nature communications

Article

https://doi.org/10.1038/s41467-023-43201-6

High-sensitive spatially resolved T cell
receptor sequencing with SPTCR-seq

Received: 2 November 2022

Accepted: 3 November 2023

Published online: 16 November 2023

M Check for updates

Jasim Kada Benotmane'??, Jan Kueckelhaus'??3, Paulina Will'%3,

Junyi Zhang ® 23, Vidhya M. Ravi® >34, Kevin Joseph ® %345,

Roman Sankowski ® 8, Jiirgen Beck'?, Catalina Lee-Chang ®”, Oliver Schnell">* &
Dieter Henrik Heiland ® %378

Spatial resolution of the T cell repertoire is essential for deciphering cancer-
associated immune dysfunction. Current spatially resolved transcriptomic
technologies are unable to directly annotate T cell receptors (TCR). We pre-
sent spatially resolved T cell receptor sequencing (SPTCR-seq), which inte-
grates optimized target enrichment and long-read sequencing for highly
sensitive TCR sequencing. The SPTCR computational pipeline achieves yield
and coverage per TCR comparable to alternative single-cell TCR technologies.
Our comparison of PCR-based and SPTCR-seq methods underscores SPTCR-
seq’s superior ability to reconstruct the entire TCR architecture, including V, D,
J regions and the complementarity-determining region 3 (CDR3). Employing
SPTCR-seq, we assess local T cell diversity and clonal expansion across spa-
tially discrete niches. Exploration of the reciprocal interaction of the tumor
microenvironmental and T cells discloses the critical involvement of NK and B
cells in T cell exhaustion. Integrating spatially resolved omics and TCR
sequencing provides as a robust tool for exploring T cell dysfunction in can-

cers and beyond.

Spatial transcriptomics has emerged as a powerful tool for studying
the complex interactions between cells within their native tissue con-
text, providing valuable insights into cellular heterogeneity, functional
states, and the organization of different cell types in the tissue
microenvironment'~. This technology has led to significant advance-
ments in understanding diverse biological processes, including
development, tissue homeostasis, and disease progression*”’. We
recently reported on the topography of cellular interactions across
tumor, myeloid, and lymphoid cells by integrating spatially resolved
transcriptomics, metabolomics, and proteomics*. However, a critical
unmet need in this field is the spatial mapping of T cell receptors
(TCRs), which play a pivotal role in the adaptive immune response

against cancer and other diseases. While effective in providing a global
view of gene expression patterns, the current array-based spatially
resolved transcriptomic technologies are limited in their ability to
annotate TCRs directly. Although the 3’ ¢cDNA sequencing used in
array-based spatial transcriptomics is adequate to enumerate mRNA
abundance, direct sequencing of recombined TCR genes is hindered
since the highly variable CDR3 segment of the TCR is located closer to
the 5’ end, not captured by 3’ library preparation®’. The T-cell reper-
toire is a crucial component of the adaptive immune system, as it
recognizes and eliminates infected, damaged, or malignant cells. TCRs
are generated through a highly dynamic and stochastic process known
as V(D)) recombination, which leads to a virtually limitless diversity of
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TCR sequences. Each TCR is composed of two chains, a/p or y/&
respectively, which together form the antigen-binding site responsible
for recognizing a specific peptide-MHC complex. The diversity of TCRs
arises from the unique combination of variable, diverse, and joining
TCR exons, with the majority of this diversity concentrated in the
complementarity-determining regions (CDRs). The highest diversity is
observed within the epitope binding region of the TCR, CDR3, making
it an ideal natural barcode for studying T-cell clonality and diversity'®".
Understanding T cells’ spatial distribution and functional states and
their receptors is essential for unraveling the mechanisms underlying
cancer-associated immune dysfunction, discovering hidden features in
the TCR sequence and designing effective immunotherapies.

In this study, we present an approach called spatially resolved T
cell receptor sequencing (SPTCR-seq), enabling the spatial mapping of
TCRs with unprecedented accuracy and resolution. We leverage the
SPTCR-seq technology to characterize T-cell clonality and diversity in
glioblastoma, the most malignant tumor of the central nervous system.
In our comparative analysis of SPTCR-seq with other well-established
methodologies, we showcase SPTCR-seqs improved TCR Detection
performance and sensitivity due to its enhanced ability to reconstruct
the entire TCR, including VDJ rearrangement and the CDR3 region.
GBMs are well known for their “cold” immune environment and lack of
anti-tumor immunity. Our findings demonstrate that the integration of
array-based spatially resolved transcriptomics with SPTCR-seq allows
for identifying distinct T cell subpopulations residing in spatially seg-
regated niches within the tumor microenvironment. This in-depth
characterization of the T cell repertoire at a spatial resolution has
important implications for understanding the functional states of
T cells, their interactions with other immune and non-immune cells,
and the overall immune landscape of the tumor.

Results

Workflow of SPTCR-seq

Over the past year, two distinct spatial TCR-seq methodologies were
developed, Hudson et al. > employed a mixture of TRBV forward pri-
mers (further referred to as “Hudson protocol”) or RNase H-dependent
PCR (Slide-TCR-seq”) from the TCRa and TCRP regions (further
referred to as “Liu protocol”) to enrich for CDR3-containing TCR chain
fragments in Slide-seq libraries, followed by short-read Illumina
sequencing'*", Another technique to enrich TCR fragments is
reported by the RAGE-seq protocol'®, which utilizes target enrichment
by hybridization of single cell library followed with long-read
sequencing on the Oxford Nanopore Technologies (ONT) platform.
This allows for direct annotation of VDJ rearrangement and CDR3
region with high yield and coverage. Inspired by the high fraction of
fully annotated TCRs achieved with the RAGE-seq protocol’, we built
the SPTCR-seq protocol with optimized hybridization probes and an
analysis pipeline for accurate TCR reconstruction, Fig. 1a. SPTCR-seq is
compatible with widely-used high-throughput spatially resolved tran-
scriptomic technologies, including ST, Visium 10x Genomics, STEREO-
seq”, seq-SCOPE®, Slide-seq”, and scRNA-seq platforms (10x Geno-
mics 3’ protocols, Seq-Well, and Drop-seq). Each of these platforms
involves an intermediate step that generates full-length cDNA tran-
scripts. From these transcripts, we designed probes targeting regions
of all annotated TCRs known to the ImMunoGeneTics information
system”’ resulting in 186 probes, each 100 bp in length. This is followed
by amplification and nanopore library preparation. Sequencing can be
performed at the desired coverage using Flongle for low or MinlON/
PromethION for high coverage, Supplementary Figure 1a. After UMI
correction, TCR annotation with IGBLAST* demonstrated full VDJ-
annotations for TCRp in roughly 60% (-22.36 x 10*6 UMI counts) and
TCRa VJ-annotations in 93.8% (33.9 x 10"6 UMI counts). TCRy&-chains
were detected with lower abundance and no complete VDJ- (TCRS) or
VJ-annotations (TCRy). A co-expression analysis of TCRa and TCRf
revealed a significant correlation coefficient of 0.693 (p <2.2 x10"-16),

indicating that the TCRap-chain distribution aligns with expectations,
Fig. 1b, c. To investigate niche-specific T cell exhaustion, we addressed
the Visium array technology’s 55 um spot size limitation by employing
three distinct algorithms (CytoSpace?, Cell2location®) for further data
processing. This approach allowed us to estimate cell type abundance
across spots with high concordance to TRBC2 and TCRo/TCRp chain
expression, thereby effectively characterizing cell-specific expression
and inferring T cell distribution (Fig. 1d-f).

SPTCR-seq computational workflow

A notable limitation of the nanopore platform is its base call accuracy
for long-read sequencing, with a mean error rate of ~2-4% in R9 pore
sequencing experiments®**. This presents significant challenges when
attempting to anchor reference regions during VDJ-reconstruction
annotation. To mitigate this issue, we developed a computational
toolkit compensating for technical biases implicit in long-read
sequencing through consensus-based error correction. Building on
our previous platform for spatial data analysis (SPATA2), the add-on
SPATAImmune R-package integrates spatially resolved multi-omics and
the T-cell repertoire. We increase the yield of annotated reads by
adopting the computational postprocessing using the following steps,
Fig. 2a and Supplementary Fig. 2: First, barcode and UMI annotation
were performed using the recently developed scTagger® pipeline,
which utilizes the True-seq readl as annotation anchors resulting in
89.4% correctly demultiplexed reads. Since nanopore reads lose their
orientation, we split, trimmed, and reorientated the reads
(pyChopper?” and cutadapt®), followed by TCR annotation using
IGBLAST”. These VD) annotations were then used for read-correction
to enhance the anchor sequences (CDR1/CDR2) alignment required for
CDR3 annotation. The reads were then clustered by their VJ-similarity
distance and spatial position and further corrected using the RATTLE*
algorithm in a supervised manner. This approach reduced nanopore
error-rate from 4.74 +2.49 to 1.1 +1.43 percent without changing the
size of the transcript (mean length uncorrected 820 + 278 vs corrected
822 +277) Fig. 2b, c. We assessed quality improvement by inspecting
the mapping identity score of IgBlast, which indicates the number of
mismatches of the aligned segment with the reference. The mapping
score for the V region of the TCR segment improved from a mean of
59% for uncorrected Nanopore R9 reads to a mean of 80% mapping
identity following correction, Fig. 2d. With Read Errors being the result
of basecalling or artifacts in the PCR, they lead to an overly diverse TCR
Repertoire with numerous TCRs at low read counts. Driven by the
hypothesis that, higher error rates would falsely overdiversify the
repertoire we used the number of clones with fewer than 50 reads as a
proxy for high error rates and found a significant decrease after cor-
rection. Consequently, the mean sequencing depth per annotated T
cell clone increased 1.86 times from 445 + 3568 to 829 + 7677 sequen-
cing reads following correction, Fig. 2d. Recent advancements in
Nanopore chemistry have demonstrated lower per-base error rates
comparable to other long-read sequencing technologies like PacBio,
potentially even surpassing lllumina’s per-base accuracy due to fewer
PCR cycles or complete lack thereof’. The primary source of
sequencing errors has been attributed to the PCR process itself*°. To
assess the differences between Nanopore chemistries, we compared a
set of three samples sequenced on both R9 and R10 flow cells. Our
analysis revealed that sequencing on R10 flow cells improved the
V-segment mapping score by ~-5% compared to R9 flow cells (R9: 59%;
R10: 63.4%), presumably mitigating basecalling errors. The SPTCR
pipeline then further boosted performance, achieving a high propor-
tion of accurately aligned TCR-segments for both R9 and R10. Our
findings, in conjunction with recent literature, suggest that the major
source of error originates during PCR amplification and accumulates in
protocols with increased PCR cycles®. We assessed T cell abundance
across samples and histological regions (based on the IVY classifica-
tion) using UMI-corrected TCRp expression, which indicates T cell
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Fig. 1| Overview of the SPTCR workflow. a Illustration of the workflow combining
spatially resolved transcriptomics with T cell receptor profiling in the SPTCR-seq
protocol. Independent from the standard Visium protocol, the yield of 100 ng full-
length cDNA is taken to enrich TCR transcripts through hybridization. After long-
read sequencing on the nanopore platform, intensive postprocessing is applied and
data will be integrated through the R-based software tool SPATAImmune. b H&E
histological image of the sample UKF313 with annotation of defined histological

