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Abstract
Objective: Patients who receive most care within a single healthcare system (colloquially called a “loyalty cohort” since they typically return to
the same providers) have mostly complete data within that organization’s electronic health record (EHR). Loyalty cohorts have low data missing-
ness, which can unintentionally bias research results. Using proxies of routine care and healthcare utilization metrics, we compute a per-patient
score that identifies a loyalty cohort.

Materials and Methods: We implemented a computable program for the widely adopted i2b2 platform that identifies loyalty cohorts in EHRs
based on a machine-learning model, which was previously validated using linked claims data. We developed a novel validation approach, which
tests, using only EHR data, whether patients returned to the same healthcare system after the training period. We evaluated these tools at 3
institutions using data from 2017 to 2019.

Results: Loyalty cohort calculations to identify patients who returned during a 1-year follow-up yielded a mean area under the receiver operating
characteristic curve of 0.77 using the original model and 0.80 after calibrating the model at individual sites. Factors such as multiple medications
or visits contributed significantly at all sites. Screening tests’ contributions (eg, colonoscopy) varied across sites, likely due to coding and popula-
tion differences.

Discussion: This open-source implementation of a “loyalty score” algorithm had good predictive power. Enriching research cohorts by utilizing
these low-missingness patients is a way to obtain the data completeness necessary for accurate causal analysis.

Conclusion: i2b2 sites can use this approach to select cohorts with mostly complete EHR data.
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Background and significance

Electronic health records (EHRs) contain billions of data
points, which have been utilized in tens of thousands of studies
and initiatives to accelerate research, and various consortiums
and networks have done this at a national or international
scale.1–6 The use of EHRs for high-impact research is, however,
hampered by data quality issues.7,8 The problem of missing
data is among the most urgent and pervasive.9–13 Patients may
receive care at multiple healthcare institutions and it is fre-
quently impossible to aggregate patient data from all these
locations. This is due to both the complexity of the healthcare
regulatory environment and the difficulty of linking patients
across institutions.14–18 For instance, a patient may have no
record of diabetes in an institution’s EHR; however, this does
not imply that the patient does not have diabetes. The patient
might have received their diabetes care at another institution

that is not included in the EHR. This can result in many false
negative data points, creating significant biases in EHR-based
research that could misrepresent, for instance, the prevalence of
a disease or its treatment.11,19 Consequently, it is essential to
ensure that patients included in EHR data analyses have a rea-
sonable likelihood of complete data, also known as “low EHR
discontinuity.”20–22 In cases where pooling data across health-
care systems is not possible, a solution can be through cohort
selection, enriching research cohorts to include only patients
with complete-enough data to not result in false negatives due to
missing data. Since these patients are “loyal” to the healthcare
system, we refer to them as a loyalty cohort. Not all missingness
is false missingness—a patient might be relatively healthy and
only seek healthcare at a bi-annual physical. A robust loyalty
cohort would consist of both healthy and chronically ill patients,
but only those who primarily utilize the same healthcare system.
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It is important to note that this approach uses one of several
approaches to adjust for missing data (cohort selection),
which can alter the biases in the data. Hospital data are inher-
ently biased (eg, because of missingness; toward people who
seek medical care) and the loyalty cohort approach will shift
that bias toward patients with complete data, moving the
cohort demographics away from the mean. More detailed
information can be found in the “Discussion” section under
“Loyalty cohorts and bias.”

Lin et al20 developed a machine-learning method for con-
structing such a loyalty cohort. They chose 20 EHR-derived
proxy variables to construct a model that predicts loyalty,
using claims data as the gold standard for model training and
evaluation. Their model was highly correlated with Mean
Proportion of Encounters Captured by the EHR system com-
pared with the claims data. The researchers later found that
the proportion of misclassifications in a machine-learning
task was reduced by more than half after applying their loy-
alty cohort filter.11 Although the Lin model was successful at
2 institutions and the EHR proxy selections can guide future
work, the implementation and possibly the regression model
are not generally applicable to the vast majority of EHR data
warehouses. Institution-specific data collection workflows,
local medical coding systems, and practice variation all make
it difficult to develop generalized EHR-based algorithms.
Complex institution-specific data models further complicate
the development of programs that can be shared.

