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Variational autoencoder-based chemical latent
space for large molecular structures with 3D
complexity
Toshiki Ochiai1, Tensei Inukai1, Manato Akiyama1, Kairi Furui 2, Masahito Ohue 2, Nobuaki Matsumori 3,

Shinsuke Inuki4, Motonari Uesugi 5, Toshiaki Sunazuka6, Kazuya Kikuchi7,8, Hideaki Kakeya 4 &

Yasubumi Sakakibara 1,9✉

The structural diversity of chemical libraries, which are systematic collections of compounds

that have potential to bind to biomolecules, can be represented by chemical latent space. A

chemical latent space is a projection of a compound structure into a mathematical space

based on several molecular features, and it can express structural diversity within a com-

pound library in order to explore a broader chemical space and generate novel compound

structures for drug candidates. In this study, we developed a deep-learning method, called

NP-VAE (Natural Product-oriented Variational Autoencoder), based on variational auto-

encoder for managing hard-to-analyze datasets from DrugBank and large molecular struc-

tures such as natural compounds with chirality, an essential factor in the 3D complexity of

compounds. NP-VAE was successful in constructing the chemical latent space from large-

sized compounds that were unable to be handled in existing methods, achieving higher

reconstruction accuracy, and demonstrating stable performance as a generative model across

various indices. Furthermore, by exploring the acquired latent space, we succeeded in

comprehensively analyzing a compound library containing natural compounds and generating

novel compound structures with optimized functions.
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It is estimated that there are approximately 1060 variations in
all possible compound structures, even when limited to small
molecules with a molecular weight of 500 or less1. Structural

diversity within compound libraries is crucial for discovering new
pharmaceutical compounds, necessitating coverage of as many
candidates as possible from this vast pool. The structural diversity
of compounds in a compound library can be represented by a
chemical latent space, which projects compound structures onto a
mathematical space based on various molecular features, such as
fingerprints. Building a chemical latent space that potentially
contains numerous unknown compound structures beyond
existing libraries is an important research topic in cheminfor-
matics. On the other hand, many of the natural compounds
produced by living organisms have complex and unique struc-
tures compared to conventional drugs, and they exhibit high
biological activity2. By applying state-of-the-art generative artifi-
cial intelligence techniques to the heterogeneous data from both
the approved drug database and natural product compound
libraries, it becomes possible to virtually generate and design
novel compound structures that combine the characteristics of
both types of data. This approach has become a global trend in
cutting-edge drug discovery, known as DMTA (design-make-test-
analyze)3.

Various deep-learning models have been developed with the
aim of constructing chemical latent spaces and computationally
generating new compound structures. Variational autoencoder
(VAE)4 is one of the representative deep learning methods for
constructing chemical latent spaces. VAE consists of two com-
ponents: an encoder, which transforms input values into low-
dimensional variables called latent variables, and a decoder,
which transforms latent variables into corresponding output
values. By exploring the chemical latent space, unknown com-
pound structures not present in the training data could be gen-
erated. VAEs that handle compound structures as inputs and
outputs are broadly classified into two types: SMILES-based and
graph-based. Chemical VAE (CVAE)5, the earliest model of
SMILES-based methods, takes SMILES strings6, which represent
compound structures as strings, as input and constructs a latent
space by projecting a compound library into a low-dimensional
space. CVAE was a pioneering study that applied VAE for con-
structing a latent space of chemical compounds. However, CVAE,
which outputs SMILES strings symbol by symbol, faces the issue
that most of the output does not conform to chemical rules and
fails to form a valid compound structure. Therefore, CVAE added
an ad-hoc one-step process to validate the chemical structures
output from the decoder and discarded the invalid ones. Gram-
mar VAE (GVAE)7 and Syntax-Directed VAE (SD-VAE)8 were
developed as models capable of generating more valid compound
structures by focusing on the grammatical structure of SMILES
strings. Recently, studies9–11 applying the SMILES representation
have again become active as chemical language model (CLM).
These state-of-the-art methods adopt recurrent neural networks
(RNNs) such as LSTM12 to learn the SMILES grammar using a
large amount of pretraining data and employ transfer learning to
the compound structures of interest. Nevertheless, the SMILES
representation-based model suffers from generating invalid
SMILES strings, and hence requires the filtering out of these
invalid outputs13. In addition, one crucial difference compared
with the VAE approach is that these RNN-based models are
merely generative and do not explicitly construct a vector space
(latent space) and its latent variables that are projected from and
can be reverse-mapped to the actual compounds, which means
they do not provide the capability to explore the latent space of
structurally diverse compounds in the library.

Graph-based models include Constrained Graph VAE (CG-
VAE)14 and Junction Tree VAE (JT-VAE)15. These models

represent compound structures as graph structures defined by
adjacency relationships between atoms, enabling them to generate
completely valid outputs. Specifically, JT-VAE achieved high
reconstruction accuracy by treating molecular graphs not only as
graph structures but also as tree structures. However, these
models were all designed for small molecules and could not
handle large compound structures due to their high spatial order.
As a result, Hierarchical VAE (HierVAE)16 was developed to
apply VAE to larger compound structures. By handling com-
pound structures in relatively large fragment units, HierVAE
demonstrated high accuracy for datasets composed of large
compounds with repeating structures. Nevertheless, challenges
remain, such as the inability to consider stereochemistry and the
difficulty in applying the model to massive and complex com-
pound structures with diverse internal structures like natural
compounds. It is worth noting that natural compounds are quite
different from massive compounds with uniform internal struc-
tures, like polymers.

Another state-of-the-art generative model is the flow-based
model17, which uses deep learning to project and generate
compound structures. Flow-based models map to a latent space
that guarantees inverse transformation by repeatedly applying
invertible functions to input data. In other words, the recon-
struction accuracy of flow-based models is always guaranteed to
be 100%, regardless of the degree of learning. The graph-based
flow model, MoFlow18, represents compound structures as two
types of bit matrices and can acquire completely invertible latent
variables by applying a normalizing flow to each. However, this
does not necessarily indicate the accuracy or continuity of the
resulting latent space, unlike the case with VAEs. Furthermore,
Flow-based models have a problem that the latent space becomes
high-dimensional in order to guarantee reversibility. Since a
latent space with the same dimension as the input dimension is
constructed, the space exploration is highly harder than with
VAEs, which project onto a lower-dimensional space. Moreover,
flow-based learning can be quite unstable, making it prone to
gradient explosion when the input dimension increases. There-
fore, when using flow-based models for compound data, it is
limited to compounds with a small size of input compounds.