regions. Surface plots indicate the abundance of TCR chains. ¢ Scatter plot of TRA
UMI counts per spot (y-axis) and TRB UMI counts per spot (y-axis). Pearson cor-
relation R=0.693, p < 2.2 x107. d Surface plot of the single-cell composition after
deconvolution with CytoSPACE22. Surface plot of the T cell abundance using
Cell2Location scores (e) or the expression of TRBC2 (f). Surface plots contain the
dimensions of the samples (in mm) on the x and y axes. Partially created with
BioRender.com.

presence, as shown in Fig. 2f. In four out of nine samples, TCRp
expression was relatively low, while five samples displayed high T cell
abundance with around 30 TCR3 UMIs per spot. We observed a sig-
nificant enrichment of T cell abundance in perinecrotic, microvascular
proliferation and hyperplastic blood vessel regions (ANOVA
p=0.0043), with the lowest abundance in infiltrative and leading-edge
areas (ANOVA p = 0.0173). Using SPTCR-seq, we could obtain a detailed
characterization of spatial TCR clonality, which requires sufficient
sequencing depth to annotate each clone’s spatial expansion. To this
end, we quantified the number of UMIs per clone across samples. Our
analysis showed that approximately 75% of all clones contained more
than one UMI, while 8.8% had over five UMIs, Fig. 2g.

Comparative analysis of SPTCR-seq and PCR-based Spatial
TCR-seq methods

In the next phase of our study, we aimed to compare SPTCR-seq with
published protocols to evaluate their respective advantages and dis-
advantages. Both PCR-based protocols (Hudson and Liu) are

considerably more cost-effective and less labor-intensive than SPTCR-
seq: hands-on time for Hudson and Liu protocols is 4-6 h, while for
SPTCR-seq, it is 6-8 h plus an overnight incubation. The cost per
sample (excluding sequencing) is -5 Euros for the Hudson protocol, 12
Euros for the Liu protocol (2.4 fold-change), and 32 Euros for SPTCR-
seq (6.4 fold-change). It should be noted that the estimated hands-on
time and cost per sample may vary if samples are multiplexed toge-
ther. The primary cost difference can be attributed to the library pre-
paration workflow, sequencing depth and the degree of sample
multiplexing, as Nanopore technology tends to be significantly more
expensive than Illumina when samples are not multiplexed. To com-
pare the protocols, we used three Visium libraries and performed all
three protocols as recently described. The sequencing depth from
Hudson and Liu was ~300 million reads/sample, and the SPTCR-seq
yield was around 26-30 million reads. All protocols were processed by
the individual pipelines, as described in Fig. 3a. We began our com-
parison by examining the diversity of distinct TCRs detected by each
method. To this end, we evaluated the number of unique CDR3s per
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Fig. 2 | Quality control and validation of VDJ-rearrangement. a Illustration of the
workflow for the SPTCR postprocessing. b Density plot of error rates from cor-

rected and uncorrected reads. ¢ Density plot of mean transcript length obtained by
long-read sequencing before and after error correction. d Barplot of the mapping
score between R9 (raw), R10 (raw), or SPTCR processed reads. e Stacked bar plot of
reads annotated to defined T cell clones. Through error correction, the number of
reads that either belong to clones with less than 50 reads or in which the CDR3

Counts of T cell clones per spot

region was not detectable was significantly reduced (p =3.54 x10°¢, Chi-square
test). f A Barplot indicates the number of the mean fully annotated and UMI-
corrected TCRs across samples and histological regions. g Barplot illustration of
the number of T cell clones per spot (x-axis) and its frequency (y-axis). Colors
indicate the sample origin. Surface plots contain the dimensions of the samples
(in mm) on the x and y axes. Partially created with BioRender.com.

sample by applying a stringent criterion that classified CDR3 regions as
unique if they exhibited a Levenshtein distance of at least two. Due to
the lack of TCRa chains in the Hudson protocol, we focused our
comparison on the TCR chain. The Liu protocol identified a mean of
13.4 unique TRBs (min=4, max=31, n=5) per sample, whereas the
Hudson protocol yielded a mean TRB count of 26, ranging from 16 to
36 TCRs per sample (n=3). In comparison, SPTCR-seq detected a
mean of 208 unique TRBs (sd:135) per sample (n=5). For combined
TRA & TRB counts, the Liu protocol achieved a mean of 16.2 (min=6,
max =33, n=5) in matched samples, compared to SPTCR’s 208.6
unique TRA/B CDR3 regions (min =24, max=343). Our data showed
that SPTCR-seq maintained a more diverse immune receptor reper-
toire, with a mean of 87.25 UMIs per TRB TCR, as opposed to 1.2 UMIs
per TCR across all samples for the Hudson protocol (n=3) and Liu
protocol (n=7). To investigate the reasons behind the lower number
of detected TCRs in PCR-based methods compared to SPTCR-seq, we
visualized the mapped segments reported by MixCR and SPTCR-seq in
awaterfall plot, Fig. 3b. The TCR reconstruction algorithm successfully
mapped 93% of reads to a TCR locus for the Hudson protocol (n=3)

and 56% for the Liu protocol (n =7), while IgBlast mapped SPTCR-seq
reads to a TCR locus in 98.4%. As we dropped uncorrected Reads that
did not hold a V and ] Region prior to correction, SPTCR lost 40% of the
reads during alignment. Subsequently, we visualized the spatial dis-
tribution of TCRs and observed a consistent spatial abundance pattern
of unique TRB UMIs across all methods, Fig. 3c, d. The main observed
limitation of PCR-based methods was their inability to accurately
annotate J regions (-92% failure rate for the Hudson protocol and 55%
for the Liu protocol), which results in a significant loss of reads
necessary for complete TCR reconstruction. In contrast, SPTCR-seq
successfully annotates V and J regions 87.56% of the time. Although the
final anchoring of CDR regions still remains challenging, SPTCR-seq
attains a considerably higher rate of full TCR reconstruction compared
to other methods. We primarily attribute this significant difference to
the shorter read length of the 300 Cycles v3 Illlumina chemistry.
Although Illumina’s high throughput excels at capturing gene
expression at high coverage, the short read length hampers its ability
to span the structurally important regions of the TCR. In conclusion,
our comparison of SPTCR-seq with the Hudson and Liu protocols
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indicates the histology (c) and the spatial distribution of annotated TCRs across
methods (d). Surface plots contain the dimensions of the samples (in mm) on the x
and y axes.

demonstrated that SPTCR-seq outperforms these PCR-based methods
regarding TCR diversity and annotation accuracy. Despite the higher
cost and increased hands-on time associated with SPTCR-seq, its sen-
sitivity to detect a more diverse immune receptor repertoire and
annotate full TCR transcripts makes it a valuable tool for TCR-seq
analysis. Additionally, the robustness and scalability of the SPTCR-seq
method make it a promising approach for future studies aiming to
examine the spatial distribution and evolution of T cell receptor
sequences in various research contexts.

Identification of spatial niches with clonal T cell expansion or
diversity in glioblastoma

Glioblastomas, known as “cold” tumors, exhibit low T cell abundance,
significant T cell dysfunction, and tumor-associated exhaustion’.
Consequently, immunotherapeutic trials frequently fail to achieve
desired endpoints®*?, Recent single-cell data have highlighted various
cellular interactions responsible for the predominantly immunosup-
pressive tumor microenvironment, with a limited investigation of their
spatial occurrence*”*, Spatially resolved transcriptomics offer the
advantage of profiling the transcriptional landscape almost unbiasedly
while co-localizing specific cellular functions and interactions. Moti-
vated by the observation that neoadjuvant checkpoint blockade has
shown survival differences®, we explored the possibility of a localized
T cell response in the primary tumor within regions typically resected.
We employed spatially resolved TCR-seq on nine glioblastoma (GBM)
samples to better understand their immune topography, Fig. 4a. Our
investigation aimed to identify niches exhibiting local clonal T cell
expansion or clonal diversity. We estimated “clonal abundance” using
normalized UMI counts per clone and compared it to each clone’s
spatial distribution, Fig. 4b. We observed significant differences, ran-
ging from strictly local expansion to widely dispersed clones, Fig. 4b.
To create an index incorporating clonal abundance within spatial
neighborhoods, we constructed a spatial graph using Delaunay

triangulation and estimated each clone’s regional enrichment fre-
quency (Clonality-Index). Comparing clonal abundance with the
clonality-index allowed us to distinguish clones with local patterns,
Fig. 4c. Since many clones shared the same spots, we introduced the
“CDR3-diversity-index” parameter, which considers the mean reci-
procal Levenshtein distance of clones at a given spot. A high CDR3-
diversity-index at the spot level indicates the presence of multiple
clones with notably different CDR3 regions, Fig. 4d-f. According to
this, we classified spots local T cell repertoire as either expanded or
diverse.