Fortunately, several projects have developed common data
models (CDMs) and harmonized concept dictionaries for
EHR data warehousing and networking. The widely used
Informatics for Integrating Biology and the Bedside (i2b2)
platform is a well-established open-source clinical data ware-
housing and analytics platform that has been in use for over
15 years, presently at over 200 locations worldwide.3,23,24 It
is designed to simplify data ingestion for local institutions,
and it is also used in large, federated research networks where
the Shared Health Research Informatics NEtwork (SHRINE)
software links the institutional i2b2s.25,26 The Evolve to
Next-gen Accrual to Clinical Trials (ENACT) network that
links 57 CTSA hubs uses i2b2 and SHRINE and has devel-
oped and maintains a harmonized concept dictionary called
the ENACT ontology.2,27 In i2b2, an ontology organizes
patient-related concepts (eg, International Classification of
Diseases Tenth Edition [ICD-10] and Logical Observation
Identifiers Names and Codes [LOINC]) into a searchable hier-
archy. This ontology provides an “information model” for
the i2b2 instance, defining all possible concepts that can be
represented. The ontology allows local datasets to be queried
using shared concepts.28 Our goal was to develop a program
to compute loyalty cohorts using the i2b2 and ENACT infra-
structure, such that it could be used by any site in the ENACT
network “out-of-the-box.”

Objective

In this study, we utilize the variables and coefficients defined
by Lin et al29 as the scaffolding for a robust, widely applicable
loyalty cohort calculation tool that can be implemented by
any site in the ENACT network. The objective of our loyalty
score strategy is to select enriched cohorts that are not biased
by missingness. Because patients who are loyal will have a
return visit, we evaluate the score by its ability to accurately
predict patients that return to the healthcare system during a

follow-up period. This provides a silver standard without
manually evaluating patient charts. This also allows us to
tune the algorithm at each performance site. We further use
the Charlson Comorbidity Index to ensure that the loyalty
score is not biased toward capturing only patients with heavy
healthcare utilization due to end-of-life care or chronic dis-
ease. The Charlson index is a validated indicator of chronic
disease severity in EHR diagnosis data.30 Three healthcare
systems comprising 52 hospitals participated in this analysis.

Materials and methods
Loyalty cohort algorithm

Lin’s approach to predicting patients with complete data (a
“loyalty cohort”) involved scoring each patient via a regres-
sion equation utilizing 20 high-level binary variables (or fea-
tures) that were clinically determined to be proxies of patient
loyalty.29 Because the features were defined only at an
abstract level, our first task was to quantify them using
patient EHR data by mapping them to the ENACT i2b2
ontology. The mapping was performed in the following man-
ner. An i2b2 ontology is a hierarchically arranged concept
dictionary to which all sites in a network map their EHR
data. The ENACT ontology provides a comprehensive set of
Current Procedural Terminology (CPT), Healthcare Common
Procedure Coding System (HCPCS), ICD, LOINC, and
RxNorm terms, which we used in our mappings. We mapped
each variable to one or more “folders” or leaf nodes in the
ontology. As an example of leaf nodes, we mapped “Flu
Shot” to a set of 18 nodes, corresponding to CPT, HCPCS,
and ICD codes. As an example of folders, we mapped
“Medication Use” to the “All Medications Alphabetical”
folder. This allowed us to reuse concept sets (folders) and
nodes previously defined for the ENACT network and it
ensured data harmonization across sites. These mappings
were performed initially by the authors using the i2b2 Termi-
nology Search tool to find relevant elements, and then these
were verified and expanded by a clinical expert who had
familiarity with medical terminologies. Each variable could
then be computed by looking for the presence of facts defined
in the appropriate concept folder in the ENACT ontology.
The default set of codes associated with the 20 variables is
included in Table S2. This set has been expanded to include
children of the ontology folders. Note that our tool allows
individual sites to customize the code list to reflect site-specific
practices. (In the analysis described below, Site B included a
local code for BMI.)

We translated the methodology described in Lin et al20 into
a series of programmatic steps and then implemented the steps
and the mapped concepts as a SQL Server stored procedure
and equivalent Oracle script to compute a “loyalty score” on
all patients, using a regression equation that utilizes the 20
binary variables. The equation (including variables and coeffi-
cients) is as described in Lin et al.20,29 The program allows
the coefficients to be customized by changing a SQL data
table if the equation is retrained, such as described in
“Evaluation” below. The variables include: healthcare utiliza-
tion metrics such as multiple visits to the same provider, an
emergency department visit, multiple medication or diagnosis
codes; and specific measures indicating a patient’s primary
care home, such as PSA tests, Pap tests, and mammograms. A
listing of the concepts and the coding systems we mapped
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them to can be found in Table S1. The list of concepts with
coefficients can be found in Table 2 in Lin et al.29 A graphical
depiction of the application of the equation to mapped data is
depicted in Figure 1.

