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Abstract
Objectives: Federated learning (FL) has gained popularity in clinical research in recent years to facilitate privacy-preserving collaboration. Struc-
tured data, one of the most prevalent forms of clinical data, has experienced significant growth in volume concurrently, notably with the wide-
spread adoption of electronic health records in clinical practice. This review examines FL applications on structured medical data, identifies con-
temporary limitations, and discusses potential innovations.

Materials and methods: We searched 5 databases, SCOPUS, MEDLINE, Web of Science, Embase, and CINAHL, to identify articles that applied
FL to structured medical data and reported results following the PRISMA guidelines. Each selected publication was evaluated from 3 primary per-
spectives, including data quality, modeling strategies, and FL frameworks.

Results: Out of the 1193 papers screened, 34 met the inclusion criteria, with each article consisting of one or more studies that used FL to han-
dle structured clinical/medical data. Of these, 24 utilized data acquired from electronic health records, with clinical predictions and association
studies being the most common clinical research tasks that FL was applied to. Only one article exclusively explored the vertical FL setting, while
the remaining 33 explored the horizontal FL setting, with only 14 discussing comparisons between single-site (local) and FL (global) analysis.

Conclusions: The existing FL applications on structured medical data lack sufficient evaluations of clinically meaningful benefits, particularly
when compared to single-site analyses. Therefore, it is crucial for future FL applications to prioritize clinical motivations and develop designs and
methodologies that can effectively support and aid clinical practice and research.

Key words: clinical decision-making; distributed algorithms; distributed learning; electronic health records; federated learning.

Introduction

The digitization of electronic health records (EHRs) has facili-
tated data analysis from multiple centers. This enables com-
parisons across populations and settings, as well as data
combinations that enhance statistical power and generaliz-
ability.1 Data sharing, a conventional approach in the health-
care industry for forming cross-regional partnerships, has
proven beneficial for research reproducibility, cost-efficiency,
redundancy prevention, and accelerating discovery and inno-
vation.2 However, such cooperation raises data privacy con-
cerns3,4 and can be difficult due to privacy regulations like the

European Union’s General Data Protection Regulation,5 mak-
ing privacy-preserving techniques a critical area of interest in
this field.

Federated learning (FL) has gained popularity in healthcare
as a technique for maintaining privacy.6 FL is a machine
learning setting where multiple entities (clients) collaborate in
solving a modeling problem, with each client’s data stored
locally and not exchanged or transferred.7 Prior to the intro-
duction of the term FL,8 statisticians had been researching
privacy-preserving statistical algorithms using terms such as
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“distributed learning”9,10 or “distributed algorithms”.11,12

Despite differences in terminology, these algorithms all con-
tribute to reducing barriers posed by privacy regulations
across different countries and regions, enabling researchers to
collaborate more effectively and efficiently. It is important to
note that this article focuses only on privacy-preserving dis-
tributed learning and algorithms, and does not include
broader definitions that may encompass methods for reducing
computational costs.

Although there exist a number of FL applications in the
medical field, most of these early adoptions have focused on
unstructured data, particularly image data.13 Structured data,
which constitute a significant part of clinical data with the
advent of large-scale EHRs, have been relatively underex-
plored in FL settings. FL for structured data differs from FL
for image data in several ways, including sample sizes, data
structures, modeling methodologies, research topics, and
study designs.

Although several reviews have been conducted on FL appli-
cations in healthcare, they often discuss clinical data in gen-
eral terms without delving into specific data types.9,13,14

Furthermore, while some of these reviews address technical
issues in-depth, they fall short in presenting their conclusions
from the perspective of clinical applications. In response, we
conducted a scoping review to summarize and examine cur-
rent FL applications on structured clinical data, emphasizing
the advantages of FL in clinical research. Our aim is to pro-
vide insights and suggestions for future FL applications in
clinical decision-making.