Local clonal diversity is associated with tumor-associated T-cell
dysfunction/exhaustion

Utilizing our established parameters, we proceeded to categorize each
spot as “local T cell expansion”, “local T cell diversity” and “no detected
T cells” or spots that could not be unambiguously classified, Fig. 5a. In
the analysis of all samples, clonal T cell expansion was observed in only
6 out of 9 samples, in a minority of spots ranging from 2 to 68 spots,
while T cell diversity was detected in every sample, Fig. 5b. Further-
more, no distinct histological regions could be associated with local
clonal expansion or clonal diversity, Fig. 5c. We postulated that the
local expansion of clones is strongly correlated with regions with
potential antigens or favorable microenvironmental conditions. Since
unique clonal expansion was only rarely observed, indicating that
T cells in glioblastoma do not display a single dominating T cell clone;
instead, they exhibit T cell expansion independent of a specifically
presented antigen. This hypothesis is substantiated by the spatial
annotation of clones exhibiting a high Clonality-Index, which revealed
a significant overlap of local T cell expansion within the same tumor
regions, Fig. Se, f. Based on these findings, we aimed to investigate to
what extent these clones are functionally active to support anti-tumor
immunity or dysfunctional/exhausted. Using supervised spatial clus-
tering based on predefined T cell cytotoxic and dysfunctional/
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exhausted signatures, we identified that large parts of the “local T cell
diversity” pattern showed enriched expression of exhausted genes,
Supplementary Fig. 3. Some parts of the “local T cell diversity” along
with the “local T cell expansion” pattern showed upregulation of
classical cytotoxic markers suggesting that only a minority of the
detected clones contribute to anti-tumor immune response.

Clonal T cell expansion is associated with defined local cellular
ecosystems

Given the spatial heterogeneity of T cell expansion and clonality, we
aimed to investigate the differences in the local cellular ecosystem that
might impact the two different T cell behaviors. To this end, we used
two models: 1: Hierarchical cell type composition model (HCCM), 2:
Node-centric expression modeling (NCEM™®). In the first model, we aim
to investigate the cellular topography of the different T cell expansion
patterns and analyze the cellular communication required to reach
defined cellular differentiation. Since the Visium data is limited by the
55 um spot size, we preprocessed our data by single-cell deconvolution
utilizing CytoSpace for the HCCM model and Cell2location for the
NCEM model. We first analyzed the cellular composition of spots
defined as local T cell expansion (defined by clones with high UMI
counts >5 and clonality-index >1) and found three different patterns of
cellular compositions. An NK-cell enriched niche, a T cell memory
enriched niche, and a niche dominated by bone-derived macrophages
previously defined by high expression of MHC class Il molecules and B

cells, Fig. 6b. In a hierarchical layout, all three composition patterns are
connected by interferon-gamma-activated CD4 T cells. The NK-rich
niche was enriched for cytotoxic CD8 T cells and various stromal cells
above all perivascular fibroblasts, also named “cancer-associated
fibroblasts”. In the myeloid-enriched niches, we frequently observed
dendritic cells connected to B or proliferating T cells. To further
understand the cell-cell communication, we employed the NCEM
model, and separated regions with clonal T cell expansion based on
their likelihood to express cytotoxic or exhausted/dysfunction genes
derived from the cell type-specific gene expression matrices. The
NCEM model displayed strong inputs from high MHCII expressing
bone-derived macrophages and NK cells on CD4 T cells in regions with
preferentially cytotoxic signatures. Overall, NK cells showed a dom-
inating role in signaling required for local cytotoxic T cell expansion,
Fig. 6¢, d. In spots exhibiting increased expression of T cell dysfunction
and exhaustion markers, the cell communication model revealed that,
compared to the local clonal expansion pattern, there was increased
input from MHC class Il-expressing cells such as bone-derived mac-
rophages, plasmacytoid dendritic cells (pDCs), and conventional
dendritic cells. Bone-derived macrophages preferentially signaled not
only to CD4 cells but also strongly to B cells, Fig. 6e, f. B cells, already
identified as an important cell type in the hierarchical model, exhibited
robust communication with natural killer (NK) cells. This B cell-NK cell
axis was not observed in the cytotoxic regions. The role of B cells in the
tumor microenvironment remains incompletely understood; however,
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a growing body of literature has attributed B cells to a highly immu-
nosuppressive role in glioblastoma, which aligns with our findings*®.

Extracellular matrix genes and Platelet Factor 4 shape the T cell
response in distinct niches

Comprehending the various signaling mechanisms in the tumor
microenvironment that influence T cell behavior towards anti-tumor
immunity or exhaustion is of paramount significance. Our findings
indicate that the primary factors affecting differential T-cell behavior
involve the B-cell-NK axis (dysfunctional/exhaustion) and the NK-CD4
axis (cytotoxic). To further delineate the specific signaling perturba-
tions and conditions under which they occur, we examined receptor-
ligand interactions using cell type-specific gene matrices, as shown in
Fig. 7a. We began by investigating regional cell-cell signaling, with B
cells as the sender and NK cells as the receiver. In addition to classical
immune-related receptor-ligand signaling molecules, we identified
various extracellular matrix genes, particularly Collagen type VI alpha 1
(COL6A1), and its receptor on NK cells, Syndecan-4 (SDC4). SDC4, a cell
surface heparan sulfate proteoglycan involved in cell adhesion,
migration, and signaling, exhibited significant enrichment in niches
with increased T-cell exhaustion, Fig. 7b-d. The spatial proximity of
these genes’ expression was visualized in a co-expression surface plot,
revealing a distinct local pattern, Fig. 7e. Beyond this cell-cell inter-
actions, we also found known immunosuppressive interactions such as
ACVRI-BMP7 which is a type I receptor for the transforming growth
factor-beta (TGF-B) superfamily, which plays essential role in T cell

regulation and exhaustion®. In our previous analysis, we determined
that increased signaling from NK cells to CD4 cells correlated with
enhanced T cell response. We used the same approach to examine the
NK (sender) and interferon-gamma-driven CD4 (receiver) axis, Fig. 7f,
g. We identified signaling between Platelet Factor 4 (PF4), a small
chemokine primarily secreted by activated platelets in response to
injury or inflammation, and C-X-C chemokine receptor type 3 (CXCR3).
Annotating this receptor-ligand interaction across cytotoxic or dys-
functional regions confirmed spatial accumulation in areas associated
with cytotoxic T-cell response, Fig. 7h, i. Our findings highlight the
importance of understanding signaling mechanisms in the tumor
microenvironment that influence T-cell behavior, specifically the B-
cell-NK axis driving exhaustion and the NK-CD4 axis promoting cyto-
toxic responses. We identified key receptor-ligand interactions, such
as COL6AI-SDC4 and PF4-CXCR3, spatially linked to distinct T-cell
behaviors.

T cell exhaustion is associated with a metabolic switch towards
enhanced glycolysis

Our data suggests that local T cell expansion predominantly comprises
phenotypically exhausted T cells, driven by immunosuppressive sig-
naling within the tumor microenvironment and other lymphoid cells.
Defining T cell exhaustion using only TCR-seq and transcriptional data
is challenging due to functionally distinct T cells (CD4/CD8/TREG/NK)
bearing a TCR; therefore, we integrated an additional molecular layer
of metabolomics to functionally characterize identified T cell clones. In
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exhausted areas (right). Colors indicate the cell types. The size of the edges indi-
cates the magnitude of the cell-cell communication. f Heatmap of the NCEM with
sender cells (rows) and receiver cells (cols) in exhausted regions. Surface plots
contain the dimensions of the samples (in mm) on the x and y axes. Partially created
with BioRender.com.

cancer, T cell exhaustion is characterized by metabolic alterations,
transitioning from oxidative phosphorylation (OxPhos) in cytotoxic
T cells to increased glycolysis in exhausted T cells. This metabolic
switch can serve as a predictive marker for T cell behavior. To this end,
we added an additional molecular layer of spatially resolved metabo-
lomics (MALDI, n=5) as recently described*, to functionally char-
acterize identified T cell clones. Integrated profiles containing gene
expression and metabolic abundance data were computed, extracting
clone-specific multi-omic profiles, Fig. 8a. Spatial correlation analysis
with T cell-specific expression of cytotoxic or exhausted marker genes
revealed significant enrichment of hypoxia-associated metabolic
pathways (e.g., gluconeogenesis, glycolysis, glutathione metabolism)
in exhausted T cells, Fig. 8b. Single clone analysis demonstrated that
clones with increased transcriptional exhaustion signatures were sig-
nificantly enriched for glycolytic metabolites (R*=0.534,
p<2.2x10-"), correlating with increased hypoxic conditions in
regions with spatial accumulation of exhausted clones, Fig. 8c-d. These
findings align with our initial investigation of enriched T cell clones in
perinecrotic regions and microvascular proliferations, Fig. 2f. In sum-
mary, we observed increased mesenchymal-like tumor cell abundance,

bone-derived macrophages, CD4 cells, and B cells in hypoxia-
associated regions, implicated in enhanced genomic instability and
mutational burden®. This potential driver of clonal T cell expansion is
closely linked to immunosuppressive environments promoting T cell
dysfunction and exhaustion. The regional metabolic situation, as well
as the T cell shift towards glycolytic metabolism, exacerbate T cell
dysfunction. T cells can only locally expand in regions less affected by
this detrimental cycle; however, the scarcity of immunosuppression
released spots with effective antigen presentation constrain their anti-
tumor efficacy.