As discussed above, deep learning models developed thus far
have struggled to effectively handle large, complex and hetero-
geneous compound structures, such as natural compounds.
Natural compounds produced by organisms such as microbes
and plants often possess novel structures, and due to their
characteristics of being produced during biological processes,
many of them exhibit high biological activity2,19. Indeed, natural
products have been widely used as drugs, such as antibiotics like
Penicillin and Streptomycin, and anticancer agents like Bryostatin
and Epothilone20. Therefore, constructing a chemical latent space
from a compound library that includes natural compounds plays
a crucial role in drug discovery.

In this study, we developed a VAE-based deep learning
method, called Natural-Product Compound Variational Auto-
encoder (NP-VAE), to handle compounds with complex mole-
cular structures like natural compounds and acquire a chemical
latent space that projects large molecular structures. NP-VAE is a
graph-based VAE that combines an algorithm for effectively
decomposing compound structures into fragment units and
converting them into tree structures, along with the Extended
Connectivity Fingerprints (ECFP)21, and the Tree-LSTM22, a
type of recurrent neural network. NP-VAE, which has 12 million
parameters, was successfully developed through significant
improvements to the algorithms of JT-VAE15 and HierVAE16.

The first objective of this study is to obtain a highly interpretable
chemical latent space that includes middle/large molecular structures
like natural compounds using NP-VAE. We construct a latent space
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that includes hard-to-analyze DrugBank23 and a large collection of
natural compounds, which previous studies could not handle, and
effectively perform statistical and comprehensive functional analysis
of compound libraries. Furthermore, NP-VAE is developed to deal
with chirality, which is an essential factor in the 3D structure of
compounds. The second objective is to generate novel compound
structures optimized for the target function (property) by exploring
the acquired latent space. NP-VAE has a mechanism to train the
chemical latent space incorporating functional information along
with structural information. The obtained chemical latent space
enables the design of optimized compound structures as molecular-
targeted drugs by generating new compounds from the surrounding
sub-space of an existing pharmaceutical drug, such as anticancer
drugs. Furthermore, by combining NP-VAE to generate novel
compound structures with docking analysis, we demonstrate the
usefulness of this method as an in-silico drug discovery tool.

Results and discussions
Performance evaluation of NP-VAE as reconstruction and
generative model. First, we evaluated the reconstruction accu-
racy of the proposed NP-VAE for test compounds that were not
included in the training compound data, which is referred to as
the generalization ability. Evaluating the generalization ability is
crucial because it allows us to verify how accurately the con-
structed chemical latent space has been interpolated. Following
the study HierVAE16 that conducted an evaluation of the gen-
eralization ability, we used St. John et al.’s dataset24 (hereinafter
referred to as the evaluation dataset). This dataset was divided
into 76,000 training compounds, 5000 validation compounds,
and 5000 test compounds, exactly same as the previous study16.
After training on the training compounds, the reconstruction
accuracy and validity for test compounds were calculated.
Reconstruction accuracy was determined using the Monte Carlo
method for 5000 test compounds. In other words, for each test
compound, 10 encodings were performed, and 10 decodings
were conducted for each encoding, resulting in 100 output
compounds. The proportion of compound structures that mat-
ched between the input to the encoder and the output from the
decoder was calculated. To determine validity, 1000 latent vec-
tors were sampled from the prior distribution Nð0; IÞ, and after
decoding each of them 100 times, the proportion of chemically
valid output compounds was examined using RDKit25. Four
state-of-the-art compound VAEs, namely CVAE5, CG-VAE14,
JT-VAE15, and HierVAE16, were compared as baseline models.
As shown in Table 1, NP-VAE demonstrated higher recon-
struction accuracy for the test compounds compared to the
previous models. Additionally, since NP-VAE generates com-
pounds in substructure units (fragments) rather than single-
atom units, the generation success rate is always 100%. These

results indicate that NP-VAE is a high-performance generative
model, suggesting that the chemical latent space constructed by
NP-VAE contains sufficient information to accurately estimate
unknown compounds from known compounds.

Next, we compared the performance of NP-VAE as generative
model with the state-of-the-art generative models, the Flow-based
model MoFlow18, and the SMILES-based method employing
CharRNN (character-level RNN)26, which is also referred to as
SM-RNN and demonstrated high performance in the study10,
and the VAE model HierVAE.

Since our primary motivation is to develop a VAE model
capable of handling large and complex molecules for the
construction of chemical latent space, we prepared a compound
library consisting of approximately 30,000 compounds. This
library combines around 10,000 compounds from DrugBank, a
public database containing numerous approved drug com-
pounds, and approximately 20,000 compounds from the project
dataset (hereinafter referred to as the drug-and-natural-product
dataset). The project dataset is an original compound library
collected from various laboratories through the Ministry of
Education, Culture, Sports, Science, and Technology-designated
project, “Frontier Research on Chemical Communications”27, in
which this research participated. The project dataset mainly
includes natural compounds, and compared to compounds in
the frequently used ZINC database28, it contains a number of
complex and large molecules (see Supplementary Fig. S1 for
illustration). However, the state-of-the-art VAE models, JT-
VAE15, and HierVAE16, and the flow-based model MoFlow18

were unable to handle data for compounds of this larger size, so
we had to prepare a restricted dataset where all existing methods
can be executed. This restricted dataset (hereinafter referred to as
the restricted dataset) was constructed by first reducing the drug-
and-natural-product dataset to compounds with fewer than 100
non-hydrogen atoms and further removing some compounds
that caused errors with HierVAE. Therefore, initially, we
compared the difference in maximum compound size between
the drug-and-natural-product dataset and the restricted dataset.
The Table 2 shows the comparison of the maximum number of
atoms and molecular weight of the compounds included in the
drug-and-natural-product dataset, the restricted dataset, and
three other databases. Note that regarding JTVAE, it took an
impractical amount of computation time and did not complete
the calculations even with the restricted dataset; therefore, it was
excluded from all subsequent experiments.

Next, we performed the process of randomly sampling 5000
latent vectors from the prior Gaussian distribution Nð0; IÞ five
times for each model. Then, we calculated and compared the
following variety of metrics proposed in benchmarking studies
such as MOSES29 and GuacaMol30.

Table 1 Performance comparison of generalization ability
between NP-VAE and existing methods (baseline models).

2D Reconstruction accuracy
(test)

Validity

NP-VAE 0.813 1.000
HierVAE 0.799 1.000
JT-VAE 0.585 1.000
CG-VAE 0.424 1.000
CVAE 0.215 0.931

The reconstruction accuracy and validity for test compounds in the evaluation dataset were
compared.
The reconstruction accuracy and validity of existing methods were taken from values reported in
the previous study16.

Table 2 Comparison of the maximum number of atoms and
molecular weight of the compounds included in the dataset.