Materials and methods
Search strategy and selection criteria

We conducted a review following the 2020 PRISMA15 guide-
lines for systematic reviews. We searched for published
articles employing FL frameworks to solve clinical/biomedical
questions using structured data. We searched the SCOPUS,
MEDLINE, Web of Science, Embase, and CINAHL databases
for articles published before August 23, 2022, utilizing a com-
bination of search terms, including “electronic health
records,” “EHR,” “electronic medical records,” “EMR,”
“registry/registries,” “tabular,” “federated learning,”
“distributed learning,” and “distributed algorithms.” A
detailed search strategy is presented in eTable S1 of the Sup-
plementary Material.

The final search was conducted on August 23, 2022. After
removing duplicates, 2 reviewers (S.L. and P.L.) independ-
ently screened articles based on their titles and abstracts, with
a third reviewer (F.X.) resolving any conflicts. The publica-
tions selected in the first round of screening underwent full-
text examination to ensure they met the inclusion criteria:
using structured data, employing FL, being a research article,
having full text available, and addressing biomedical/clinical
research data or questions.

Data extraction

We extracted information from the selected publications from
3 perspectives: data (cohort descriptive analysis, outcome,
sample size per site and total, number of participating sites,
data types, data public availability, and number of features),
modeling (task and goal, modeling approach, hyperparameter
methods, model performance metrics), and FL frameworks

(unit of federation, participating countries/regions, FL struc-
ture, FL topology, one-shot or not, evaluation metrics, con-
vergence analysis, solution for heterogeneity, FL and local
model comparison, and code availability). This process was
conducted collaboratively by multiple reviewers to ensure
accuracy and consistency.

Results

Our search strategy yielded 1193 articles, and after removing
624 duplicate records, 569 articles were screened based on
title and abstract. Sixty-two out of 569 articles were left for
full-text screening, and 34 articles were included for this
review. Figure 1 presents the PRISMA flow diagram, which
contains detailed information about the selection process.
One article may present more than one studies, depending on
datasets, models, and FL frameworks applied. For instance,
Halim et al16 carried out 2 studies using the same dataset but
different outcomes (1 binary and 1 multilabel); Sadilek et al17

undertook 7 studies with 7 different datasets. Consequently,
as shown and summarized in Table 1, the total number of
studies for all 34 included papers is 72, and full details can be
found in eTable S2 of the Supplementary Material.

General characteristics of included papers

Out of the 34 papers reviewed, 29 were published in 2020 or
after, indicating a recent surge of interest in FL for clinical
research with structured data. The total sample sizes reported
for each study mainly consisted of unique patients with occa-
sional overlaps, but the extent of the overlaps is unknown due
to the lack of information. The total sample size varied
widely, ranging from 14133 to 4 408 710,27 and the number
of clients (participating sites) ranged from 229,37,38,40 to
314.11 The participating clients used either artificially parti-
tioned datasets or real isolated datasets. Most of the studies
used the horizontal FL approach, where datasets share the
same feature space but have different samples,41 while only
one article39 assumed a vertical FL setting where all datasets
share the same sample space but have different features.41

Dataset characteristics

Twenty-five out of 34 papers used structured data derived
from EHRs, primarily containing patient demographics, vital
signs, laboratory results, and other features commonly found
in hospital records. Five articles29,34,38,42,43 studied clinical
cohorts that underwent long-term interventions or follow-up.
Only 38.9% (28/72) of the studies provided descriptive analy-
ses of their data, and 62.5% (45/72) used publicly accessible
datasets. Five studies used datasets with more than 1000 fea-
tures, while the remaining studies mostly (58.3%, or 42/72)
used data with fewer than 41 features.

Modeling characteristics

In this review, we classified a study as “prediction” if its pri-
mary goal was to predict an outcome and report performance
metrics, and a study as “association modeling” if its primary
goal was to investigate the relationship between covariates
and outcome(s) by reporting estimates of coefficients or odds
ratios. These 2 types of studies differ in statistical inference,
with the latter focusing on uncertainty measurements while
the former does not. Another type of task is phenotyping,
which is unsupervised and aimed at deriving research-grade
phenotypes from clinical data.44 Out of all 72 studies, 40
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(55.6%) performed prediction tasks, 20 (27.8%) investigated
associations, and 9 (12.5%) conducted phenotyping. A
majority of the studies (69.4%, or 50/72) investigated binary
outcomes, and logistic regression was the most frequently
used model (25.0%, or 18/72). Various types of neural net-
works were used in 26.4% (19/72) of the studies.