Discussion

In this study, we utilized spatially resolved T cell receptor sequencing
(SPTCR-seq) to investigate T cell responses in GBM, a “cold” tumor
with overall low T cell abundance. Through target enrichment, long-
read sequencing, and read consensus correction, we gained insights
into the spatial heterogeneously distributed T cell response. In all
available spatial transcriptomic methods, the reconstruction of TCRs
necessitates the enrichment of TCR-containing fragments and ampli-
fication for TCR-seq. To date, three methods, including our presented

Nature Communications | (2023)14:7432



Article

https://doi.org/10.1038/s41467-023-43201-6

a
o . R-L signaling from B cells on NK cells Top 20 R (NK) - L(B cell
Cell type specific  Spatial R-L S04 coesine P (NF) K )
expression interaction sMP7 @ ® 0.15
-| cCL26 CD44 ITGB1_COL6AT
RL o Cell type 1 ® ° 0.20 —
Database 0.25 TNFRSF108.TNFSF1( |emm—
@ - = CCR3_CCL26 —
_/ --= THBS1 spct | class CCRI_COLS | |m—
: ® ® . L 1TGB3_ THES1| |—
o Cell type 2 . R 1TGBS_THES?| |—
ITGB3_IBSP/ —
. . . [TGB3_IGF1 —
IGF1 CCR3 1TGB3_THESS| |—
ITGA3_COL6A1 F
ACVR1_BMP7 —
TCR'Seq Cytotoch/ CCL.5 ITgES SDCA_THBS1| | e—
Dysfunctional sC1_COLAT | — 0.66 e e s
. . SDC4_COLB6AT| —
- 1.3 2.67 4.04 5.41 6.77
COL6AT ITGA3
AcVR1 @ CD44.C0LoA1 | | — x-coordinates [mm]
00 Em\chorrjcom sco(r]ozo @ Cytotoxic @ Dysfunctional/Exhausted
. . Top 20 R (CD4) - L(NK
€ f R-L signaling from NK cells to CD4 g op 20 R (CD4) - L(NK)
SDC4 COL6A1 o2 coesine  NEGRINEGA!| g
7.25 o v = U o 7] 0.15 EsAM_ESAM| e
g e L4A1 020 noroms puta -
2d W C/QHS 025 ITGA1_COL4A1
ads * S - |
561 r\ NEGR class ITGA1_COL4A2 | g
’ F4 ITGA1_LAMC3 F
1 3 { ‘ ® : WMPZ_MPZ | g
-3 { OCLN_OCLN
3.96 . { [
{ PTPAM_PTPAV| g
Z‘\ ,I’: A’Z F11R_F11R r
> ITGB1_LAMC1 F
2.31 /@ CLONI1 CLONTT | p
> WPRM O& N CD4_MIF | p—
/ - Receptor_/ CDH_LANC? |
066{ NI e ety Gon11 i .
1R
13 267 404 541 677 13 267 404 541 677 & OEO howo 0.20
x-coordinates [mm] x-coordinates [mm] nrichment score
Cytotoxic ~ Dysfunctional CXCR3 PF4 CD44 LAMC2
@ Cytotoxic 7561 Nt 756 ("
. Dysfunctional/Exhausted ; o . >
= % £ k¢ 2
£ 6.061 N E 6067 ¢ g
‘@ ¢ 2 @ ¢ 5
£ ¢ A5 ( Y Receptor
c ¢ : 3 = € 3
° 4574 ¢ S AN 74 3
8 Y, § S y: ]
g § =8 ¢ ¢
> f > E
[ oo o 307§ tany 3074 g 4
e % %ol v ¢ 7
° o I \‘ o i.
& . el \,
o0 1.58{ Ut 158] Gkl . cu
1.28 273 4.19 5.65 71 1.28 273 4.19 5.65 71 1.28 273 4.19 5.65 7.1

x-coordinates [mm]

Fig. 7 | Receptor Ligand Interaction at spatial resolution. a Illustration of the

workflow for spatial R-L communication modeling using cell-type specific metrices.
b Circle plot of the most abundant R-L interaction from B cells towards NK cells.
¢ Barplot of regional annotation of cytotoxic/exhausted regions compared to the
high-scoring R-L pairs. d Example surface plot of the cytotoxic (red) or exhausted
(blue) regions in sample UKF 259. e Mutual expression plot using RGB colors (from

x-coordinates [mm)]

x-coordinates [mm]

green to red). The color indicates the level of overlap between the ligand and
receptor. f Circular plot of the R-L graph between NK cells as sender and CD4 (IFN)
as receiver cell. g Barplot of regional annotation of cytotoxic/exhausted regions
compared to the high-scoring R-L pairs. h, i Surface plot of the cytotoxic/exhausted
regions and specific R-L interactions. Surface plots contain the dimensions of the
samples (in mm) on the x and y axes. Partially created with BioRender.com.

approach, have been published for performing TCR-sequencing in
spatial transcriptomics. We conducted a comparative analysis of these
distinct methodologies, identifying significant disparities in their
capacity to fully annotate TCRs. SPTCR, which employs targeted
enrichment through hybridization, demonstrated superior perfor-
mance than other PCR-based methods, owing to its elevated success
rate in TCR reconstruction.

Additionally, SPTCR-seq effectively minimizes PCR amplification
cycles, identified as a major source of sequencing errors in our ana-
lysis. In contrast to the alternative methods, Hudson'’s (70 [35 + 35] PCR
cycles) and Liu’s (30 [18 +12] PCR cycles), SPTCR-seq necessitates a
total of only 23 (5+18) PCR cycles. This reduction in PCR cycles,
coupled with consensus-based error correction, enhances sequence
accuracy and contributes to more sensitive and specific TCR detection.
We acknowledge that our comparative analysis was primarily influ-
enced by the specific sequencing protocols utilized, particularly the
exclusive use of long-read sequencing for our SPTCR-seq method.

Future studies should explore the potential of adapting multiplex-PCR
methods to long-read sequencing, as this could significantly shift the
performance landscape of various spatial-TCR methods.

We leveraged SPTCR-seq to explore spatially diverse T cell
response and showed exhausted T cell response regions were domi-
nated by anti-inflammatory tumor-associated macrophages, reg-
ulatory T cells, and tumor cells. In contrast, reactive T cell phenotype
regions displayed stronger signals from dendritic cells and NK cells.
However, these islands of immune response were small, as the tumor
exploited immune cells to attract T cells into areas with high macro-
phage and tumor cell densities, leading to T cell exhaustion. We
demonstrated the power of spatially resolved technologies in
extracting defined cellular interaction of the tumor microenvironment
which have impact on T cell response. Our findings are significantly
constrained by the technology, which relies on spatial proximity but
does not elucidate the functional aspects of cellular interactions. The
absence of a comprehensive evaluation of our reported results
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considerably restricts the generalizability of our observations.
Although SPTCR-seq exhibits higher sensitivity compared to
previous studies, several limitations persist, including sample size,
sampling bias, and the inherent heterogeneity of GBM, which
further curtail the applicability of our reported findings. Moreover,
spatial transcriptomics data is inherently noisy and sparse, with
interpatient variability potentially influencing our findings. Investi-
gating larger and more diverse patient cohorts along with functional
characterization is essential for addressing variability and translating
therapeutic targets into applications. Lastly, our study does not
include clinical outcome data, such as patient survival or therapy
response, which would be valuable for a more comprehensive
understanding.

To improve accessibility and applicability, we developed an
optimized pipeline for long-read processing and error correction,
available on our GitHub repository and attached a user-friendly step-
by-step protocol for the target enrichment workflow. This pipeline
integrates with existing Visium workflows and the SPATA framework
using the SPATAImmune R-based package. The combination of effi-
cient workflows and user-friendly software will support the widespread
use of SPTCR-seq, with anticipated technical and computational
improvements accelerating its adoption across the scientific commu-
nity, providing a tool to explore spatial heterogeneity of T cell
response.

In future developments, our protocol could be adapted for
advanced applications by making minor modifications to the enrich-
ment library, specifically the target probes. Such adaptability allows for
enhanced annotation through spatially resolved B cell receptor
sequencing or high-coverage, full-transcriptome sequencing. These
advanced capabilities could facilitate the detection of splice variants or
mutations.

Methods

Ethical statement

The study design, data evaluation, and imaging procedures were given
clearance by the ethics committee at the University of Freiburg, as
delineated in protocols 100020/09 and 472/15160880. All meth-
odologies were executed in compliance with the guidelines approved
by the committee. Informed consent, in written form, was received
from all participating subjects. The Department of Neurosurgery of the
Medical Center at the University of Freiburg, Germany, was respon-
sible for securing preoperative informed consent from all patients
participating in the study. Supplementary Data 1 provides a summary
of the clinical characteristics of the patients.

Spatial transcriptomics data and availability
Spatial transcriptomics experiments were performed as recently
described using the 10X™ Visium Spatial Gene Expression kit
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(https://www.10xgenomics.com/products/spatial-gene-expression).
Tissue optimization, RNA permeabilization and Illumina library pre-
paration working steps were performed according to the manu-
facturer’s instructions. For SPTCR-seq, we used 10X Visium full-length
cDNA libraries from 9 primary glioblastoma samples, acquired in a
recent in-house spatial transcriptomics study* and described in detail
in Supplementary Data 1.