Maximum number of
atoms

Maximum molecular
weight

Drug-and-natural-
product dataset

551 8272

Restricted dataset 100 1626
DrugBank 551 8272
Project dataset 457 6574
ZINC 38 500

In the maximum number of atoms, only non-hydrogen atoms were counted. Compared to the
ZINC dataset used in previous studies, the drug-and-natural-product dataset (combined drug
and natural product dataset of DrugBank and the project dataset) includes compounds with
more than 13 times larger molecular weights.
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-Uniqueness: The proportion of unique molecules among the
generated valid molecules. This serves as an indicator of the
uniqueness of the generated compound structures, and the value
will be low if the model has collapsed and generated only a few
typical molecules.

- Novelty: The proportion of generated molecules that do not
exist in the training set. A low value may indicate overfitting.

- LogP: Represents the lipophilicity of a molecule. A moderate
lipophilicity is required for pharmaceutical compounds.

- QED: An indicator representing the drug-likeness of a
molecule. Since it is calculated based on existing oral drugs, it can
be considered an indicator of oral drug-likeness. It is expressed as
a value between 0 and 1, with values closer to 1 indicating
structures that are more like oral pharmaceuticals31.

- SAscore: A score representing the difficulty of synthesis based
on molecular structure. It is expressed as a value between 1 and
10, with values closer to 10 indicating higher synthesis
difficulty32.

- Filters: Represent the proportion of generated molecules that
passed through a filter, which eliminates undesired structures
used during the construction of the MOSES dataset29. A lower
value indicates that there are more molecules with abnormal
structures.

- SNN (similarity to a nearest neighbor): The average
Tanimoto coefficient between each generated molecule and the
most similar molecule within the training data. This value
decreases as the generated molecules deviate further from the
distribution of the training data.

- MolWt: Molecular weight.
- NP-likeness: A measure of naturalness. NP-likeness score is a

measure designed to estimate how closely a given molecule
resembles known natural products33.

- Frag: Comparison of the distribution of BRICS fragmenta-
tions between generated molecules and the training data. The
value increases when both sets contain molecules with similar
fragments.

- Scaf: Comparison of the distribution of primary structural
elements within molecules, referred to as scaffolds. Frag and Scaf
are both metrics used to measure the similarity between generated
molecules and the training data at the level of substructure units.

- IntDiv: This is an evaluation of the structural diversity within
the set of generated molecules. It is calculated by computing the

Tanimoto coefficient between all pairs of generated molecules and
taking the average.

- Phy div: KL divergence between generated molecules and the
training data in terms of physicochemical properties and is
calculated from physicochemical descriptors such as molecular
weight, the number of aromatic rings, and the count of rotatable
bonds30. A higher value indicates better performance.

The results are shown in Table 3. First, the reconstruction
accuracy for training compounds was compared among three
models: NP-VAE, HierVAE, and MoFlow, which constitute the
latent space using the encoder and decoder. This reconstruction
accuracy indicates how accurately the compound library can be
projected without information loss. Regarding the 2D reconstruc-
tion accuracy for the planar structure of compounds, NP-VAE
significantly outperformed HierVAE. On the other hand, MoFlow
achieved a 100% 2D reconstruction accuracy. From the mechan-
ism of flow-based models, the reconstruction accuracy of flow-
based models is always guaranteed to be 100%, regardless of the
degree of learning. However, this does not necessarily indicate the
accuracy or continuity of the resulting latent space, unlike the
case with VAEs. Flow-based models have a problem that the
latent space becomes high-dimensional in order to guarantee
reversibility. Since a latent space with the same dimension as the
input dimension is constructed, the space exploration is highly
harder than with VAEs, which project onto a lower-dimensional
space. Moreover, flow-based learning can be quite unstable,
making it prone to gradient explosion when the input dimension
increases. The 3D reconstruction accuracy, considering not only
the planar structure but also the stereochemistry (chirality), of
NP-VAE exceeded 85%, while the other two models could not
handle the 3D structures, and hence, their accuracy was not
available. This result demonstrates that NP-VAE has high
performance as a feature extractor.

Second, NP-VAE demonstrated stable performance as a
generative model across almost all indices. In terms of
uniqueness, novelty and logP, NP-VAE showed comparable
performance to the top-performing models. Due to the large
variance in logP, the difference in logP scores among models is
not statistically significant. NP-VAE exhibited the highest QED,
SA score, and Filters score, which represents the drug-likeness of
a molecule, the difficulty of its synthesis, and the proportion
that passed through a filter to eliminate undesired structures,

Table 3 Comparison of NP-VAE, HierVAE, MoFlow and SM-RNN as generative models: For the generated compounds, 2D and 3D
reconstruction accuracy, uniqueness, novelty, logP, SAscore, QED, Filters, SNN, molecular weight, NP-likeness, and the distance
between compound property distributions, Frag, Scaf, IntDiv, and Phys div were calculated.

NP-VAE HierVAE MoFlow SM-RNN

2D Reconstruction accuracy 0.871 0.438 1.000 N/A
3D Reconstruction accuracy 0.853 N/A N/A N/A
Uniqueness 0.981±0.003 0.987±0.002 0.970±0.002 0.939±0.002
Novelty 0.983±0.002 0.991±0.001 0.998±0.000 0.223±0.010
logP 2.255± 1.795 2.445± 1.815 1.417± 1.433 2.654± 2.193
QED 0.670±0.025 0.619±0.038 0.314±0.017 0.566±0.050
SAscore 2.378±0.551 3.021±0.797 4.370± 1.391 3.052± 1.069
Filters 0.824±0.002 0.768±0.008 0.263±0.003 0.777±0.005
SNN 0.484±0.003 0.410±0.003 0.304±0.003 0.920±0.004
MolWt 255.98±85.64 327.41± 116.64 196.83± 79.42 375.24± 148.10
NP-likeness -0.758±0.832 -0.672±0.896 0.887±0.656 -0.667± 1.186
Frag 0.951±0.001 0.987±0.001 0.410±0.008 0.999±0.000
Scaf 0.444±0.015 0.307±0.015 0.000±0.000 0.810±0.013
IntDiv 0.877±0.001 0.881±0.001 0.903±0.001 0.887±0.000
Phys div 0.676±0.007 0.843±0.007 0.357±0.003 0.955±0.001

