical analysis were performed on n = 3
biologically independent experiments and data is shown as the mean± SD of three
biological replicates with actual values overlaid. P values were derived by a two-
sided Student’s t-test with ** denoting P <0.01 and *** P <0.001. The exact P-values
from top to bottom are 0.00188, 0.00104, 0.00792, 0.000214, 0.000508 and
0.000207. Source data are provided as a Source Data file.
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Methods
Graph representation of proteins
A protein structure is represented as a proximity graph G = ðV, EÞ,
where V = fv1, v2, . . . ,vNg denotes the residue nodes and E = feijg
denotes the directed edges form vj to vi, where residue vj is among the
k = 30 nearest neighbors of vi in terms of Cα distance. Each node vi has
the following structural features:

• sin and cos value of dihedral angles;

• unit vectors from the previous and next residues on sequence to
vi in terms of Cα position.

Each edge eij has the following features:
• Gaussian radial basis functions encoding of interatomic dis-

tances between N,Cα,C,O and a virtual Cβ, and encoding of
distance on sequence i − j20;

• unit vector from vj to vi in terms of Cα position.

Table 3 | Median recovery of ProRefiner (the last row) and two ablatedmodels, either without global attention view or without
partial sequence input

Model CATH EnzBench BR_EnzBench

n = 1120 n = 51 n = 320

Global Attention Partial Input Recovery% p value Recovery% p value Recovery% p value

✓ 57.26[56.34, 58.06] 1.6e-5 55.56[52.63, 62.50] 0.0397 42.86[40.91, 45.00] 0.0259

✓ 57.21[56.41, 57.96] 0.0023 56.52[50.00,60.71] 0.0137 35.71[35.00, 36.84] 2.1e-16

✓ ✓ 57.84[57.04, 58.48] N/A 57.89[55.00,63.64] N/A 43.48[41.64, 44.44] N/A

The base model to produce the results on CATH is ESM-IF1. Data in brackets reports the 95% confidence interval of the median, estimated from 10,000 bootstrap samples. The p values when
comparing two ablated models to ProRefiner are reported.
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used as the base model for inference on CATH. The inner box plots show the first
quartile, median and the third quartile. Whiskers in box plots extend to the most
extreme data point that lies within 1.5 times IQR from the nearest quartile. Source
data are provided as a Source Data file.
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We then employ 2 geometric vector perceptrons layers19 to
embed the structural features.

For sequence features, at training time, we randomlymask 70% of
residues in the native sequences. Among the remaining 30% of the
residues whose identity is available to the model, we randomly select
3% and replace their identity with random amino acid types. During
inference, the input partial sequences are provided as-is without any
masks or replacements. The partial sequences are then embedded as
node features. Masked residues with unknown identity are treated as a
special type unknown. The sequence node features are concatenated
with structural node features. Resulting node features are denoted as
H0 2 RN ×d where h0

i 2 Rd denotes the feature of vi. Resulting edge
features are denoted as E0 2 RN × k ×d where E0

i 2 Rk ×d is the features
of k neighbors of vi and e0ij 2 Rd denotes the feature of edge from vj
to vi.

Memory-efficient global graph attention model
Attention is first introduced in Transformer model26. Let H 2 RN ×d

denote the d-dimension features of the input sequence with length N.
The self-attention module updates the input features according to the
following equations:

SelfAtten ðHÞ=AV, ð1Þ

A= Softmax
QKT

ffiffiffiffiffiffi
dK

p
 !

, ð2Þ

K=HWK,Q =HWQ ,V=HWV, ð3Þ

where WK 2 Rd ×dK ,WQ 2 Rd ×dK ,WV 2 Rd ×dV are parameters to map
H to keys, queries and values.

Therehavebeen attempts to employTransformer architecture for
learning on graphs, with nodes denoted as sequence tokens. To utilize
the global view provided by the original self-attention on graphs with
edge features, previousworks generally incorporate edge features into
the attention matrix A:

A= Softmax f QKTffiffiffiffiffi
dK

p ,ϕðEÞ
� �� �

, ð4Þ

whereE 2 RN ×N ×d is thed-dimension edge features between eachpair
of nodes, ϕ estimates the correlations of node pairs from edge fea-
tures, which could be linear transformation27 or more sophisticated
functions31, and f is an aggregation function, which could be element-
wise addition27,31 or multiplication27. These methods have two limita-
tions. First, to construct the edge feature matrix E, they require fully
connected graphs as input and the memory complexity will be OðN2Þ.
Second, the edge features are not fully leveraged. They are only
involved in attention computation and can not be used to update node
features or vice versa.