The loyalty cohort program builds 3 tables: one with
patient-level flags and loyalty score, one with summary out-
put to be used by implementers to check their local loyalty
cohort at their site, and a table of the Charlson Comorbidity
Index for each patient. A technical step-by-step description of
the algorithm’s process can be found in the Supplementary
Appendix.

Evaluation design

We evaluated the original loyalty score algorithm and its regres-
sion coefficients by performing a prediction task, where an indi-
vidual’s loyalty score derived from 2 years of EHR data is used
to predict the probability of return to the healthcare system for
care in year 3. We felt that a return within a year is a reasonable
proxy of loyalty and therefore lower data missingness. Three
hospital systems, Mass General Brigham, University of Pitts-
burgh, and University of Kentucky, comprising a total of 52
hospitals, participated in the evaluation. More information on
the sites can be found in Table 1. Each of the 3 hospital systems
(hereafter referred to as sites) have a pre-existing i2b2 clinical
data warehouse that pools and links patient data from their

multiple hospitals, with data elements already mapped to the
ENACT network ontology. The sites extracted data on a cohort
including all patients with any encounter (including inpatient,
outpatient, and other types such as telephone encounters)
between January 1, 2017 and December 31, 2018 who were
over 18 as of January 1, 2017. Only patients over 18 are used
because a pediatric population would require different proxies
and measurements of utilization that are likely not generalizable
to adults and was not considered in the original model. This
study period was selected to avoid the changes in healthcare uti-
lization during the peaks of the COVID-19 pandemic. Data
were extracted on each patient over the 2-year measure period
and these data were used to compute the loyalty score and
binary variables. A 2-year window was selected because, during
development of the evaluation protocol, we found 2 years gave
the best balance of performance and data requirements. As a
target variable for evaluation, we computed “return,” defined
as a binary variable indicating whether the patient had at least
1 visit during the 1-year follow-up period January 1, 2019–
December 31, 2019. If a patient had died during the 3-year
period, they were excluded from further analysis.

Each site ran the loyalty cohort program on its evaluation
cohort, which calculated a score based on the 20 binary flags.
From this we created R datasets consisting of patient identi-
fiers, loyalty score and the binary flags of which it is composed,

Figure 1. The algorithm uses ENACT’s medical concept list to quantify important indicators of patient loyalty and it uses these along with a regression

equation to compute a score for every patient. Scores above a certain threshold indicate that a patient is more likely to have complete data.

Table 1. Overview of the 3 healthcare systems participating and the cohort selected for this study

Healthcare system
Number of
hospitals

Number of inpatient
discharges per year

Evaluation
cohort size

Evaluation cohort
sex distribution

Evaluation cohort
age distribution

Mass General Brigham
(Partners Healthcare)

10 �150 000 1.4 million patients 41% Male, 59% Female 19–34: 20%
35–64: 51%
�65: 29%

University of
Pittsburgh/UPMC

39 �350 000 2.3 million patients 44% Male, 56% Female 19–34: 24%
35–64: 48%
�65: 28%

University of Kentucky 3 �40 000 �300 000 patients 41% Male, 59% Female 19–34: 23%
35–64: 51%
�65: 26%
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return indicator label, limited demographics (sex and age), and
Charlson score and comorbidities. We wrote an analysis script
in R using standard statistical packages as well as the previ-
ously published Machine Learns Health Outcomes (MLHO)
machine-learning toolkit.31

To test the tool’s ability to predict patient loyalty to the
respective healthcare system, we examined its performance in
predicting return to receive care. At each site, we computed
the area under the receiver operating characteristics curve
(AUROC) and associated statistics using the loyalty score as
the predictor variable and return as the outcome. We also com-
puted the Youden’s J statistic (Youden’s index) as an operating
point that maximizes potential effectiveness of a model.32

We also compared the loyalty score to the Charlson
Comorbidity Index to ensure that the loyalty cohort is not
composed solely of the extremely ill. Using linear correlation
tests, we compared the Charlson Index to loyalty score deciles
to determine whether the Charlson score is distributed inde-
pendently of loyalty score.