Probe design for tissue collection and RNA quality control
Fresh tissue samples were collected immediately after resection and
snap-frozen in isopentane after embedding in Tissue-Tek O.C.T.
Compound. The embedded tissue was stored at —80 °C until further
processing. RNA integrity was determined, and samples with an RNA
integrity number greater than 7 were used for subsequent analysis.

SPTCR-seq target enrichment probe design

In this study, we designed probes for target enrichment by identifying
functional T-cell receptor sequences located within the TRA, TRB,
TRD, and TRG loci of the human genome (hg38/GRCh38) using the
IMGT database We generated 100nt-sized probes using the KAPA™
Hyperdesign™ online tool (https://www.hyperdesign.com) and had
them manufactured by Roche®. To ensure high specificity, we allowed
a maximum of 20 matches to the human genome for each probe. We
set a default value of 100 bp for the probe window placement on
genomic segments to achieve comprehensive coverage of T-cell
receptor segments. Our design covered a total of 186 regions, utiliz-
ing 211 unique capture probes. A list of genes, genomic coordinates,
and ENSEMBL gene codes used in the probe design is available in
Supplementary Data 2. The SPTCR-seq workflow includes a target
enrichment process consisting of four major steps. The full-length
cDNA is generated after reverse transcription and second strand
synthesis, as described in the 10X Visium fresh tissue protocol
(CG000239 Rev C). The following sections outline the SPTCR-seq
workflow, Supplementary Information.

Step 1: Pre-capture amplification. Before target enrichment, the
library underwent pre-capture amplification using 100 ng of unfrag-
mented cDNA, dissolved in 20 ul of nuclease-free water. A primer mix
(consisting of 1.5 ul TSO (100 uM), 1.5 ul R1 (100 uM), and 2 pl nuclease-
free water) was added to the PCR mix. The final volume was brought to
50 pl by adding 25 ul of KAPA HIFI HotStart Ready-mix (Roche Kapa
Biosystems). After thorough mixing, PCR was performed under the
following conditions: Step 1: 98 °C for 3 min, followed by five cycles of
{Step 2: 98 °C for 20s, Step 3: 65 °C for 30, Step 4: 72 °C for 2 min},
and ending with 72 °C for 3 min and 4 °C hold. Following PCR, a SPRI
bead cleanup and size selection were performed to select transcripts
greater than ~150 bp, using Roche Kapa HyperPure Beads according to
the manufacturer’s instructions for NGS workflows. Finally, the library
was quantified using a Thermo Fisher Qubit system (1X high-sensitivity
dsDNA Kit), and the size distribution was measured using an Agilent
5300 Fragment Analyzer system operated with the Agilent DNF-920
Reagent Kit to ensure proper amplification of the library.

Step 2: Target enrichment probe hybridization. In this study, we used
1.5 ug of the amplified, unmultiplexed cDNA library and filled it with
PCR-grade water to a final volume of 45 pl. To block repetitive regions
in the sample and increase the on-target rate of enrichment, we added
COT-Human DNA (included in Roche HyperCapture Reagent Kit) and
Blocking Oligos (Partial R1: 5-CTACACGACGCTCTTCCGATCT-3’, Par-
tial TSO: 5-AAGCAGTGGTATCAACGCAGAG-3’, ordered from Ther-
mofisher). We performed a SPRI-bead cleanup using 130 ul of KAPA
HyperPure beads. The bound cDNA was eluted from the beads by
sequentially pipetting the following agents directly above the magnet-
bound, dried beads: 2.5 ul of TSO (100 uM), 2.5 ul of Read 1 (100 uM),
and 8.4 ul of PCR-grade H20. The resulting bead suspension (13.4 pl)

was mixed thoroughly. We then combined 28 ul of Roche hybridization
buffer, 12 ul of Roche hybridization component H, and 3 ul of PCR-
grade water in a hybridization mix and added it to the bead suspen-
sion. Finally, 56.4 ul of the eluate was mixed with 4 ul of the KAPA target
enrichment probes, prepared according to the manufacturer’s
instructions. After double-strand denaturation at 95 °C for 5 min, the
solution was incubated for 16 h at 55°C, maintaining the samples at
55 °C throughout the remaining steps.

Step 3: Wash and recover. Prepare wash buffers according to the
manufacturer’s protocol and KAPA Hypercap Workflow V3.0. After the
16-h incubation with target enrichment probes, mix the sample with
prepared capture beads and incubate for 15 min. Wash the capture
beads and elute the bead-bound DNA using wash buffers with
decreasing pH and salt concentration, following the manufacturer’s
instructions for KAPA HyperCap. Finally, suspend the DNA in 20 ul of
PCR-grade water.

Step 4: On-target amplification. Next, we amplified the bead-bound
target-enriched T-cell receptor transcripts with a final round of PCR
amplification using 2.5 ul 10X primers TSO and Read 1 each at 20 uM,
along with 25 pl Kapa HiFi Hotstart ReadyMix, and 20 pl of the sample.
The PCR conditions were: Step 1: 98 °C for 3 min, Steps 2-4: (98 °C for
20s, 65°C for 155, 72°C for 1:30 min) x 18 cycles, Step 5: 72°C for
3 min, Step 6: 4 °C HOLD. Perform a SPRI bead cleanup with 70 ul KAPA
HyperPure Beads according to the manufacturer’s instructions. Sus-
pend the final purified result in 22 ul Tris-HCI, using 2 ul for Qubit
quantification and size distribution measurement with the Agilent
Fragment Analyzer operated with the Agilent DNF-920 Reagent Kit.
Store the remaining sample at —20 °C for several months. An example
of the library is provided in Supplementary Fig. 4.

Nanopore sequencing

To prepare the enriched cDNA for sequencing, we used ONT 1D
sequencing. For samples  #UKF260GBM,  #UKF334GBM,
#UKF248GBM, #UKF275GBM, #UKF304Recurrent, #UKF269GBM,
#UKF313GBM, and #UKF296GBM, we utilized the sequencing by liga-
tion kit (SQK-LSK110) and sequenced each sample individually on
single flow cells (FLO-MIN106D). The SPTCR and Visium Sample ID, as
well as flow cell ID, can be found in Supplementary Data 2. We used
200-300fmol as input for the library preparation with R9.4 Chemistry.
The library preparation workflow for samples #UKF260GBM,
#UKF334GBM, #UKF248GBM, #UKF275GBM, #UKF304Recurrent,
#UKF269GBM, #UKF313GBM, and #UKF296GBM was performed
according to the manufacturer's protocol for SQK-LSK110
(GDE_9108_v110_revE_10Nov2020.pdf), using an input of 200-
300fmol. We opted to enrich for fragments <3 kb by using adapter
ligation and the provided Short Fragment Buffer. For theresequencing
of #UKF275GBM, #UKF296GBM we employed FLO-MINI114 with
R10.4.1 flow cells and the Library Preparation for Sequencing by Liga-
tion V14 chemistry. In the final loading step, we used -5 fmol of the
sequencing library and sequenced samples individually on single-flow
cells. Base calling for the samples sequenced on R9.4 was performed
offline using Guppy GPU (v4.0) on a Nvidia GeForce 2080ti in super-
high accuracy mode with the following parameters:

guppy_basecaller

-1 ‘path/to/fast5/folder’

-s ‘path/to/output/folder

-x cuda:0

-cdna r9.4.1 450bps_sup.cfg
—-calib_detect
--gpu_runners per device 16
--num _callers 8.
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For R10, V14 chemistry samples, we performed base calling using
the PyTorch-based base caller of Oxford Nanopore Technologies,
Bonito (https://github.com/nanoporetech/bonito) with the following
command:

bonitobasecaller dna r10.4.1 e8.2.260bps sup@3.5.2
‘path/to/fast5/folder’

—--device “cuda”

-—chunksize 4000

—--min-gscore 10

—--overlap 1000

--batchsize 1000

>path/to/output. fastqg

A list of samples, chemistries, flow cell identification numbers as
well as detailed concentrations for checkpoints can be found in Sup-
plementary Data 2.

rhTCR Seq for Visium samples

To compare our SPTCR-seq method with the recently developed Slide
TCR-seq protocol®, we tailored the protocol to align with the specific
properties of the 10X Visium technique. As delineated in the rhTCR-seq
protocol by ref. 13 and the Slide-TCR-seq protocol in ref. 14, we pre-
pared libraries for the RNase H-dependent PCR (rhPCR) reaction. First,
we prepared a stock of 20x rhPCR buffer formulated with a final con-
centration of 300 mM Tris-HCI (pH 8.4), 500 mM KCI, and 80 mM
MgCI2. RNase H2 was diluted to 20 mU/mL utilizing RNase H2 Dilution
Buffer (IDT). For human TCRs, we ordered 69 rhPCR primers specific
for the V segments of human alpha and beta TCR genes (Rd2.AV.x1/
Rd2.BV.x1) from IDT. These primers were pooled at a concentration of
5mM each, by combining 5 uL of each primer at 500 uM with 155 L of
TE buffer. To prepare the TCR amplification and indexing PCR reac-
tion, we mixed 6 pL Visium cDNA library (0.5 ng/uL) with 8 uL of Index
Primers from one well of the 10X Index Kit TT Set A. Subsequently, we
incorporated 10 L of rhPCR master mix (final concentration: 1x rhPCR
Buffer, 400 uM dNTPs, 50 nM of Rd2.AV.x1 and Rd2.BV.x1 primers,
0.5 mU/mL RNase H2, and 0.2 units/mL OneTaq hot-start DNA poly-
merase [New England BioLabs M0481L]). We executed the following
program on the thermal cycler: one cycle of 95 °C for 5 min, 18 cycles of
96 °C for 20's, 60 °C for 4 min, and 72 °C for 2 min, and subsequently
held at 4 °C.