ProRefiner model is composed of a stack of L memory-efficient
global graph attention layers. In each layer, nodes can globally attend
to all other nodes and edge features between node pairs serve as
additive attentionbias terms. For non-existing edges, one solution is to
convert arbitrary graphs to fully connected graphs before entering the
model, then Equation (4) could be used. This could be done by setting
k to a large enough number or using a fixed masking value/vector for
non-existing edges as in previous works27. This operation increases
memory complexity from OðN × kÞ to OðN2Þ. To avoid the conversion,
we design a learnable pseudo edge feature in each layer. Let Hl and El

denote the input features of the lth layer. The attention is computed as

follows:

Al = Softmax
QlðKlÞTffiffiffi

d
p +Bl

 !
, ð5Þ

Bl
ij =

wl
B

� �T
elij j 2 N i

wl
B

� �T
βl j =2 N i

8<
: , ð6Þ

Kl =HlWl
K,Q

l =HlWl
Q , ð7Þ

where Bl is the attention bias, Wl
K 2 Rd ×d ,Wl

Q 2 Rd ×d ,wl
B 2 Rd are

parameters, βl 2 Rd is the pseudo edge feature in layer l. Learning a
pseudo edge feature for each layer is more adaptive and flexible than
using one fixed masking value across all layers and provides a better
approximation to using fully connected graphs.

The attention score Al is then used to aggregate node features as
well as edge features. Node features are weighted and summed as in the
vanilla self-attention. Edge features are aggregated with normalized
weights and concatenated with aggregated node features. Finally, a lin-
ear layer is employed to map the concatenated feature to dimension d:

ĥl
i =

X
j

Al
ijV

l
j k
X
j2N i

Al
ij

γli
elij

2
4

3
5Wl

N, ð8Þ

Vl =HlWl
V, ð9Þ

whereWl
V 2 Rd×d ,Wl

N 2 R2d×d areparameters, ∥means concatenation
operation, and γli is a normalization term to normalize the sumof edge
weights to 1.

Then a residue connection and layer normalization are adopted to
output the final updated node features:

Hl+1 = LayerNorm ðĤl +HlÞ: ð10Þ

The edge features will then be updated as follows, with Wl
E 2

R3d ×d being parameters:

êlij = ½hl+1
i k elij k hl+1

j �Wl
E, ð11Þ

El+1 = LayerNorm ðÊl +ElÞ: ð12Þ

Note that we adopt this naive edge feature update here for its
empirical effectiveness and implementation simplicity. However, it
cannot ensure the triangle inequality on distances13. Incorporating
more sophisticated edge update method for triangle inequality con-
straints could be a promising future direction.

To leverage edge features under the global attention mechanism,
compared with OðN2Þ by previous works, our memory-efficient global
graph attention only needs OðN × k + LÞ additional memory, and
therefore allows designing longer sequences.

Theoutput node features fromthe last layerwill bemapped to the
distribution over 20 residue types through a linear layer with para-
meter WP 2 Rd×20:

pi = Softmax hL
i WP

� �
: ð13Þ

Negative log-likelihood loss is used during training.

Entire sequence design with base model
In entire sequence design setting, we use an entropy-based residue
selection method to construct the partial input sequence. Suppose pb

i
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is the probability distribution of vi predicted by a base model. We
compute the entropy enb

i of distribution pb
i :

enb
i ¼ E � logpb

i

h i
ð14Þ

Residues with the least entropy are selected and retained while others
aremasked. To account for the varying ability of different basemodels
to recover native sequences, we select different percentages of resi-
dues depending on the base model being used. The percentage of
residues chosen for each base model is determined based on the
recovery rate on the validation split of CATH v4.2. We experiment with
percentages ranging from 5% to 50% for each base model, and select
the percentage resulting in the highest recovery rate. Specifically, we
choose 10% forGVP-GNN, 10% for ProteinMPNN, 15% for ProteinMPNN-
C, and 35% for ESM-IF1. These percentages are roughly correlated with
the sequence recovery performance of each base model.

The partial sequence is fed into ProRefiner to get the probability
predictions pi with entropy eni. Finally, the predictions from the base
model and ProRefiner will be weighted by their entropy and fused
together:

p̂i =
expð�eniÞ

expð�eniÞ+ exp �enb
ið Þpi +

exp �enb
ið Þ

expð�eniÞ+ exp �enb
ið Þp

b
i : ð15Þ

The final predicted residue type will be the argmax of p̂i.

Experiment details of TnpB design
Plasmid vector construction. The TnpB gene was optimized for
expression in human cells through codon optimization and the opti-
mized sequence was synthesized for vector construction (Sangon
Biotech). The final optimized sequence was inserted into a pST1374
vector, which contained a CMV promoter and nuclear localization
signal sequences at both the 50 and 30 termini. reRNA sequences were
synthesized and cloned into a pGL3-U6 vector. Spacer sequences
(EMX1: 50- ctgtttctcaggatgtttgg -30) were cloned into by digesting the
vectors with BsaI restriction enzyme (New England BioLabs) for 2 h at
37∘C. The resulting vector constructs were verified through Sanger
sequencing to ensure accuracy.

TnpB engineering. The construction of TnpBmutants was carried
out through the use of site-directed mutagenesis. PCR amplifications
were performed using Phanta Max Super-Fidelity DNA Polymerase
(Vazyme). The PCR products were then ligated using 2X MultiF
Seamless Assembly Mix (ABclonal). Ligated products were trans-
formed into DH5α E. coli cells. The success of the mutagenesis was
confirmed through Sanger sequencing. The modified plasmid vectors
were purified using a TIANpure Midi Plasmid Kit (TIANGEN).