We used MLHO to re-train the loyalty score algorithm at
each site to fine-tune and validate the transferability of the
coefficients from the original algorithm to other institutions.
This process produced new site-specific coefficients for the 20
binary features. (See Supplementary Appendix for technical
step-by-step description.) We compared prediction perform-
ance of the re-trained local loyalty algorithm and evaluated
the covariates’ coefficients. To retrain, we split the data into a
training and holdout test set with a 30–70 ratio because of the
large sample size and trained the algorithm using a Least
Absolute Shrinkage and Selection Operator (LASSO) model—
a penalized estimation method—with 5-fold cross-validation,
controlling for age and sex.33 We chose LASSO for compara-
bility with the original equation coefficients, which were also
computed using LASSO regression.33 We then repeated the
same calculation of AUROC in predicting return, which we
report along with the cross-validation AUC (CVAUC), which
is useful in detecting overfitting. A CVAUC value comparable
to the AUC indicates no overfitting.

We then compared the relative feature importance at each
site using both models (MLHO and original). We plotted the
square root of the odds ratios associated with the regression
equations on a logarithmic scale.

Finally, we performed a demographic shift analysis, com-
paring cohort demographics between the population and the
loyalty cohort (after retraining with MLHO), to ascertain
biases that could arise by using the loyalty cohort tool.

Each site ran the analysis locally and shared only the results
presented in this manuscript. This project was approved by
the Institutional Review Boards of each individual site.

Results

As reported in Table 1, the 3 hospital systems that partici-
pated, comprising 52 hospitals, included Mass General Brig-
ham, University of Pittsburgh/UPMC, and University of
Kentucky/UK HealthCare. To preserve institutional privacy,
they are labeled as Sites A, B, and C, in random order. The
sites extracted a cohort as described in the “Materials and
Methods” with the size shown in Table 1. Each site executed
the script to compute a loyalty score for each patient in the
cohort and loaded this cohort into R locally for further analy-
sis. No patient-level data were shared across sites.

Comparison with Charlson Comorbidity Index

First, we compared the Charlson Comorbidity Index of
patients with loyalty scores in various deciles and found that
in general the Charlson score varies independently of loyalty
score, indicating that loyalty is measuring something more
than chronic illness. We saw a similar distribution of Charl-
son Comorbidity Index scores across all deciles of loyalty.
Pearson’s correlation coefficients were as follows: Site A—
0.263, Site B—0.231, Site C—0.203.

Patient return analysis
Original and retrained scores
We studied the ability of the loyalty score to predict any visit
(“return”) over the course of 1 year, as a proxy of loyalty and
therefore low data missingness. In the top half of Table 2, we
display the score’s predictive ability as measured by a ROC
curve (including area under the curve—AUC—and Youden
point). The actual ROC curves can be found in Figure 2. The
Youden point is reported as a loyalty score, which, if
exceeded, would qualify patients for inclusion in the cohort.
In addition, the size of both the predicted loyalty cohort and
the actual return cohort is presented.

After retraining the regression equation at each site using
MLHO with a LASSO model, performance improved at every
site compared to the previously published regression equa-
tion. The AUC and Youden sensitivity/specificity after retrain-
ing are shown in the bottom half of Table 2, and the actual
ROC curves in Figure 2.

Predictive power of loyalty flags
We also examined the relative contribution of the 20 features
by plotting the square root of the odds ratios for each feature,
both using the original equation (which is static across sites)
and the performance-tuned equation (which is site-specific).
These are shown in Figure 3, and the odds ratios are also
repeated in Table 3, for clarity. Blue is the original equation

Table 2. The loyalty cohort algorithm’s performance in predicting return,

shown as AUC and Youden’s J

Site A Site B Site C

Original coefficients
Score AUC 0.778 0.739 0.810
Youden sensitivity 0.638 0.578 0.679
Youden specificity 0.811 0.779 0.802
Youden point threshold 0.321 0.328 0.291
Score minimum and maximum �0.026, 1.048
Percent of patients with a

return in the HER
73.1% 47.5% 58.4%

Percent of patients predicted
to be loyal

51.7% 39.1% 47.9%

Retrained coefficients
MLHO (LASSO) AUC 0.819 0.772 0.827
MLHO CV AUC 0.819 0.770 0.825
Youden sensitivity 0.637 0.627 0.676
Youden specificity 0.811 0.799 0.832
Youden point threshold 0.321 0.532 0.614
Score minimum/maximum �1.10, 4.52 �1.03, 2.03 �0.8, 3.78
Percent of patients predicted

to be loyal
56.9% 40.3% 46.6%

Notes: The top section shows each site’s results with the original coefficients
and the bottom section shows the retrained coefficients. Also shown is the
percent of patients predicted to be loyal vs the percent who actually return
when using Youden’s J as the threshold, in both the original and retrained
models.
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and red is the tuned equation. A line is shown at 1.0, because
points below this threshold indicate the feature is inversely
predictive of loyalty. The prevalence of each flag in each site’s
patient population is shown in Table 4, which is another
dimension of the flag’s importance. The full descriptive name
of the feature labels can be found in Table S1. The odds ratios
are somewhat smaller in the original equation, which could
be because a different LASSO penalization parameter was
used (this was not given in Lin’s manuscript).