FL architectures

We categorized FL algorithms into one-shot and non-one-
shot based on whether a FL algorithm required one or multi-
ple rounds of communication (intermediate parameters
needed to be transferred once or more times among partici-
pants). Our observations showed that 26.4% (19/72) of the
studies used one-shot FL and 70.8% (51/72) used non-one-
shot FL, with 74.5% (38/51) adopting a centralized FL topol-
ogy and 25.5% (13/51) using a decentralized FL topology.
We summarized the frameworks used in all studies and cre-
ated a plot (Figure 2) to illustrate their applications and inter-
dependencies. Of all studies, 27.8% (20/72) utilized FL
frameworks that adopted one or more specific solutions to
address data heterogeneity.

FL performance evaluation

Based on the articles reviewed for this study, FL frameworks
were frequently evaluated for their computational perform-
ance, such as rounds of communications, number of

iterations, and computation time, but less frequently on their
performance compared to conventional single-site analyses.
Only 41.2% (14/34) of the papers specifically discussed com-
parisons between local and FL models, and among these, 11
reported that FL models had some advantages over local
models. Most papers compared local and FL models by
directly comparing the same performance metrics achieved by
each model on given testing sets, and only a few studies, such
as Dayan et al,19 reported generalizability of a model using
average performance across different sites.

Discussion

The use of FL for structured medical data has been extensively
explored, but certain aspects of such studies require special
attention. Our review suggests that FL is sometimes applied
without first assessing its actual benefits. A crucial consideration
is whether FL can advance medical research objectives unattain-
able through single-site analyses. In this section, we provide a
detailed discussion on when healthcare researchers should con-
sider FL, additional precautions that should be taken, and tech-
nical details related specifically to clinical structured data.

Is FL necessary?

Before diving into technical details, we examine the necessity
of FL for conducting research on structured medical data. We

Figure 1. Preferred reporting items for systematic reviews (PRISMA) flow diagram.
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Table 1. Summary of information extraction table.

Data characteristics No. of studies (out of 72) Examples

Provide cohort descriptive analysis 28 (38.9%) A summary statistics table describing patient population was provided in Ref.18

Patient cohort size (total)
�50 000 53 (73.6%) The total patient cohort size used in Ref.19 was 16 148
50 000-100 000 3 (4.2%) The total patient cohort size used (in the first study) in Ref.18 was 70 818
100 000 11 (15.3%) The total patient cohort size used in Ref.20 was 257 571
Not available 5 (6.9%) No such details provided in Ref.21

No. clients
�5 35 (48.6%) The number of clients in Ref.22 was 8
6-35 20 (27.8%) The number of clients in Ref.23 was 20
35 9 (12.5%) The number of clients in Ref.24 was 314
Cross-device 4 (5.6%) The first, second, fifth, and sixth studies in Ref.17 used cross-device (cross-patient)

setting
Not available 4 (5.6%) No such details provided in Ref.25

No. features
�40 42 (58.3%) The number of features in Ref.26 was 23
41-1000 10 (13.9%) The number of features in Ref.27 was 85
1000 5 (6.9%) The number of features in Ref.22 was 2931
Not available 15 (20.8%) No such details provided in Ref.28

Outcome
Binary 50 (69.4%) In-hospital mortality was used as outcome in Ref.24

Survival 5 (6.9%) Cancer survival time was used as outcome in Ref.29

Other 16 (22.2%) Frequency of serious adverse events (count) was used as outcome in Ref.18