The highest value for each accuracy indices is shown in bold.
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respectively. On the other hand, SM-RNN exhibited a difference
in performance values of nearly two times for SNN, Scaf and Phys
div metrics; however, these results are not informative. The
compound structures generated by SM-RNN had the Novelty of
only 22%, which implies that 70% of the structures were identical
to the training data. It is obvious that these three metrics plus
Frag score would improve if the model outputs compound
structures identical to the training data. In other words, SM-RNN
is simply memorizing the training data, and its usefulness as a
generative model for generating new structures is limited.
Regarding molecular weight, we included a plot illustrating the
size distributions of the molecules generated by all models in
Supplementary Fig. S2. Each distribution is highly divergent,
indicating the generation of diverse molecular weights. Regarding
NP-likeness, MoFlow showed the highest value, being the only
one with a positive score, while other models take negative values.
This is attributed to the fact that MoFlow generates extremely
long straight-chain structures, which are considered to have
abnormal structures, as indicated by the low Filter score.
Moreover, since these structures have a Scaf value of 0, meaning
they completely lack a scaffold, they are considered to be natural-
product-like due to their unusual and rare structures compared to
general compounds. Therefore, the NP-likeness calculation
method is prone to assigning higher values in such cases. On
the other hand, the NP-likeness score of the training data is
–0.638, mainly due to the inclusion of numerous approved drug

compounds from DrugBank. This value is close to the negative
NP-likeness scores shown by the other three models. In
conclusion, NP-VAE successfully generates compound structures
with the highest scores in desired metrics for drug-likeness, such
as QED, SAscore and Filters, while maintaining similarity to the
training data at the level of fragments and scaffolds, as indicated
by Frag and Scaf values, and achieving high novelty of generated
structures.

Construction of chemical latent space with natural com-
pounds. We constructed two chemical latent spaces using the
entire set of the drug-and-natural-product dataset: one obtained
by training with only the structural information of the com-
pounds and the other obtained by training with both structural
information and the NP-likeness score33, which serves as a
measure of naturalness, as functional information. More pre-
cisely, the NP-likeness score is incorporated into the learning
process as functional information, which is implemented by a
component of the loss function. NP-likeness score is a measure
designed to estimate how closely a given molecule resembles
known natural products. It is based on the distribution of frag-
ments (substructures) in the molecule compared to a reference set
of known natural products33. A higher NP-likeness score suggests
that a molecule is more ‘natural product-like,’ meaning that its
structure is more similar to those of known natural products.
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Fig. 1 Visualization of chemical latent spaces using t-SNE plot. a, b The higher the NP-likeness score, the more yellow it is, and the lower the score, the
more purple it is. Compared to the chemical latent space (a) trained only on substructures, the chemical latent space (b) trained on both substructures and
the NP-likeness score as functional information shows a more clustered distribution according to the NP-likeness score. Comparing the cases when plotting
representative anticancer compounds in the chemical latent space trained only on substructures (c) and when plotting anticancer compounds in the
chemical latent space trained on both substructures and NP-likeness scores (d), both show clustered distributions according to the anticancer drug
classification, with chemotherapeutic drugs and molecular targeted drugs distributed separately. Focusing on the distribution of molecular targeted drugs
(red frame), the distribution is more locally clustered when the NP-likeness score is included.
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First, we visualized those two chemical latent spaces by
reducing the dimension of latent variables to two dimension
using t-SNE34. The results are shown in Fig. 1. In (a) and (b),
compounds with higher NP-likeness scores are represented in
yellow, while those with lower scores are depicted in purple.
Comparing the latent space constructed using only the structural
information of the compounds (Fig. 1a), the gradients of NP-
likeness can be observed in the latent space constructed by
incorporating NP-likeness scores as functional information
(Fig. 1b). To quantitatively assess the gradients of NP-likeness
in the chemical latent space, we calculated the correlation
between the embedding distance and the difference of NP-
likeness scores for randomly sampled pairs of points in the latent
space. The results shown in Supplementary Fig. S3 indicates that
the correlation (Pearson correlation coefficient r ¼ 0:19) in the
latent space incorporating NP-likeness scores is slightly higher
than the correlation (r ¼ 0:14) in the latent space constructed
using only the structural information.

When plotting representative anticancer drug compounds on
these chemical latent spaces, we observed more clustered
distributions for each class of anticancer drugs in the space
incorporating NP-likeness scores (Fig. 1d) compared to the space
constructed with only structural information (Fig. 1c). In
particular, many molecular-targeted drugs were found to be
locally distributed. The reason for the localized distribution of
existing molecular-targeted drugs in the space incorporating NP-
likeness scores is considered to be due to the lower NP-likeness
scores of molecular-targeted drugs compared to other pharma-
ceutical compounds (Supplementary Fig. S4). Thus, if a
functional value for the drug of interest can be added during
the training of NP-VAE as a functional indicator, a chemical
latent space can be obtained where the desired pharmaceutical
candidate compounds are locally distributed, and novel function-
ally optimized structures are easier to explore.

Second, by utilizing those advancement of the constructed chemical
latent space, we found that the natural compound Yessotoxin
(Fig. 2a)35 included in the drug-and-natural-product dataset was
located near existing molecular-targeted drugs. Based on this
observation, we hypothesized that Yessotoxin isolated from a scallop
species called Patinopecten yessoensis might have a function as a
molecular-targeted drug. Upon conducting an assay, it was confirmed
that Yessotoxin exhibited weak EGFR inhibitory activity (Fig. 2b).
This suggests that exploring the chemical latent space constructed by

NP-VAEmay also enable the discovery and annotation of unexpected
compounds with similar pharmacological effects.

Interpolation in chemical latent space. For two existing drug
compounds, we generated novel compound structures that exist
between the two compounds by scanning the chemical latent
space from one compound to the other. Let the latent variables of
the starting and destination compounds be zs and zg , respectively.
When exploring N equidistant points on the chemical latent
space connecting the starting and destination points, the latent
variable zi of the i-th generated compound was derived from the
following equation.

zi ¼ zs þ
zg � zs

N
� i ð1Þ

By inputting this zi into the decoder, new compound structures
can be generated. Figure 3 shows the novel compound structures
obtained by exploring the space between two existing drugs, with
the starting compound being a biomolecule, a Nicotinamide
adenine dinucleotide derivative, and the destination compound
being the molecular-targeted drug Sorafenib. As shown in Fig. 3,
the similarity to the starting compound gradually decreased as
one moves away from it and approaches the destination
compound, while the similarity to the destination point
compound gradually increased. Moreover, the NP-likeness score
of the generated compound structures gradually decreased as the
scanning progresses from a high to a low NP-likeness compound.