Upon completion of the PCR reaction, we purified the product
using 12 uL (0.5%) Roche HyperPure Beads, quantified it with a Qubit
Fluorometer, and assessed its quality employing an Agilent Fragment
Analyzer 5300. Uniquely indexed libraries were then pooled at a con-
centration of 2 nM and sequenced on an lllumina NextSeq Sequencer
using NextSeq 1000/2000 P2 Reagents (300 Cycles) v3 Flowcells at the
Neuropathology UK Freiburg facilities.

Comparison to Visium TCR protocol by Hudson et al.

To implement the TCR sequencing method delineated in Hudson etal.,
we ordered the TRBV-specific primer pool from IDT as specified in the
publication and pooled it in accordance with the outlined protocol.
Subsequent to pooling, 5 ul of amplified Visium cDNA was utilized as a
template in a 35-cycle PCR reaction, employing the pooled TRBV for-
ward primers, 10X Amplification Mix, and 10 uM Partial Read 1 primer.
The resulting PCR product was purified without fragmentation using
SPRIselect beads and quantified with a Qubit 1X dsDNA HS Assay Kit
(Thermo Fisher Scientific). Sample index PCR was performed using
primers from the 10X Genomics Dual Index Kit TT Set A and Amplifi-
cation mix from the 10x Genomics Library Construction Kit, following
the manufacturer’s guidelines (protocol CG000239, 10X Genomics).
Upon bead purification, libraries were sequenced on an Illumina
NextSeq instrument utilizing NextSeq 1000/2000 P2 Reagents (300
Cycles) v3 at the Neuropathology UK Freiburg facilities.

MixCR TCR reconstruction for illumina-based TCR-seq
protocols

To retain the barcode and UMI Information of the fastq header, we
applied umi_tools extract --bc-pattern=CCCCCCCCCCCCCCCCNNNN
NNNNNNNN on the fastqgs, specifying readl and read2. Then to
reconstruct TCRs from short reads, we utilized MixCR, a robust tool for
T-cell receptor (TCR) repertoire analysis. We executed a pipeline
designed aligned with the exemplary code for slideTCR-seq provided
in https://github.com/soph-liu/Slide-TCR-seq/blob/main/mixcr_code.
txt as template. The implemented pipeline consisted of several
steps, including alignment, assembly, contig assembly, and export of
clones and alignments. Initially, the pipeline performed alignment of
input reads against reference V, D, and J genes, generating an inter-
mediate vdjca file. Next, the alignments were assembled into clono-
types, producing a clna file. The contig assembly step further refined
the clonotypes and generated a.clns file. Finally, the pipeline exported
the assembled clonotypes and alignments, creating two output files:
one containing the detailed information on clones and another
including the alignments associated with clone IDs. Next, we used
mixcr exportClones to generate the clones.txt file and the command
mixcr exportReadsForClones to extract the used reads as fastqs for the
clones.

mixcr align -Xmx50g -r ${SAMPLE NAME}.report -s hsa -Osa
veOriginalReads=true ${OUTFOLDER}/$ { SAMPLE NAME }
_extracted Rl.fastq.gz ${OUTFOLDER} /$ { SAMPLE_NAME }
_extracted R2.fastq.gz ${SAMPLE NAME}.vdjca -f

mixcr assemble --write-alignments ${SAMPLE NAME}.vdjca
S{SAMPLE NAME}.clna -f
mixcr assembleContigs
NAME}.clns -f

mixcr exportClones -cloneld -targets -f -p fullImputed
-topChains ${SAMPLE NAME}.clns S${SAMPLE NAME} clones.
txt

mixcr exportAlignments -f -descrsR2 -descrsR1l -cloneld
-readIds -targetSequences -topChains -chains -clo
neIdWithMappingType ${SAMPLE NAME}.clna ${SAMPLE NAME}
_clonelID.txt

S{SAMPLE NAME}.clna ${SAMPLE

SPTCR computational pipeline

Demultiplexing and UMI correction. For demultiplexing, we
employed scTagger®, which uses a direct matching approach for
barcodes. We matched Visium dataset tissue barcodes from the 10X
Space Ranger output to the long reads, allowing for up to two mis-
matches as per scTagger’'s default string edit distance values. To
extract the UMI region of the read, we identified the Illumina Adapter
Readl (CTACACGACGCTCTTCCGATCT) sequence as an anchor. We
conducted two scTagger runs: one to extract the first 16 bp after the
adapter match for barcode matching, and another to extract 28 bp
after the match, considering the last 12 bases as UMIs for subsequent
UMI correction. The detected barcodes and extracted UMI regions
were tabulated, and unprocessed reads were used in downstream
correction pipeline steps. To correct amplification errors, we utilized
directional UMI clustering with the UMI-Tools suite. This enabled
accurate quantification of TCR sequences in spatial transcriptomics
experiments by correcting counts to the UMI-cluster count per T-cell
receptor.

Splitting, reorientation, and extraction of transcript inserts. To ori-
ent the inherently undirected reads generated by ONT, we employed
the Pychopper package from Oxford Nanopore Technologies (https://
github.com/epi2me-labs/pychopper). This algorithm restores the ori-
ginal 5-3’ direction of the reads and splits fused reads by matching the
provided 10X adapters Readl (R1) and the template switch oligo (TSO)
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to the long read. After splitting and reorienting the reads, we used
Cutadapt® to trim synthetic regions introduced during the library
preparation of 10X and ONT (https://github.com/marcelm/cutadapt).
The extracted insert was then utilized for the remaining bioinformatics
workflow.

Annotation of target-enriched TCR reads and grouping by variable,
joining, and constant segments. In this method, target-enriched
TCR reads were annotated and grouped based on variable, joining,
and constant segments. The extracted inserts were subsequently
used for primary annotation with PyIR (https://github.com/
crowelab/PyIR), a Python implementation of the IgBLAST algo-
rithm optimized for handling large files. We evaluated all currently
available immune receptor annotation algorithms for their per-
formance on ONT long reads (Supplementary Fig. 2), and IgBLAST
demonstrated the best performance for annotating error-prone,
contiguous immune receptor sequences. We selected the number
of mappable and fully annotatable TCR reads and detected recep-
tor segments as quality criteria. The annotated output was ulti-
mately used to split the FASTQ files based on the detected constant
and TCR segments. We then divided the FASTQs into fractions
based on the same variable and constant segments, discarding off-
target reads or reads without a detected variable segment. Finally,
we saved each V, C FASTQ file to disk and utilized them as input
FASTQs for the error correction process.

SPTCR error-correction and data preprocessing. Each V, C grouped
FASTQ file was used as input for the RATTLE algorithm, clustering
reads based on similarity”. Partitioning the FASTQs into multiple
variable and constant segment clusters helped reduce memory
footprint while improving read classification during consensus cor-
rection. A consensus was built for each cluster using SIMD partial
order alignment (SPOA) (https://github.com/rvaser/spoa). The cor-
rected and V, J, C-split FASTQs were merged and subsequently ana-
lyzed with IGBLAST. To evaluate the success of the correction, we
aligned the FASTQs to the IMGT known constant T cell receptor
regions using minimap2*® and measured mismatches in SAM align-
ments before and after correction (Fig. 2c¢). Only constant segments
were assessed for correction success, as V-, D-, J-recombination alters
the variable, joining, and diverse T cell receptor segments in the
germline.

Data import for spatial data analysis

The cell ranger output was imported into SPATA2 using the import
function (SPATAZ2:initiateSpataObject 10X). The import function also
perform baseline sample processing using the recent described
pipeline'. Our package SPATAlmmune: imports T cell receptor
sequences (SPTCR pipeline) into the SPATA object on the slot @data.
Import of the SPTCR outputs can be either performed from the csv
files (.../fsamplel. CORRECTED umi corrected count table.csv) or by
providing the output path.

SPTCR-seq preprocessing in SPATA
The provided functions are designed to process SPTCR-seq data
through a series of preprocessing and normalization steps. These
functions can be grouped into the following main steps:
preprocessTCR: This function filters and preprocesses the
raw TCR data based on the given criteria, such as minimum and
maximum CDR3 amino acid length, minimum unique molecular
identifier (UMI) expression, and required annotation of the V, D, and J
region.
preprocessLD: This function clusters similar TCRs based on the
Levenshtein distance of their CDR3 amino acid sequences. For each
CDR3 sequence (with unique UMI) x; in which i represents the total

number of CDR3 amino acid sequences{x;,x, ....x;}, we computed
the similarity of a target sequence y by

Ix|if|y|=0,|y| ifix|=0
lev(tail(a),tail(b)) if x[0]=y[0]
lev(tail(a),b) @
lev(a,tail(b))
lev(tail(a),tail(b))

lev(x,y) =
1+ min

TCRs were summarized if a specified minimum distance threshold
(minimal distance = 2). Further, we grouped TCRs with similar CDR3
amino acid sequences, to calculate the mean identity values for V, D,
and ) regions, and selected the CDR3 amino acid sequences with the
longest length as the representative sequence for the group. The
number of unique TCRs before and after the clustering process is
displayed, along with the mean number of spots per TCR.

normalizeTCR: This function normalizes the TCR data based on
the UMI abundance and cellular density at each spot. The total UMI
count and the number of cells per spot are retrieved from the input
object and used to calculate the UMI count per cell for each spot. The
TCR data is then filtered based on a minimum expression threshold
and joined with the total UMI data. The TCR data are grouped by CDR3
amino acid sequence, and summary statistics (e.g., total reads, and
number of spots) are calculated for each group. In summary, these
functions preprocess, cluster, and normalize SPTCR-seq data to iden-
tify and analyze TCR clones within a spatial transcriptomics context.
The processed data can then be used to investigate clonal relation-
ships, diversity, and spatial patterns of TCRs.