Cell culture and transfection. HEK293T cells were maintained in
Dulbecco’s modified Eagle medium (Gibco) supplemented with 10%
fetal bovine serum (Gemini) and 1% penicillin-streptomycin (Gibco) in
an incubator (37∘C, 5% CO2). HEK293T cells were transfected at 80%

confluency with a density of approximately 1 × 105 cells per 24-well
using ExFectTransfectionReagent (Vazyme). For indel analysis, 500ng
ofTnpBplasmidplus 500ngof reRNAplasmidwas transfected into 24-
well cells.

DNA extraction and Deep sequencing. The genomic DNA of
HEK293T cells was extracted using QuickExtract DNA Extraction
Solution (Lucigen). Samples were incubated at 65∘C for 60 minutes
and 98∘C for 2 minutes. The lysate was used as a PCR template. The
first round PCR (PCR1) was conducted with barcoded primers to
amplify the genomic region of interest using Phanta Max Super-
Fidelity DNA Polymerase (Vazyme). The products of PCR1 were
pooled in equal moles and purified for the second round of PCR
(PCR2). The PCR2 products were amplified using index primers
(Vazyme) and purified by gel extraction for sequencing on the Illu-
mina NovaSeq platform. The specific barcoded primers used in PCR1
are listed in Table 4.

Statistics and reproducibility
No statistical method was used to predetermine sample size since the
methods are evaluated on the full CATH test set, TS50, Latest PDB,
EnzBench and BR_EnzBench dataset. We excluded multichain struc-
tures and structures of a lengthmore than 500 or resolution > 2.5Å for
Latest PDB dataset. No data were excluded from the analysis for other
benchmarks. All genome editing attempts were performed with at
least three biological repeats. All attempts at reproducibility were
successful and standard deviations were in the expected ranges. The
experiment randomization and blinding are not applicable since we
are not making a comparison between different groups.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. CATH
dataset (v4.2) is available at http://people.csail.mit.edu/ingraham/
graph-protein-design/data/. TS50 dataset (v2.0) is available at:
https://zenodo.org/record/6650679#.ZDJJNhVByhY44. EnzBench is
available as part of the standard Rosetta package (v3.13) which could
be downloaded from https://www.rosettacommons.org/software/
license-and-download with a license. BR_EnzBench is provided by
and available from the paper34. Latest PDB dataset is available at
https://drive.google.com/file/d/1Ate5I0Hz5GwzOJN4sQL_
RrDUkjxMJZ0u/view?usp=sharing. Ligand Binding Affinity dataset
(v0.1) is available at https://zenodo.org/record/491471845. Small
Molecule Properties dataset (v0.1) is available at https://zenodo.org/
record/491114246. Source data is available at Figshare (https://doi.org/
10.6084/m9.figshare.23913147)47. Source data are provided with
this paper.

Table 4 | The barcoded primers used in PCR1

EMX1-PCR-seq-F1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGAGggtggttcaggcctccttcccac

EMX1-PCR-seq-F2 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTAAggtggttcaggcctccttcccac

EMX1-PCR-seq-F3 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCAggtggttcaggcctccttcccac

EMX1-PCR-seq-F4 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCGggtggttcaggcctccttcccac

EMX1-PCR-seq-F5 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGCggtggttcaggcctccttcccac

EMX1-PCR-seq-R1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACCcaagatgctaagtgatgacagg

EMX1-PCR-seq-R2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAGcaagatgctaagtgatgacagg

EMX1-PCR-seq-R3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCTcaagatgctaagtgatgacagg

EMX1-PCR-seq-R4 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCTAcaagatgctaagtgatgacagg

EMX1-PCR-seq-R5 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTAcaagatgctaagtgatgacagg
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Code availability
TM-score and RMSD calculation used TM-score v20220415 from
https://zhanggroup.org/TM-score/. Mantel test used mantel v2.2.0
from https://github.com/jwcarr/mantel. Other data analysis used
Python v3.9.16 (https://www.python.org/), NumPy v1.24.3 (https://
numpy.org/), SciPy v1.10.1 (https://scipy.org/), PyTorch v1.13.0
(https://pytorch.org/), pandas v2.0.2 (https://pandas.pydata.org/),
Matplotlib v3.7.1 (https://matplotlib.org/), seaborn v0.12.2 (https://
seaborn.pydata.org/) and Biopython v1.80 (https://biopython.org/).
Structure visualizations were created in ChimeraX v1.6.1 (https://
www.cgl.ucsf.edu/chimerax/). Indel analysis used CRISPResso2
(https://github.com/pinellolab/CRISPResso2). The code developed
in this manuscript and pretrained model weights are provided
through Colab: https://colab.research.google.com/drive/1a6VW-
BB0twEwL65sE_dUAM42wdSm6RZp?usp=sharing, Code Ocean:
https://codeocean.com/capsule/9492154/tree48 and Github: https://
zenodo.org/records/1003088249.
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