Modification of compound structures by Bayesian optimiza-
tion. We used Bayesian optimization with TPE36 to explore the
chemical latent space and generate novel compound structures
with optimized functional indicators. By setting an existing drug
compound as the starting point and limiting the exploration
range to the vicinity of the starting point in the chemical latent
space, we generated novel compound structures with optimized
functional indicators while maintaining structural similarity to
the starting compound. The objective function to be maximized
was set to the QED31, an indicator of oral drug-likeness. The
correlation coefficient between the NP-likeness score and QED in
the drug-and-natural-product dataset is -0.31, indicating a
negative correlation. Therefore, it is expected that there is an
increasing gradient of QED in the space with an NP-likeness
decreasing gradient, and the chemical latent space constructed in
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Fig. 2 Yessotoxin and its EGFR inhibitory activity. a Structure of Yessotoxin. Yessotoxin was first discovered in the 1980s from a scallop species called
Patinopecten yessoensis35 and since then, various derivatives have been found in crustaceans and algae47. b Inhibition of EGF-stimulated EGFR
phosphorylation by Yessotoxin. EGFR tyrosine kinase activities are expressed as a percentage of the maximal phosphorylation induced by EGF. AG1478 is a
selective EGFR inhibitor and was used as a positive control. When Yessotoxin was at 100 μg/ml, an inhibitory effect of over 80% was confirmed.

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-01054-6

6 COMMUNICATIONS CHEMISTRY |           (2023) 6:249 | https://doi.org/10.1038/s42004-023-01054-6 | www.nature.com/commschem

www.nature.com/commschem


this study can also be used for exploring oral drug candidate
compound structures.

Figure 4 shows the results of generating novel optimized
compounds when the starting point for exploration is set to a
peptide drug Octreotide and an anticancer drugs Paclitaxel.

When the exploration range is small, novel compound structures
with optimized QED can be obtained while maintaining the
characteristic structures of the target compounds. On the other
hand, when the exploration range is expanded, although a bit
large changes in the characteristic structures can be observed,
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Fig. 3 Generation of compound structures between two existing drugs through interpolation. Interpolation of novel compound structures obtained by
scanning the chemical latent space between two points, with the starting compound structure being a Nicotinamide adenine dinucleotide derivative from a
biomolecule and the destination compound structure being Sorafenib, a molecular targeted drug. The three values below each compound structure
represent, from left to right, the similarity to the starting compound, the similarity to the destination compound, and the NP-likeness score. As the
compounds move closer to the destination point, the similarity to the starting compound gradually decreases, the similarity to the destination compound
increases, and the NP-likeness score becomes lower.

New optimized compounds

Wide searchNarrow search
0.05 / 1.00 0.12 / 0.75 0.33 / 0.50

Octreotide

0.13 / 1.00 0.29 / 0.49 0.57 / 0.22
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Fig. 4 Generation of novel compound structures using Bayesian optimization. The objective function to be maximized was set as the quantitative
estimate of drug-likeness (QED), and novel compound structures with improved functional indices were explored using Bayesian optimization. The two
values below each compound structure represent, from left to right, the QED score and the similarity to the starting compound. In this case, the search
space was limited to the vicinity of the target compound, and optimization was performed in both narrow and wide search ranges, examining the effects on
the resulting compound structures depending on the search space. When the search range was small, it was possible to obtain novel compound structures
with improved QED while maintaining the characteristic structure of the target compound. When the search range was expanded, changes in the
characteristic structure were observed, and novel compound structures with significantly improved QED could be obtained.
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Fig. 5 Generating novel compound structures from the vicinity of Gefitinib and calculating the docking scores with EGFR. a Histogram with the number
of generated compounds on the vertical axis and their docking scores on the horizontal axis. There were approximately 5700 novel compound structures
with improved docking scores compared to Osimertinib, and about 1600 structures with improved scores compared to Gefitinib. b Novel generated
compounds with top docking scores against EGFR. The numbers below the compound structures represent the docking scores. Among these, the majority
of the structures contain a kinase-inhibiting quinazoline moiety, known to play a crucial role in EGFR interactions. In addition, it can be seen that the docking
scores have been significantly improved due to the addition of other structural components. c Histogram of the docking scores for the virtual compounds
generated by the machine-learning-based molecular generation tool, REINVENT (version 3.0)42.
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novel compound structures with significantly improved QED can
be obtained. Natural product-derived drugs, such as Octreotide
and Paclitaxel, are generally administered by injection. Therefore,
improving the QED of such compounds is expected to enhance
their properties as orally administered drugs, leading to increased
convenience for patients. In addition, to quantitatively assess the
effectiveness of Bayesian optimization, we repeated the optimiza-
tion experiment for multiple points sampled from the latent
space. When the exploration range was limited to compounds
with a similarity of 0.6 or higher, the average improvement in the
objective function QED was 0.046 with a standard deviation of
0.074. When the exploration range was expanded to compounds
with a similarity of 0.2 or higher, the average improvement in the
objective function QED significantly improved to 0.538 with a
standard deviation of 0.022.

There are a few papers on functional optimization through
sampling in the latent space. OptiMol proposed by Boitreaud et
al.37. focused on an optimization strategy and targeted a specific
aspect of drug discovery (binding affinities), whereas our NP-
VAE model aims to deal with large, complex molecules with 3D
structures and desired properties. The constrained Bayesian
optimization method proposed by Griffiths et al.38. primarily
used SMILES representations, which can lead to invalid outputs,
making the handling of such outputs a significant focus of their
work. In contrast, NP-VAE model is designed to effectively
decompose the input compound structures into fragment units
and convert them into tree structures to handle large and
complex 3D molecular structures. Chembo proposed by Korovina
et al.39. aimed to introduce a method for synthesizable
recommendations beyond the SA score. The proposed Gaussian
process-based approach has enough potential to be incorporated
into functional optimization in NP-VAE.

Generation of drug candidates from chemical latent space with
docking analysis. In the constructed chemical latent space, we
generated approximately 10,000 novel compound structures from
the vicinity of existing anticancer drug compounds. By per-
forming docking analysis for the generated compound structures
with the target proteins that interact with the original anticancer
drug compounds, we searched for novel compound structures
that are expected to have greater efficacy as molecular-targeted
drugs. Schrödinger Glide40 was used as the docking analysis
software. When generating novel compound structures from the
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793 Met
842 Asn
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797 Cys

790 Met
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Fig. 6 Docking poses between EGFR and Gefitinib, as well as EGFR and the novel generated compounds. a Docking pose of interaction between EGFR
and gefitinib, (b) Docking pose of interaction between EGFR and the novel compound with the highest docking score, and (c) docking pose of interaction
between EGFR and the novel compound with the second-highest docking score. Carbon atoms within 4Å of the ligand compound in the EGFR structure are
shown in light blue, and the parts where interactions were confirmed in the simulation results are indicated by yellow dashed lines. While Gefitinib is
observed to interact with methionine at position 793, the ligand with the highest docking score was confirmed to interact with methionine at position 793,
as well as arginine at position 841 and asparagine at position 842. Additionally, for the ligand with the second-highest docking score, interactions were
observed with methionine at position 790, cysteine at position 797, and alanine at position 743.