Visualization of T cell clones

We utilized a robust approach to visualize clones (variable c) in space
by analyzing the top {c;, ¢,,...,c,} most frequently occurring clones
(variable n) within a given sample. To achieve this, we first selected the
target clones by arranging them in descending order based on the
number of spots and then randomly sampling n clones for further
analysis. The expression data of these clones was obtained by aggre-
gating the spot-wise TCR (T-cell receptor) data for each selected clone
and computing the mean expression. Next, we integrated the spatial
coordinates of each spot by joining the TCR expression data with the
spatial coordinates obtained from the object using the SPATA2 package.
To add some variability to the spatial distribution (of clones within the
same spot), we introduced jitter to the x and y coordinates. We further
filtered the data to include only those spots with expression values
greater than 3. To create a visually appealing and informative plot, we
first plotted the background using the spatial coordinates of the object,
with a two-layered approach employing the scattermore package. The
first layer consisted of larger black points, and the second layer con-
sisted of smaller white points overlaid on top of the black points to
create a subtle border effect. Subsequently, we overlaid the expression
data of the target clones on the background, using different colors for
each clone and varying the point size based on the expression level.
A fixed coordinate system was employed to maintain the spatial integ-
rity of the data. The color palette was generated using the RColorBrewer
package, providing a visually distinct set of colors for each clone. Finally,
we added spatial index axes using the SPATA2 package, which facilitated
the interpretation of the spatial distribution of the clones. This approach
allowed us to generate a comprehensive and visually appealing repre-
sentation of the spatial distribution of the selected clones, revealing
their expression patterns and facilitating the identification of potential
interactions and relationships within the tissue microenvironment.

Computation of spatial features of T cell clones
Total SPTCR UMIs. To determine the SPTCR parameters we computed
the total number of UMI corrected TCR sequences for n spots:
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f(0)= 371 x;. For the normalization of TCR-seq data, we first eval-
uated an RNA-quality and tissue permeabilization index. The challenge
in normalization and scaling of array based spatially resolved tran-
scriptomic data is the fact that classical parameters such as total UMIs
per spot are relative to the number of cells and the cellular content of
these spots (with more or less RNA). Further, heterogeneity in tissue
properties lead to significant differences in tissue permiabilisation and
finally abundance of RNA molekules that can be captures. To correct
for these confunders, we hypothesized that TCR-seq underlies the
similar QC and tissue properties therefore we started to quantify the

number of UMIs per cells @ in which the total UMIs (from Illumina
sequencing) were divided by the number of cells. This factor was used
to normalize the UMI counts per clone and spot. One of the major
challenges in normalizing and scaling array-based spatially resolved
transcriptomic data lies in the fact that classical parameters, such as
the total number of UMIs per spot, are relative to the number of cells
and the amount of RNA present in those cells. Moreover, the hetero-
geneity of tissue properties can result in significant variations in tissue
permeabilization, ultimately leading to differences in the abundance of
captured RNA molecules. To address these confounding factors, we
hypothesized that TCR-seq shares similar quality control (QC) and
tissue properties. Therefore, we devised a strategy to quantify the
number of UMIs per cell by dividing the total number of UMIs
(obtained from Illumina sequencing) by the number of cells

UMI. Q We then used this factor to normalize the UMI counts per
clone and spot

Number of clones. The number of clones (per spot) computed the
number of clones that were found to be expressed at a spot with at
least (5 UMI).

Clonality index. The getClonaladjacency function calculates the
adjacency between TCR clones based on their spatial proximity by
employing a series of mathematical procedures. The method can be
described as follows: First, Delaunay triangulation is applied to the
spatial coordinates (x;,;) of the data in which i represents the number
of spots. This process constructs a network of non-overlapping trian-
gles that connects the nearest neighboring points while minimizing the
sum of the edge lengths, according to the following equation:
Delaunay(x;,y;)=T ={T,,T,,I,T,} where T represents the set of tri-
angles formed by the Delaunay triangulation. Next, the adjacency
information is extracted from the Delaunay triangulation result,
yielding a data frame that stores the relationships between adjacent
barcodes (b). For each unique CDR3 region (CDR3;), the associated
barcodes are identified: CDR3;={b, b,,..., bm}. The resulting data frame
is then joined with the adjacency data frame, and the neighboring
barcodes for each group are summarized by grouping the data by
barcodes. For every barcode in the joined data frame, the number of
neighboring barcodes (NN) sharing the same CDR3 sequence is
counted: m= |intersect(b;,NN;)| If there are no intersect, the m value is
set to 0. The number of |intersect(b;,NN;)| for each barcode asso-
ciated with the specific CDR3 region is evaluated by combining:
NN_.={CDR3; : TCR,,CDR3, : TCRI..,CDR3, : TCR,} The getClona-
ladjacency function returns a data frame containing the clonal adja-
cency information for all TCR clones based on their spatial proximity.
This information can provide valuable insights into the spatial orga-
nization of the immune system and its functional implications.

CDR3-diversity. The getSpotwiseDiversity function aims to determine
the diversity index for each spot by analyzing the TCR information. This
analysis requires a series of mathematical procedures that can be bro-
ken down into the following steps, while maintaining a coherent nar-
rative: Iterate through each unique barcode (b;) in the dataset. For each

spot with a specific barcode, perform the following calculations: Within
the spot, compare the amino acid sequences of the CDR3 regions
(CDR3y) to all other CDR3 regions in the same spot. This comparison is
achieved by calculating the string distance, a metric quantifying the
dissimilarity between two strings, for each pair of CDR3 sequences:
dyj = stringdist(CDR3;;,CDR3;), for k=12,..,n Compute the mean
string distance for each CDR3 region within the spot by averaging the
string distances between the specific CDR3 region and all other CDR3
regions. Calculate the diversity index for the spot by taking the mean of
the average string distances for all CDR3 regions within the spot:
DI(x;)=157 dy- By employing these mathematical procedures, the
getSpotwiseDiversity function effectively evaluates the diversity of TCR
repertoires within each spatial spot.

Histological classification of spatially resolved transcriptomics
Histology of each spot was evaluated based on the defined gene
expression signature®” and its histology H&E images. We used the
SPATA2 image-annotation tool to segment the images based on his-
tological features. Further, we used the gene expression signatures of
the Ivy Gap database to annotate the histological gene expression
pattern based on the max likelihood*.

Cell type-specific gene expression and metabolism

We computed spatially resolved cell type-specific gene expression as
reported recently in the RCTD pipeline. The getCelltypeSpecificGen-
eExpression function processes single or multiple cell types and
enhances cell type-specific gene expression patterns in a given object.
The procedure involves several mathematical steps, which are
explained below. First, the lancer (e) factor for each gene is computed
as follows: €; = avgigrci +1. A submatrix (M,) is extracted from the
original expression matrix (M) containing only the significant genes:
M°=M[g'.g%,....g,, :], where g',g2, ... g, are the indices of the sig-
nificant genes. Next, the product of the transpose of the submatrix and
the diagonal matrix of enhancer factors is calculated:
AM = MO | x diag(e?) The expression values for the significant genes
are updated in the matrix: M[g',g2, ... ,g,, :] =M° + AM" For the single
cell type case, the feature-specific scaling factor (f) is computed using
the exponential function: f=e"*"~*, where x'x2,...,x, are the
expression values for the cell type. The scaling factor (f) is then
updated: f' =f +(f--1) x e. For the multiple cell types, the scaling factor
(f) is calculated as the average of the exponential values for each cell
type. Finally, the expression matrix is updated with the scaling factor:
M=M+M|"xf The resulting expression matrix (M) highlights the
cell type-specific gene expression patterns and can be used for further
analysis.

Node-centric expression modeling for cell-cell communication
In this study, we employed Node Centric Expression Modeling (NCEM)
for assessing cell-cell communication within the tumor microenviron-
ment. We crafted layered AnnData objects encompassing lymphoid and
myeloid cell types, malignant cells, and stromal cells, all aligned to the
initial barcodes from cell-specific expression determined through
cell2location. To evaluate T cell function within both ‘productive’ and
‘exhausted’ regions of the tumor, we classified spots based on the
expression of clonal and exhaustion markers in CD8 T cells. Clonal
markers included /L2, IFNG, PRF1, GZMB, GZMK, GZMA, CD69, CD25, and
CD38, while exhaustion markers encompassed HAVCR2, PDCD1, CTLA4,
CXCLS, LAG3, EOMES, TOX, TIGIT, CD244, and NR4A1. Along with this,
TCR presence was factored in. We formulated a normalized composite
score from these variables, ultimately differentiating “productive” and
‘exhausted’ spots. Subsequently, for each sample, we created AnnData
objects for exhausted and reactive niches that included the top 2000
highly variable genes of the estimated gene expression. With the
Visium-specific InterpreterDeconvolution model, NCEM leveraged
these AnnData objects to determine niche-specific gene expression
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from cell composition and cell-specific gene expression. To visualize
the results, we developed circular graph plots. We combined the ‘esti-
mated magnitude’ of each cell type’s interaction, added the min-max
scaled matrices for every niche and cell type to a total, and performed
another scaling to achieve a cumulative weight of each cell type’s
interaction for expression. After pruning low-impact edges (de_genes
<0.3), we plotted the network graph, with the cell population-colored
edges adjusted in intensity to match the weight of the interaction. The
focus was placed on interactions of significant relevance.