Not available 1 (1.4%) No such details provided in Ref.25

Data public availability
Yes 45 (62.5%) eICU data was used in Ref.30

No 27 (37.5%) Data used in Ref.11 is not publicly available

Model characteristics No. of studies (out of 72) Examples

Task
Prediction 40 (55.6%) Prediction of COVID mortality risk1

Association study 20 (27.8%) Association between length of stay in COVID-19 patients with various patient
characteristics31

Phenotyping 9 (12.5%) Extraction of meaningful medical concepts32

Model misconduct detection 3 (4.2%) A generalizable approach to identify model misconducts in FL33

Modeling approach
Logistic regression 18 (25.0%) Proposed and evaluated a one-shot distributed algorithm for logistic regression for

heterogenous data20

Cox regression 6 (8.3%) Proposed and evaluated a one-shot distributed algorithm for Cox regression34

Neural networks (NN)
(1) General 10 (13.9%) 3-layer fully connected NN22

(2) Autoencoder 4 (5.6%) 5-layer fully connected denoising autoencoder30

(3) Perceptron 3 (4.2%) 3-layer MLP26

(4) Deep learning 2 (2.8%) TabNet35

SVM 4 (5.6%) Proposed and evaluated a FL framework for soft-margin l1� regularized sparse
SVM36

Tensor factorization 9 (12.5%) Proposed and evaluated a federated tensor factorization method37

Other 15 (20.8%) XGBoost38

Not available 1 (1.4%) No such details provided in Ref.25

FL characteristics No. of studies (out of 72) Examples

Unit of federation
Cross silo 64 (88.9%) Three healthcare facilities within the OneFlorida Clinical Research Consortium31

Cross patient (device) 4 (5.6%) Four studies reported cross patient results17

Both 3 (4.2%) Three studies reported both cross patient and cross silo results17

Not available 1 (1.4%) No such details provided in Ref.25

Participants
Real isolated sites 37 (51.4%) Data from 20 institutes across the globe19

Artificial partitions 32 (44.4%) Ten sites formed by random splitting one dataset36

Not available 3 (4.2%) No such details provided in Ref.23

FL topology
Centralized 38 (52.8%) FL-SIGN and FL-SIGN-DP24

Decentralized 13 (18.1%) Decentralized stochastic gradient descent (DSGD) and tracking (DSGT)23

One-shot 19 (26.4%) ODAL11

Not available 2 (2.8%) No such details provided in Ref.39

Solution(s) for heterogenous data
Yes 20 (27.8%) Employed HinSAGE which introduces extra weight matrices for heterogeneous

graph16

No 52 (72.2%) Not available

(continued)
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will begin by discussing why and how FL is anticipated to
yield additional meaningful results beyond those produced by
pre-existing local models. We will then discuss how data can
affect the feasibility and efficacy of FL.

Cross-silo and cross-device are 2 distinct FL settings that can
significantly impact the design of an FL algorithm.45 Cross-silo
design aims to facilitate collaboration among various organiza-
tions, such as hospitals and research institutions, while cross-
device design enables collaboration among large populations of
mobile devices.45 When designing and implementing cross-silo
FL, it is important to consider the presence of pre-existing local
models, in addition to the technical distinctions highlighted in
Wang et al.45 This is particularly crucial given the vast amount
of information available in large-scale EHRs today.

The comparison of the performance of FL models to local
models has therefore become a natural point of discussion.
Some papers that benchmark or develop FL frameworks in a
broader context have highlighted the relevance and impor-
tance of such comparisons.46,47 However, in this review, such
comparisons were only observed in 14 out of 34 papers. For
example, Cui et al22 developed a new FL framework called
FeARH and assessed its performance using artificially parti-
tioned data. Although they provided a performance compari-
son of the central, FL baseline, and FeARH models, future
researchers may find such demonstrations inadequate, as

obtaining a ground truth central model is often impossible in
real-world practice.