Table 4 Comparison of computational time between NPVAE
and existing methods.

Computational time per epoch (sec)

NP-VAE 1233.7± 3.84
HierVAE 1895.5± 51.73
MoFlow 305.1±0.61
SM-RNN 48.8±0.12

The computational time required for one epoch during training with the restricted dataset of
drug-and-natural-product compounds is shown. The hardware specifications include Nvidia
Tesla P100-SXM2, 16GB.

COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-01054-6 ARTICLE

COMMUNICATIONS CHEMISTRY |           (2023) 6:249 | https://doi.org/10.1038/s42004-023-01054-6 | www.nature.com/commschem 9

www.nature.com/commschem
www.nature.com/commschem


space surrounding molecular-targeted drugs such as Gefitinib and
Osimertinib, we successfully discovered multiple compound
structures with significantly better docking scores than the ori-
ginal compounds, as shown in Fig. 5a. There were about 5700
novel compound structures with improved docking scores com-
pared to Osimertinib and about 1600 structures with improved
scores compared to Gefitinib. Figure 5b shows the top-ranking
compound structures in terms of docking scores. Many of these
structures share the pyrimidine moiety, which is known to play
an important role in the interaction with EGFR41, with Gefitinib.
However, the docking scores are greatly improved by the addition
of other structures. These results suggest that, in the chemical
latent space constructed by NP-VAE, it is possible to discover
novel seed compounds with effects greater than the original drugs
by exploring the vicinity of existing drug compounds. In addition,
for the performance comparison of our NP-VAE model to a
baseline approach, we conducted the docking experiment using
virtual compounds. These compounds were generated by another
machine-learning-based molecular generation tool, REINVENT
(version 3.0), developed by Blaschke et al.42. This model’s
architecture is based on a recurrent neural network with SMILES
representations and is pre-trained on the ChEMBL chemical
compounds database43. Specifically, these virtual compounds
were generated using the reinforcement learning reward of
REINVENT with the QEPPI score44. For the comparison, we
displayed the histogram of the docking scores for the virtual
compounds in Fig. 5c. From these docking simulations, the
docking score for Gefitinib ranked in the top 15.17% for NP-VAE
and in the top 6.78% for REINVENT.

Figure 6 shows the verification of the interaction between the
newly generated drug candidate compounds and the target EGFR
(PDB code: 4I2245). While it is evident that Gefitinib interacts
with methionine at position 793, the ligand with the best docking
score was found to interact not only with methionine at position
793 but also with arginine at position 841 and asparagine at
position 842. In addition, the ligand with the second-best docking
score showed interactions with methionine at position 790,
cysteine at position 797, and alanine at position 743. In fact,

previous studies on molecular-targeted drugs have reported
hydrogen bonding between Osimertinib and EGFR at positions
790 and 79341, and a covalent bond with Afatinib at position 797
has been reported46. The novel compounds obtained in this study
were found to demonstrate interactions consistent with these
investigations, and it was shown that compound structures other
than pyrimidine have a significant impact on the increase in
binding strength with the target. The combination of NP-VAE
and docking analysis in this method enables the verification of
interactions between diverse compound structures and target
proteins, and is expected to contribute not only to the discovery
of novel pharmaceutical compounds but also to the elucidation of
drug mechanisms of action and the acquisition of new insights.

Computational complexity. The training of generative models
generally demands significant computational time, particularly
for models with a large number of parameters like ours, which
comprises tens of millions of parameters. Therefore, we con-
ducted a comparison of computational times between NP-VAE
and existing methods. Table 4 shows the computational time
required for one epoch during training. NP-VAE proved to be
faster compared to VAE-based methods such as HierVAE.
However, it exhibited longer computational times when com-
pared to non-VAE methods. This discrepancy can be attributed
to the fact that all VAE models, including ours, adopt LSTM, a
sequential computation process, which appears to be the bottle-
neck in terms of computational time.

Synthetic accessibility of natural product-like compounds.
From Table 3, it can be observed that compounds with high NP-
likeness scores tend to have even higher synthetic accessibility
(SA) scores, which indicates the difficulty of synthesis. Thus, a
main issue in the context of handling large and complex com-
pounds resembling natural products is the synthetic accessibility
of the generated compounds. Many microbial natural products
often possess intricate and unique molecular architectures. Their
complexity arises from the diverse and specialized biosynthetic
pathways found in nature, and therefore presents a high degree of
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Fig. 7 Overall structure of NP-VAE.When the compound structure information is input to the Encoder, the latent variable z is calculated based on the tree
structure obtained by preprocessing. In the Decoder, the compound structure is calculated and output using a continuous algorithm with z as the input.
During training, a pathway is used in parallel to predict the functional indices of the compound with the latent variable as input. This allows for the
construction of a chemical latent space that takes into account not only structural information but also functional information.
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synthetic difficulty. Due to their complexity, the synthesis of
natural products often requires many steps and translates to
challenges in reproducing these compounds in the laboratory. A
potential application for our NP-VAE model in addressing the
synthetic accessibility challenge is the simplification of compound
structures within the chemical latent space developed by NP-
VAE. This involves searching for structures that are simpler,
smaller in size, of the same bioactivity, and easier to synthesize, in
the vicinity of known natural product structures in the chemical
latent space. These candidates could then be subjected to further
experimental validation. Confirming the effectiveness of this
approach is the next crucial challenge.

Conclusion
We developed a VAE model capable of handling large molecular
structures, such as natural compounds, with high accuracy, and
constructed a chemical latent space that takes into account both
structural and functional information including chirality. By
using a large set of pharmaceutical compounds and natural
compounds as compound libraries, we successfully constructed
the chemical latent space incorporating pharmacological effects,
enabling statistical and comprehensive analysis. NP-VAE
demonstrated consistent performance as a generative model
across various indices. Furthermore, by exploring the chemical
latent space, we succeeded in generating novel compound struc-
tures with the desired functionality, and demonstrated that in-
silico selection of drug candidate compounds is possible by
combining with docking analysis-based screening.

Material and methods
The architecture of the NPVAE. The overall structure of NP-VAE
is shown in Fig. 7. NP-VAE consists of three components: pre-
processing, Encoder, and Decoder. In preprocessing, the compound
structure is decomposed into fragments according to certain rules
and converted into a corresponding tree structure. In the Encoder,
the tree structure obtained from preprocessing and the original
compound structure are inputted to calculate the latent variable z. In
the Decoder, taking the latent variable z as input, a tree structure is
generated using a depth-first algorithm, and then converted back into
the corresponding compound structure. The summary of the specific
components in the NP-VAE architecture compared to existing
methods such as HierVAE and JT-VAE is as follows.