Hierarchical cell type composition model (HCCM)

The createCellGraph function is designed to construct a cell graph
based on spatial coordinates and a set of features using Delaunay tri-
angulation. Delaunay triangulation is a method that creates a set of
non-overlapping triangles, T={¢,t,,...,t,}, from a set of points
P={p,,p,,...,p,} in the plane. This method ensures that for each tri-
angle ¢; € T, there exists a circumcircle passing through its vertices p;;,
Py, Pz, and no other point from the set P lies inside that circle. The
Delaunay triangulation maximizes the minimum angle of all triangles
in the set, resulting in a well-distributed configuration. By applying the
Delaunay triangulation method to the spatial coordinates (x, y) of the
cells, the createCellGraph function generates a set of edges that
represent the spatial relationships between cells. The resulting graph
provides a structured representation of the relationships between
cells, considering both their spatial proximity and the selected fea-
tures. To create the cell graph, the function first extracts the spatial
coordinates of the cells corresponding to the given features. Then, it
computes the Delaunay triangulation on these coordinates, generating
a set of edges connecting the nodes (cells) based on their spatial
proximity. The function associates each edge with a pair of barcodes to
establish a correspondence between the cells. Finally, it merges the
edge information with the spatial coordinates, resulting in a data frame
containing the source and destination nodes of each edge based on the
Delaunay triangulation. The output of the createCellGraph function is
a data frame representing the cell graph with edges derived from the
Delaunay triangulation of the spatial coordinates. This graph allows for
the exploration and analysis of the relationships between cells in a
spatial context, considering the selected features. We transformed the
graph into an igraph® object and computed the relationships between
data points in a hierarchical manner, where data points are organized
into nested levels. These types of graphs are useful for visualizing
relationships and understanding the structure of data sets that have
inherent hierarchies such as cellular interactions and compositions.
We decided to visualize hierarchical graphs through circle packing.

Receptor ligand interaction

We employed an advanced approach to analyze receptor-ligand
interactions between cells using the CellChat package. We extracted
the human CellChat database (CellChatDB.human) to obtain infor-
mation on ligand-receptor interactions. To explore the interactions
between B cells and NK cells, we focused on the spatial gene expres-
sion patterns of these cell types. We utilized the getCelltypeSpecific-
GeneExpression function to generate cell-type-specific gene
expression matrices for B cells, NK cells, and CD4+ interferon (IFN)-
expressing cells with enhanced expression patterns, leveraging the
SPATA2 package. Next, we filtered the ligand-receptor interaction data
to include only those interactions involving genes present in the gene
expression matrices of B cells and NK cells. This step allowed us to
focus on the most relevant interactions for our analysis. For each
ligand-receptor interaction, we calculated the Kullback-Leibler diver-
gence (KLD) between the expression patterns of the ligand and
receptor genes. This step facilitated the identification of potential
spatial relationships between these genes and provided insight into
the strength and directionality of their interactions. Lastly, we visua-
lized the top 100 interactions with the lowest KLD scores, showcasing

the most significant spatial relationships between B cells and NK cells
in our dataset. The resulting plot provided a comprehensive view of
the receptor-ligand interactions and facilitated a deeper under-
standing of the complex interplay between these cell types within the
tissue microenvironment. By combining spatial gene expression ana-
lysis with receptor-ligand interaction data, our approach allowed for a
thorough exploration of the molecular crosstalk between B cells and
NK cells. This information can further our understanding of the
underlying mechanisms driving cellular communication and immune
cell behavior in the tissue microenvironment.

Cell type deconvolution

Robust cell type decomposition. Cell type deconvolution was per-
formed by spacexr (Spatial-eXpression-R): Robust Cell Type Decom-
position (RCTD)* which is implemented in the SPATAwrappers
(https://github.com/heilandd/-SPATAwrappers) package (runRCTD).
For the single cell reference, we used the GBMap atlas consist of more
than 1M cells®. The following parameters were chosen:
-cell type var = “annotation_level 4".

CytoSpace. For the single-cell deconvolution utilizing Cytospace and
SPATA objects, we have developed a streamlined pipeline accessible at
https://github.com/heilandd/SPTCR-seq. T“e R script, “CytoSpace_"r-
om_SPATA.R,” delineates a comprehensive protocol for exporting the
necessary file format compatible with the Cytospace pipeline, as well
as a bash script for automated processing of multiple SPATA2 objects.
Cytospace analysis is performed in a bash environment. Upon com-
pletion of the analysis, we supply a script for importing the results. The
Cytospace output is integrated into existing SPATA2 objects through
the CytoSpace2SPATA function, available at https://github.com/
heilandd/-SPTCR-seq. For the deconvolution process, we employed
the GBMap atlas*.

Cell2Location. In this study, we integrated the recently published
GBMap single-cell dataset of glioblastoma with our Visium spatial
transcriptomics data. We downsampled the single cell dataset to 100k
to enable computations. First, we estimated signatures from cells from
the single-cell dataset using the cell2location Negative Binomial
regression model (cell2location.models.RegressionModel()) which
generates the inf aver_sc.csv table used for spatial deconvolution.
Next, we identified shared genes between the signature genes and the
spatial dataset, initializing the cell2location model (cell2location.mo-
dels.Cell2location). We trained the model with recommended hyper-
parameters, using early stopping based on ELBO loss. After training,
we estimated and exported the posterior distribution of cell abun-
dance for further analysis using the mod.export_posterior() function.
We computed the expected expression per cell type using the mod.-
module.model.compute_expected_per _cell_type()  function  and
exported cell-specific expression. Finally, we created an NCEM object
containing the cell expression of relevant cell populations, propor-
tions, node types, and spatial information for downstream analysis.

Annotation of clones to states or spatial transcriptional
programs
For deconvolution of T cell subtypes, we utilized our T cell atlas with
annotated T cell states from glioblastoma IDH wild-type patients. The
annotation contains groups for CD4 (6 cell states) and CD8 (6 cell
states) spanning effector to T cell dysfunction’. To annotate the T cell
state to each clone derived from the SPTCR-seq, we estimated the
likelihood of each T cell states by RCTD (s, _,) for each clone (¢; ,)
resulting in a sxc matrix in which s is calculated by
n=1

s
Fon={ S,

with n representing the number of spots in

which the clone ¢ can be detected. This matrix was used for
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dimensional reduction with Uniform Manifold Approximation and
Projection*. A similar approach was chosen to define the transcrip-
tional niches of each clone. A matrix of ¢ x T was computed in which ¢
was the clone and T the averaged scores of each spatial distinct tran-
scriptional program®*. The matrix (c x T) was visualized by frequency of
clones per transcriptional program by a mosaic plot using the geom -
mosaic function.

Spatially weighted regression analysis

For spatially weighted correlation analysis we used the function SPA-
TAwrappers:runSpatialRegression with the following parameters: In
case of multi parameter comparisons (n>10) we used the model:
canonical-correlation analysis (CCA), for lower number of parameters
we applied the Spatial Durbin linear (SLX, spatially lagged X)*? or the
Spatial simultaneous autoregressive lag model”. The parameters
smooth and normalize were set as false. The spatial regression analysis
will provide a matrix nxn in which n are the selected variables with
corresponding x and y positions and estimated neighbors.

Code and language optimization

In this study, we employed multiple large language models (LLMs),
including ChatGPT, to enhance computational efficiency, streamline
code explanation and documentation, and refine the wording in the
results section. We specifically integrated ChatGPT into R software to
optimize and restructure the R code. Additionally, we utilized ChatGPT
and other LLMs to accurately translate computational processes into
coherent and precise written text within the methods section.

Statistics and Reproducibility

In this study, histological annotations and local clonal expansion
analyses were conducted on a selection of nine primary and recurrent
glioblastoma samples, establishing the basis for robust findings. Evi-
dence supporting these analyses can be seen in various figures
throughout the study. Specifically, Figs. 1b, 3¢, and 4d present surface
plots that demonstrate the interplay between histological patterns and
T cell infiltration. Additionally, Fig. 5f, g depict local T cell clonal
expansion patterns, elucidating our methodology further. Figures 5d
and 2f offer relative and absolute quantitative analyses respectively;
the former displays the distribution of histology presence across all
samples, while the latter provides a count of TCR_UMIs per sample
across all histology subtypes. It should be noted that the sample size
was not determined using a statistical method, and all data collected
were included in the analyses. The investigators were not blinded to
allocation during experiments or outcome assessment, and the
experiments were not randomized.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The SPTCR-seq fastqgs and processed files are available under the GEO
accession code “GSE238071”. The spatial transcriptomics data used in
this study has been deposited on DataDryad and is accessible to the
public (https://doi.org/10.5061/dryad.h70rxwdmj). The spatial meta-
bolomics data can be found on the OSF platform using this link: https://
osf.io/8qbdz/?view_only=5287d7f6263e4ba680ca8c396aeefeee. Fur-
ther processed files and detailed steps of our analysis have also been
made available on OSF: https://osf.io/65y3t/?view_only=6571f0
c374ce4bf294b9cbdlOade62cf. The source files for Figs. 1 and 2 can
be found on the OSF platform using this link: https://osf.io/8qbdz/?
view_only=5287d7f6263e4ba680ca8c396aeefeee. Source data for
Figs. 2f,g, 4b,c, 5b,c, 5f, 7b,c, 7f,g, and 8b,c are provided as a Source
Data file. Source data are provided with this paper.

Code availability

The version of our SPTCR pipeline used in this study can be accessed
via https://doi.org/10.5281/zenodo.8161782. A maintained version of
this tool is available at https://github.com/theMILOlab/SPTCR-Seq-
Pipeline. In addition, this study resulted in a software tool named
SPATAImmune, which can be accessed on GitHub: https://github.com/
theMILOlab/SPATAImmune. The scripts used for data analysis are
accessible on GitHub at https://github.com/heilandd/SPTCR_seq_code
(https://doi.org/10.5281/zenodo.8161784). With the provided code and
scripts, all figures presented in the study can be reproduced.
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