Finally, we compared loyalty cohort demographics between
the population and the loyalty cohort after retraining with

MLHO at each site (see Table 5). There were small shifts in
the demographics that were largely consistent across sites.

Discussion

We used a novel heuristic algorithm based on a previously
published method to identify patients with high data com-
pleteness. We call this a “loyalty cohort,” because patients
with complete data in one EHR must be loyal to the associa-
tion healthcare system. We created an evaluation tool that
assigns a completeness-likelihood score (“loyalty score”) to

Figure 2. ROC curves of original and retrained loyalty algorithm at each site, showing ability to predict return within a year as an indicator of complete

data.
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any EHR dataset using the i2b2 data model and data mapped
to the ENACT network ontology. While the original
approach required claims data for evaluation, we developed a
method to evaluate and then tune the algorithm’s perform-
ance at specific sites without the use of additional data sour-
ces, by examining whether the patient returned for care
during a follow-up period. Return within a year was chosen
as a proxy for loyalty because, while it does not demonstrate
that the patient receives care exclusively at the site, it does
demonstrate that the patient receives regular care at the site.
This is a silver standard, which is a reasonable guess at the

truth. Silver standards are used when gold standard truth is
impossible or impractical to obtain. Here, the gold standard
would be either manual chart review (but reviewing thou-
sands of records by hand is impractical) or claims data (which
is also impractical to obtain).

Our algorithm performed similarly at all 3 institutions.
This demonstrates that the original coefficients may be suffi-
ciently transferable to other institutions without even

Figure 3. Feature importance of the 20 binary variables, shown as square root of odds ratio. Original coefficients are blue, tuned coefficients are red. The

output is sorted by the mean of the tuned (red) coefficients. The line at 1.0 shows the delineation of a positive vs negative predictor of loyalty.

Table 3. Odds ratios (ORs) of each loyalty flag in the original equation and

after being retrained at each site (shown in graphical form in Figure 3)

Loyalty flag
Original
OR

Site A
OR

Site B
OR

Site C
OR

PSA test 1.11 1.27 1.08 1.22
Flu shot 1.11 1.25 1.23 1.23
In/out-patient visit 1.10 0.75 0.98 0.92
3þ visits with same MD 1.09 1.81 1.67 1.82
Medical exam 1.08 1.25 1.22 1.50
ED visit 1.08 0.98 0.94 0.96
Mammography 1.08 1.39 1.28 1.41
2þmedications 1.08 1.56 1.00 1.46
Colonoscopy 1.07 0.98 1.07 1.11
2þ outpatient visits 1.05 1.21 1.25 1.22
Exactly 2 visits with same MD 1.05 1.12 1.07 1.18
2þ Routine care facts 1.05 1.20 0.98 0.97
2þ Diagnoses 1.04 0.70 0.74 0.77
Fecal occult test 1.03 1.03 1.01 1.02
Pneumococcal vaccine 1.03 1.10 1.01 1.05
A1C 1.02 1.12 1.12 1.15
BMI 1.02 1.00 1.03 1.01
Pap test 1.01 1.14 1.07 1.11
Exactly 1 medication 1.00 1.12 1.00 1.08
Exactly 1 diagnosis 0.97 0.64 0.58 0.67

Note: The odds ratios are sorted by the “Original OR” column.

Table 4. Frequency of each flag at each site, as the percentage of

patients having at least 1 instance of the flagged event

Loyalty flag

Site A
frequency
(%)

Site B
frequency
(%)

Site C
frequency
(%)

In/out-patient visit 92.3 88.1 97.5
2þ Outpatient visits 81.1 66.6 86.6
2þ Diagnoses 69.3 63.6 73.9
2þMedications 70.9 53.9 51.1
3þ Visits with same MD 41.9 31.9 35.3
BMI 9.5 79.5 4.6
2þ Routine care facts 34.4 28.5 22.8
ED visit 24.7 28.1 21.9
Exactly 1 diagnosis 17.5 30.6 22.2
Medical Exam 26.0 14.9 25.1
Exactly 1 medication 10.4 21.8 16.5
A1C 15.2 15.8 16.8
Exactly 2 visits the same MD 12.3 12.7 11.3
Flu Shot 15.9 7.7 11.2
Mammography 13.9 5.8 13.7
Pap test 8.3 5.2 7.3
Colonoscopy 8.5 2.4 5.4
PSA test 6.0 2.1 4.4
Pneumococcal vaccine 3.8 2.9 3.7
Fecal occult test 3.7 0.7 0.8

Notes: The table is sorted by average frequency. Note that “In/out-patient
visit” is not 100%, because sites can define other types of visits (such as
telephone calls to patients). 2þ routine care facts refer to any 2 types of facts
boldfaced in the table.
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requiring local retraining. This was significant because the
implemented loyalty score was initially trained and tested on
data from only 1 institution.