Unlike unstructured data, such as images, structured clini-
cal data often contain features that can vary at the definition
stage due to differences in clinical practice across institu-
tions.48,49 For example, diabetes is characterized by elevated
levels of glucose in the bloodstream, and it can be diagnosed
by fasting or random plasma glucose, each of which has a dif-
ferent cut-off point. Such inconsistency in disease diagnosis
may lead to hidden heterogeneity, which might go undetected
in downstream statistical analysis. Therefore, proper prepara-
tion and data harmonization across participating sites are
required prior to implementing FL. The 4CE consortium,50

which offers standardized patient-level EHRs that cover vari-
ous aspects of COVID-19, such as epidemiology and patho-
physiology,51 is a notable example of data harmonization and
standardization. Several clinically significant studies51–53

were made possible by the consortium, one of which1 being
relevant to FL and included in this review. The existence and
accomplishments of the 4CE consortium underscore the inevi-
tability and significance of data harmonization for conducting
clinically meaningful and trustworthy FL on structured clini-
cal data. However, existing works have fallen short in
addressing this problem, particularly those that rely on bench-
mark or artificially partitioned data.

Table 1. (continued)

FL characteristics No. of studies (out of 72) Examples

Local vs FL comparison
Yes 37 (51.4%) Compared performances of local and FL models, where FL model outperformed

local models19

No 33 (45.8%) Not available
Not applicable 2 (2.8%) Vertical instead of horizontal FL was used in Ref.39

Figure 2. Visualization of FL frameworks utilized in the 34 papers included in this review, classified into 2 categories: statistics-based and engineering-

based FL.
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Based on the findings of this review, we recommend that 2
broad goals should be achieved for FL applications with
structured healthcare data. First, FL models should outper-
form locally developed models at least at one participating
site. This can be demonstrated by improved accuracy in pre-
diction tasks, narrower confidence intervals in effect size esti-
mations, or the discovery of new phenotypes in phenotyping
tasks. For instance, Dayan et al19 demonstrated that their best
FL model for predicting 24-h oxygen treatment for COVID-
19 patients outperformed all 20 local models trained inde-
pendently at each site. In another example, Kim et al37 pro-
posed a federated tensor factorization framework that
successfully identified new phenotypes that were not captured
in any of the local phenotyping analyses.37 Second, for predic-
tion tasks in particular, FL models should exhibit better
stability and generalizability than at least one local model, as
demonstrated by achieving lower performance variation than
some local models. Dayan et al19 demonstrated that the best
FL model exhibited the highest level of generalizability among
all local models, as measured by average area under the curve
(AUC).

Technical details and challenges
FL algorithms: statistical versus engineering approaches
Both the statistics and engineering communities have con-
ducted research on FL, with the significant distinction
between them being the property of model agnosticism.
Statistics-based FL algorithms usually involve model-specific
statistical modeling, meaning that a single algorithm is typi-
cally applied to one type of model. For instance, as illustrated
in Figure 2, a federated Cox regression might only be con-
ducted using statistics-based FL methods such as ODAC,34

ODACH,43 and SurvMaximin.1 By contrast, most
engineering-based approaches have been developed in a
model-agnostic manner, allowing for the use of a single FL
framework for different machine learning models by employ-
ing the appropriate loss functions. For instance, in Sadilek et
al,17 FedAvg8 has been applied to neural networks, logistic
regression, and generalized linear models for binomial
responses with log link.

To the best of our knowledge, the current literature lacks
direct comparisons between statistics-based and engineering-
based FL algorithms, and their precise advantages and disad-
vantages have not been thoroughly assessed. One apparent
advantage of engineering-based methods is their model-
agnostic property, which allows these algorithms to be
directly applied to a wide range of commonly used models
without the need for additional designs. Furthermore,
engineering-based solutions might be more resilient to model
misspecification, as most existing statistics-based FL algo-
rithms focus on linear relationships that may not hold for
real-world data.