Novel components of NP-VAE
Preprocessing Objectives in NP-VAE: Simplification of com-
pound structure: The first objective is to convert the input
compound structure into a simpler structure that can be more
easily handled. Particularly when dealing with large molecular
structures, calculating at the single-atom level, as JT-VAE does,
would result in an enormous order both in time and space. To
address this, we devised a procedure to capture compound sub-
structures by decomposing them into several fragments.

Extraction of meaningful physicochemical features: The second
objective is to reshape the compounds so that meaningful phy-
sicochemical features can be extracted. Aromatic rings like ben-
zene, as well as functional groups deeply involved in the
physicochemical properties, such as amide and carboxyl groups,
should be treated as a single fragment rather than a sequence of
individual atoms. The compound decomposition algorithm was
determined based on these objectives.

Chirality handling: We have devised a method of managing and
preserving the chirality of molecules, which is an essential factor
in the 3D complexity of compounds.

Components inspired by existing methods. Variational inference:
NP-VAE, like HierVAE and JT-VAE, employs variational infer-
ence to learn a continuous latent space.

The preprocessing of NP-VAE. There are two objectives in the
preprocessing of NP-VAE. The first one is to convert the input
compound structure into a simpler structure that can be more
easily handled. Particularly when dealing with large molecular
structures, calculating at the single-atom level would result in an
enormous order both in time and space. To address this, we
devised a procedure to capture compound substructures by
decomposing them into several fragments. Also, the presence of
loop structures in the molecular graph would require a significant
computational cost during compound generation in the sub-
sequent Decoder; thus, we aim to capture the structure as a tree
without loops. The second objective is to reshape the compounds
so that meaningful physicochemical features can be extracted.
Aromatic rings like benzene, as well as functional groups deeply
involved in the physicochemical properties, such as amide and
carboxyl groups, should be treated as a single fragment rather
than a sequence of individual atoms. The compound decom-
position algorithm was determined based on these objectives.

In the preprocessing step, we first extract substructures
fragmented from the entire compound structures according to
the decomposition procedure (in Supplementary Methods), and
save them as substructure labels while converting them into
corresponding tree structures (Supplementary Fig. S5).

When defining the tree structure T corresponding to the
compound structure G, the number of nodes in T matches the
number of substructures, and edges are drawn between
neighboring substructures within G. At each node of T , the
ECFP calculated from the corresponding substructure is stored as
a feature vector.

NP-VAE encoder. In the Encoder, feature extraction of com-
pound structures is performed combining two processes (Sup-
plementary Fig. S6). First, for each ECFP stored in the nodes of
the tree structure T , a feature vector h is obtained using Child-
Sum Tree-LSTM22. Let CðjÞ be all the child nodes of node j, xj be
the ECFP of node j, hj be the hidden state of node j in the Tree-
LSTM, ij be the input gate, oj be the output gate, cj be the memory
cell, and f jk be the forget gate for child node k of node j. The
Child-Sum Tree-LSTM is defined by the following equations:

hj ¼ oj � tanhðcjÞ ð2Þ

oj ¼ sigmoid Woxj þ Uoehj þ bo
� �

ð3Þ

ehj ¼ ∑
k2C jð Þ

hk ð4Þ

cj ¼ ij � uj þ ∑
k2CðjÞ

f jk � ck ð5Þ

ij ¼ sigmoid Wixj þ Uiehj þ bi
� �

ð6Þ

uj ¼ tanh Wuxj þ Uuehj þ bu
� �

ð7Þ

f jk ¼ sigmoid Wf xj þ Uf hk þ bf
� �

ð8Þ
Here, � represents the element-wise product,

Wi;Wf ;Wo;Wu;Ui;Uf ;Uo;Uu are the weights learned in the
fully connected layers, and bi; bf ; bo; bu are the learned constants
(biases).
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Second, we compute the ECFP for the entire compound
structure. This is denoted as x0, and by inputting it into the
L-layer fully connected layers, we obtain the output xL. The
output xL is defined by the following formula, with the weights
and biases of the l-th fully connected layer denoted as Wl and bl ,
respectively.

xl ¼ Wlxl�1 þ bl ð1≤ l ≤ LÞ ð9Þ
Lastly, we sum up the feature vector h0, which corresponds to

the root node obtained from the Tree-LSTM, and the output xL of
the fully connected layers. Using random noise ε � Nð0; IÞ, we
compute the latent variable z via the reparameterization trick.
With the weights of the fully connected layers denoted as
Wenc;Wμ;Wσ and biases as benc; bμ; bσ , the expression is as
follows.

z ¼ μþ ε� σ ð10Þ

μ ¼ WμhG þ bμ ð11Þ

σ ¼ WσhG þ bσ ð12Þ

hG ¼ Wenc h0 þ xL
� �þ benc

� � ð13Þ

NP-VAE decoder. In the Decoder, based on the input latent
variable z, a tree structure is generated using a depth-first
sequential algorithm and is then converted to a compound
structure for output (Supplementary Fig. 7). NP-VAE decoder
consists of seven procedures: Root label prediction, Topological
prediction, Bond prediction, Label prediction, Update the variable
z, Conversion to compound structure, and Chirality assignment.
We briefly describe each procedure, and for a full description of
NP-VAE algorithm, see the Supplementary Methods.

In the first step of the Decoder, called Root label prediction, we
predict the substructure label that will be assigned to the initially
generated root node. The prediction of substructure labels is
selected from all the substructure labels obtained during the
preprocessing of NP-VAE. The input latent variable z to the
Decoder is fed into Lr fully connected layers, and a multi-class
classification is performed. In Topological prediction, we predict
whether or not to generate a new child node under the current
node. If it is predicted to generate a child node, we then proceed
to bond prediction and label prediction. On the other hand, if it is
predicted not to generate a child node, we terminate the Decoder
process if the node is at the root position; otherwise, we backtrack
from the current node to its parent node. In Bond prediction, we
predict the type of bond between the current node’s substructure
and the substructure of the newly generated child node. In Label
prediction, we predict the substructure label that corresponds to
the newly generated child node. After label prediction or
backtrack, we compute ztþ1 from zt using a fully connected
layer. The output ztþ1 is defined by the following equation, where
W and b are the weights and biases of the fully connected layer,
respectively.

ztþ1 ¼ tanhðW zt þ hi
� �þ bÞ ð14Þ

Here, hi is the feature vector obtained by performing the Child-
Sum Tree-LSTM computation, which represents the features at
node i after propagating the ECFP stored in each node in the
tentative tree structure. During child node generation, the
features are transmitted through backward propagation from
the root node to the leaf node, and that child node is set as node i
(Supplementary Fig. S8a). On the other hand, during backtrack,
after the backward propagation from the root node to the leaf
node, a forward propagation from the leaf node to the root node

is performed, and the Backtrack destination parent node is set as
node i (Supplementary Figure S8(b)). In Conversion to
compound structure, after generating the tree structure, the
substructure labels of each node are connected and converted into
the corresponding compound structure. Since information about
the atoms corresponding to the bonding sites within the
substructure and their bonding order is already included in the
substructure labels, the compound structure can be uniquely
determined from the generated tree structure (Supplementary
Fig. S8c).