Using a 2-year period to compute loyalty score, we meas-
ured the AUC for identifying patients who returned during a
1-year follow-up in 2019. Sites had an average AUC of 0.77
when using the original regression equation, but after site-
specific tuning, the average AUC increased to 0.80. The
CVAUC was similar to the AUC on the holdout set, indicating
that the model’s parameters were not overfitting. Both models
reduced the cohort size by >40%, which can reduce the com-
putational burden of answering research questions while
improving data quality. When the original method was vali-
dated, the authors used the 20% of patients with the highest
loyalty score as the loyalty cohort. Here, we used a statisti-
cally determined method (the Youden point), which selected
between 39% and 52% of patients. We used this approach
because we found that this accounted dynamically for the dif-
ferences in populations and hospital characteristics that influ-
enced the likelihood of loyalty at each site. Of course, if a
different balance of sensitivity and specificity is desired, a dif-
ferent point on the ROC curve can be chosen.

Variation in loyalty flag importance

The top contributors to patient loyalty were generally similar
across sites, but the specific top contributors varied. Factors
such as multiple visits and some screening measures like mam-
mography were significant contributors at all sites. However,
the impact of other screening measures such as PSA tests and
Pap smears varied across sites. Also, at one site, medication
use was not a large contributor, but at the other sites, 2 or
more medication records played an important role. These dif-
ferences are most likely due to differences in coding and map-
ping between sites (see Limitations) or to different age
distributions in the population (eg, one would not expect a
colonoscopy to appear for patients under 45).

Before and after retraining, the strong and weak predica-
tors of loyalty remained stable in many cases, but in some
cases the magnitude changed significantly (eg, 2þ Medica-
tions, 3þ Visits with Same MD) or even reversed direction to
become a negative predictor. This highlights the importance

of retraining on local data. The reversals likely all follow
from a similar reasoning, so we take “In/Out-patient Visit”
flag as an exemplar. Over 90% of the population had an in-
person visit but it had a negative impact on score at all sites
after retraining. This is likely because patients with a single
visit are likely not loyal, thus the regression algorithm picks a
negative coefficient for “1þ visit” but large positive coeffi-
cients for “2þ visits.” Reversals also occurred for 1þ Diagno-
sis, 1þ Visits, and ED Visit, which could also indicate the
patient had only a single visit.

The flags with the most average impact (high or low odds
ratios) across sites tended to have a high frequency in the pop-
ulation, whereas the flags that varied across sites the most
had much lower prevalence in the population. The high var-
iance was therefore likely to be caused by overfitting on small
population prevalence. For example, medication usage and
multiple visits were present in much of the population at all
sites, whereas fecal occult tests and pneumococcal vaccines
were in a very small percentage of patient records. This is
good news for the applicability of the loyalty score, because it
shows that the most common EHR data elements are the
most important in predicting loyalty.

Our comparison of the loyalty score to the Charlson
Comorbidity Index confirmed that loyalty captures a different
characteristic of patients than chronic disease. At all 3 sites,
the distribution of Charlson scores was similar across all loy-
alty deciles. This was significant because, while the most
obvious naive approach to selecting patients with high data
completeness would be to select patients with the highest dis-
ease burden, loyalty cohorts should also include patients with
lower disease burdens.

Loyalty cohorts and bias

Loyalty cohorts are just one of many imperfect approaches to
dealing with missing data, and it is one that by definition
introduces a bias to the cohort—toward patients who are
loyal. This subset of patients will have different population
characteristics than the whole. Previous work by several of
the authors specifically explored how different types of loy-
alty cohort filters introduce particular cohort biases,19 and
how unrecognized bias can change the performance

Table 5. Change in demographics after applying the loyalty filter, at each site

Site A Site B Site C

Var. Cat All Loyal D All Loyal D All Loyal D

Gender Female 57.0% 62.0% 4.9% 59.6% 65.5% 5.9% 58.6% 61.3% 2.7%
Gender Male 42.9% 38.0% �4.9% 40.4% 34.5% �5.9% 41.4% 38.7% �2.7%
Age Group 18–34 23.8% 17.0% �6.8% 23.1% 16.8% �6.3% 19.9% 14.9% �5.0%
Age Group 35–44 13.3% 11.8% �1.5% 15.6% 14.3% �1.3% 13.9% 13.1% �0.8%
Age Group 45–54 15.1% 15.8% 0.7% 16.7% 17.6% 0.9% 16.5% 17.3% 0.8%
Age Group 55–64 19.1% 21.9% 2.8% 19.1% 22.4% 3.3% 19.7% 21.6% 1.9%
Age Group 63–84 24.7% 29.2% 4.5% 23.2% 27.0% 3.8% 26.4% 29.6% 3.2%
Age Group >84 4.0% 4.3% 0.3% 2.4% 1.9% �0.5% 3.7% 3.5% �0.2%
Race American Indian 3.9% 2.4% �1.5% 0.1% 0.2% 0.1% 0.1% 0.1% 0.0%
Race Asian 1.2% 1.0% �0.2% 1.4% 1.8% 0.4% 4.2% 4.3% 0.1%
Race Black 7.6% 7.1% �0.5% 7.9% 8.6% 0.7% 5.9% 5.9% 0.0%
Race No information 0.3% 0.2% �0.1% 3.1% 1.5% �1.6% 9.4% 3.7% �5.7%
Race Other 3.6% 2.1% �1.5% 0.0% 0.1% 0.1% 6.5% 6.5% 0.0%
Race White 85.8% 88.7% 2.9% 87.3% 87.8% 0.5% 74.0% 79.4% 5.4%
Charlson Index 1.7 2.12 0.42 1.96 2.46 0.5 1.72 2.14 0.41
Charlson 10 year survival probability 83.8% 79.1% �4.7% 80.5% 75.1% �5.4% 84.0% 78.9% �5.2%

Note: The delta column is the shift after applying the filter (eg, Loyal-All).
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characteristics of analyses.34 Weber et al’s conclusion was
that in choosing a loyalty cohort, there is a trade-off between
missingness (which creates biases in the data) and biases in
the selected cohort. Both manuscripts suggest that this can be
adjusted to remove known cohort biases based on the needs
of the application. Some options for adjustment include:
changing the loyalty threshold to be more inclusive; sub-
sampling the loyalty cohort to choose, eg, the same demo-
graphic mix as the whole population; or weighting patients
by the loyalty score in a particular machine-learning task,
rather than removing them entirely.

A demographic analysis, as we performed in this study, can
detect potential biases. Here, the loyalty cohort at all sites was
more female (2.7%–5.9%) and older than the general popula-
tion. They were also mildly sicker, with mean increase in
Charlson Index by 0.45 and mean decrease in Charlson 10-
year survival probability by 5.1%. This is consistent with
known trends in healthcare, especially that young-to-middle-
age men who are healthy tend not to use the healthcare system
(and are therefore not loyal).35 These small but consistent and
explainable differences give confidence that the loyalty score
approach does not introduce obvious biases.

Additionally, to further account for hidden bias, a sensitiv-
ity analysis can be performed when applying the loyalty
cohort method to specific machine-learning tasks. Sensitivity
analysis is an established approach to understanding the sen-
sitivity of particular analyses to biases, including hidden
biases.36,37 (Interestingly, Rosenbaum finds that even cohorts
with hidden biases can frequently be used to draw correct or
mostly correct conclusions.)

Hospital data are already full of biases without any cohort
selection, because it is not a random sample of the popula-
tion.38 Demographic biases could exist from the hospital’s
location and reputation, information biases can be introduced
by particular EHR workflows, and the time of day introduces
bias as well.39 However, bias due to incomplete data is one of
the most important to address, because it directly results in
false negatives in the data.10,11 The goal in the present manu-
script is to find the most important factors in predicting com-
pleteness and a method for training an AI approach for
filtering based on these characteristics. The resulting loyalty
cohort could then be filtered to match the needs of the
application.