In Assignment of chirality, to handle three-dimensional
information of compounds in the Encoder, ECFP with chirality
information is used. In the Decoder, the latent variable z is input
to the Lc-layer fully connected layer, and the predicted ECFP
value is output. The output uLc is defined by the following
equation, where the weights and biases of the l-th fully connected
layer are Wl

c and blc, respectively.

ul ¼ tanh Wl
cul�1 þ blc

� �
1≤ l ≤ Lc � 1
� � ð15Þ

uLc ¼ sigmoid WLc
c uLc�1 þ bLcc

� �
ð16Þ

u0 ¼ z ð17Þ
Here, the dimension of uLc is same as the bit size of ECFP.

After the two-dimensional structure of the compound is output
based on the aforementioned sequential algorithm, all possible
stereoisomers are enumerated and their ECFP is calculated. The
Euclidean distance between them and uLc is computed, and the
three-dimensional structure corresponding to the ECFP with the
smallest distance is selected as the output compound structure.

Learning. During training, to ensure proper learning, even if an
incorrect prediction is made in the decoding process that cannot
reconstruct the input data, the learning proceeds by propagating
feature values on the tree structure, replacing it with the correct
one for reconstruction. Additionally, to ensure that the latent
space generated by NP-VAE not only accounts for structural
information of compounds but also incorporates functional
information, such as bioactivity, the latent variable z is input to
the Lp-layer fully connected layer for predicting the activity value
of the input compounds. The output uLp is defined by the fol-

lowing formula, with the weights and biases of the l-th fully
connected layer represented by Wl

p and blp, respectively.

ul ¼ Wl
pul�1 þ blp 1≤ l ≤ Lp

� �
ð18Þ

u0 ¼ z ð19Þ
By adding the difference loss between the predicted value uLp

and the true activity value in the loss function, functional
information is incorporated into the chemical latent space.

The loss function during NP-VAE training consists of a
weighted sum of the cross-entropy loss (CE) calculated from each
prediction task in the Decoder, the KL divergence (DKL)
representing the distance between the distribution QðzjXÞ of
latent variables and the Gaussian distribution, the binary cross-
entropy loss (BCE) in three-dimensional structure prediction, and
the mean squared error (MSE) in functional information
prediction. Let the ground truth values for Root Label prediction,
Topological prediction, Label prediction, and Bond prediction be
yr , yτ , ys, and yb respectively (represented by a vector where the
index of the correct label is 1 and all others are 0), and let the true
ECFP value be yc and the true functional information be yp. The
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loss function L is defined as follows:

L ¼ α � CE yr; uLr

� �
þ β �∑iCE yτ;i; uτ

� �
þ γ �∑jCE ys;j; uLs

� �

þδ �∑jCE yb;j; uLb

� �
þ ε � BCE yc; uLc

� �

þϵ �MSE yp; uLp

� �
þ ζ � DKL Q zjXð ÞjjP zð Þ½ �

ð20Þ
CE y; ŷ

� � ¼ �y log ŷ ð21Þ

BCE y; ŷ
� � ¼ � y log ŷ þ 1� y

� �
log 1� ŷ

� �� � ð22Þ

MSE y; ŷ
� � ¼ y � ŷ

� �2 ð23Þ

DKL Q zjXð ÞjjP zð Þ½ � ¼ � 1
2
∑d 1þ log σd

2 � μd
2 � σd

2
� � ð24Þ

Here, α, β, γ, δ, ε, ϵ, and ζ are hyperparameters used to adjust
the contribution of each term.

Assay for EGFR inhibitory activity of Yessotoxin. EGFR tyr-
osine kinase assay was carried out in the same manner as
previously reported40,41. Briefly, EGFR was obtained as a
membrane fraction of A431 cells, and an aliquot of DMSO
solution of Yessotoxin or AG1478, a selective EGFR inhibitor
and positive control, was added to an HEPES buffer (pH 7.4)
containing the A431 membrane fraction, MnCl2, angiotensin II,
and EGF. After incubating the mixture at 25 °C for 30 min, the
kinase reactions were initiated by the addition of [γ-32P]ATP.
The reaction mixture was incubated at 0 °C for 15 min, and
then the reaction was stopped by addition of TCA and BSA.
After removing precipitated proteins by centrifugation, the
radioactivity of the supernatant was counted with a liquid
scintillation counter.

Docking analysis for EGFR. Protein-ligand docking analysis was
conducted using Schrödinger Glide (version 2020-2)40. The
complex structure of EGFR tyrosine kinase and Gefitinib (PDB
ID: 2ITY chain A) was used, from which Gefitinib was removed
from the PDB file. The input files for the protein structure were
prepared using the Protein Preparation Wizard in Schrödinger
Maestro. The ligand was prepared from the SDF file by LigPrep,
generating a 3D conformer. All tautomers were generated by
LigPrep. As the docking site, a docking grid of 20 Å x 20 Å x 20 Å
from the center of Gefitinib in 2ITY chain A was specified.
Docking was carried out using Glide SP mode, and the pose with
the best Glide SP score was selected for each ligand.

Data availability
The evaluation dataset and the processed DrugBank dataset used in this study are
available at https://github.com/toshikiochiai/NPVAE.
Two representative collections of compound structures within the project dataset,

namely collection A and B, are also available at the same site. Most other compound
structures in the project dataset are unpublished, and restrictions apply to the availability
of these data, which were used under license for the current study and therefore are not
publicly available. Data could, however, be available from the authors upon reasonable
request. On the other hand, the model parameters of NP-VAE trained on the evaluation
dataset and on the drug-and-natural-product dataset are all available at the above site.
The source data for the graphs in Fig. 2(b), Figs. 5(a) and 5(c) are available as

Supplementary Data.

Code availability
The source code for the implementation of NP-VAE is available at
https://github.com/toshikiochiai/NPVAE.
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