Alternative approaches to missing data

The loyalty algorithm combats the missing data problem by
cohort selection. By finding patients who have “complete-
enough” data, the approach leverages an enriched subset of
the available data. There are many other approaches to deal-
ing with missing data. The optimal approach would be to
pool data across many sites and link the patients’ records
across all of them. Although there are some successful linked
datasets and interesting technical approaches to linking data,
record linkage is frequently not feasible due to regulatory
issues, privacy concerns, and the technical challenges of link-
ing patient identifiers.14,16–18 A third approach to missing
data is imputation, which adds information to a patients’
record based on other factors in the record—for example,
imputation might add a diabetes diagnosis to all patients with
high hemoglobin A1C regardless of what was in the record.
Imputation has been used successfully when there is some
latent information that can be leveraged to impute a value,
but because EHR data missingness is not at random, the

application must be designed very carefully.40 With time-
series data (eg, waveform data such as blood oxygen monitor-
ing or repeated laboratory measurements), imputation is
more often used, frequently relying on emergent or known
patterns due to frequent sampling.41,42 Imputation could be a
possible alternative approach to cohort selection if the
expected eventual use-case involves time-series measurements.
A fourth approach is to generate synthetic data that try to
mimic the statistical properties of the real data, eg, with Gen-
erative Adversarial Networks.43 This approach is only appli-
cable to research at the population level because the data
represent statistical correlations, not real patients. It also has
other limitations, such as algorithmic challenges in generating
realistic EHR data (which is an irregularly sampled time-ser-
ies),44 and a tendency for synthetic data to drift from real
data over time.45

Limitations

One must be aware of potential biases in any cohort selection
task, as outlined in the “Discussion” section. Although our
analysis suggests that the loyalty score does not introduce any
obvious bias, analysis of additional demographic variables
(eg, home zip code and social determinants of health) were
not available in the datasets we used for this study. We
acknowledge that these are important factors that should be
included in future research on this topic.

Also, the broadly defined flags like medication record are
likely to be consistent across sites, but a variety of issues could
prevent a specific measure from being counted correctly. The
code used at a site might not be included in the ENACT ontol-
ogy, either due to nonstandard terminologies or unusual cod-
ing choices. Similarly, the code might not have been imported
from the source system due to unavailability of an external
interface or a bug in the import process. These types of data
quality issues stem from a systematic missingness in the EHR
rather than actual missingness due to multisystem healthcare
utilization and must be addressed through other means.46

However, even noting this limitation, overall performance of
the algorithm was quite good across sites.

Future directions

Now that the tool has been developed, we plan to disseminate
it widely within the ENACT network and through posting to
the i2b2 community. We will also make changes to the tool’s
database tables so the loyalty score is visible in an i2b2 ontol-
ogy and can be used directly in the graphical query tool. We
acknowledge that many enterprise data warehouses use plat-
forms other than i2b2, such as the popular Observational
Medical Outcomes Partnership (OMOP) data model. There is
current work to develop a version of i2b2 with the ENACT
ontology that can interact with OMOP databases. After this
feature is released in late 2023, it will allow straightforward
adaptation of our tool (which relies on the ENACT ontology)
to support OMOP.47,48

We also plan to enhance the loyalty score by: considering
removal of some flags with low influence and/or low popula-
tion prevalence at all sites in this study (such as BMI or fecal
occult stool tests); and adding some of the additional meta-
data proposed by Weber et al,19 such as whether the patient
lives near the performance site and age-adjusted visit fre-
quency. Many more additional flags could be considered,
such as laboratory results and vital signs; these could be
assessed through a feature selection algorithm such as
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Minimize Sparsity, Maximize Relevance, which is included in
MLHO.31

Another reason to revisit the specific proxy variables is that
the previously published equation was validated only on a
Medicare population (age �65) and our work used the same
set of 20 proxy variables for all patients over 18. Although
we controlled for age and sex when retraining on local data,
and we found that the algorithm (with existing proxy varia-
bles) performs well 19þ on all adults, in the future we could
consider additional variables, as some are applicable only to
an aging population. At present, sites can customize the age
cutoff to meet their individual needs or to remove additional
flags from the analysis. We specifically excluded pediatric
patients, because utilization patterns and common tests in this
population are very different than in adults and a pediatric
version would require a completely different approach.

In addition, we hope to apply our loyalty cohort tool to
enhance the population for phenotyping algorithms.13,49

Conclusion

This open-source implementation and site-specific tuning of a
“loyalty score” can be used immediately to enrich research
cohorts by reducing biases introduced by missing data, which
can skew research by underestimating disease prevalence and
treatment effects.14 It successfully identifies patients with
more complete data using AUCs around 0.80, which will help
ensure that EHR research cohorts are not biased by missing
data. At present, the tool can be used by any i2b2 site that
employs the ENACT ontology. As discussed above, OMOP
users might soon be able to utilize our tool with few changes,
using i2b2-on-OMOP tools currently in development.
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