Although statistics-based FL algorithms require one-to-one
development and validation, they have an advantage over
engineering-based FL in uncertainty measurements. In FL
studies that aim to estimate parameters of interest such as the
association between exposure and outcome, it is desirable to
report the associated confidence intervals. Statistics-based FL
methods have an advantage in estimating uncertainty meas-
ures in a distributed manner when the asymptotic distribution
of an estimator is available, and a closed-form formula for the
variance of estimated parameters exists.31,34,43,54 In the
absence of these conditions, bootstrap can serve as a flexible

alternative for estimating standard errors for both statistics-
and engineering-based FL. However, it is important to note
that a simple bootstrap strategy may yield inconsistent results
if the estimator is nonsmooth, necessitating additional meas-
ures to ensure effectiveness.55 While only a few existing FL
studies have examined the uncertainty of estimated associa-
tions, future investigations should consider these potential
limitations.

Lastly, it is worth noting that the implementation of exist-
ing packages of engineering-based and statistics-based FL
algorithms can present different levels of difficulty when
applied to structured clinical data. The programming lan-
guage difference between statistics-based and engineering-
based FL algorithms (R or Python, etc.), can potentially pose
challenges for users, particularly for biostatisticians and epi-
demiologists who commonly use R for data analysis. Addi-
tionally, engineering-based FL frameworks, being model
agnostic, can be relatively more difficult to adapt, as many
usage demos are applied to unstructured data, particularly
images, making it inconvenient for users to directly apply
them to their own models. Furthermore, the requirement for
hyperparameter tuning in engineering-based methods can add
complexity to the adoption process.

Statistical heterogeneity: challenges and potential benefits
Engineering-based FL typically defines statistical heterogene-
ity as scenarios where data are not independently and identi-
cally distributed (i.i.d.).45,56 However, the statistical literature
usually distinguishes between heterogeneity in covariate
effects (conditional distribution of YjX) and heterogeneity in
covariates distributions (P Xð Þ), as they have different impact
on model building and inference.57–59 The differing view-
points6,60,61 surrounding the impact of non-i.i.d. data on FL
algorithms assuming i.i.d. may be explained by the failure to
identify the source of heterogeneity. In this review, for
instance, Vaid et al26 found that FL models obtained via
FedAvg outperformed local models when predicting COVID-
19 outcomes, despite heterogeneity in patient demographics
and outcome prevalence across sites. This result may be
attributed to the homogeneity of the conditional distribution
YjX across sites, even if P Xð Þ is not homogeneous. Unlike the
covariate distribution P Xð Þ, the conditional distribution YjX
across different populations could be complex and difficult to
specify correctly.57 Given the complexity of real-world data,
it is challenging to predict the suitability of classic i.i.d.-based
FL frameworks without sufficient empirical evidence. There-
fore, future researchers are recommended to benchmark these
frameworks with heterogeneous data to assess their
effectiveness.

It is also noteworthy that while heterogeneity is generally
considered a challenge for supervised learning models, there is
evidence to suggest that it can be beneficial for certain unsu-
pervised tasks.62 Specifically, the proposed federated cluster-
ing algorithm by Dennis et al62 demonstrated improved
separations on heterogeneously partitioned data when com-
pared to i.i.d.-partitioned data, as evidenced by achieving a
cost that was closer to the original oracle clustering.62

Convergence analysis for optimization
Almost all FL algorithms aim to estimate the parameters of
interest by solving an optimization problem, making conver-
gence crucial for ensuring accurate estimation. If an FL algo-
rithm frequently fails to converge, it may not be suitable for
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real-world data. However, convergence analysis has not been
adequately addressed in the current FL literature on struc-
tured healthcare data. Of the 19 papers in this review propos-
ing new FL frameworks, only 523,24,32,36,37 discussed
framework convergence. Stochastic gradient descent (SGD) is
a popular choice for smooth optimization when the assump-
tions such as the existence of lower bounds, Lipschitz smooth-
ness, and bounded variance are met.63 However, SGD-based
FL algorithms do not function well in nonsmooth cases,
requiring the development of unique strategies as seen in
some studies.32,36

Data privacy: differential privacy
Although FL enables model training without exchanging or
sharing data, adversaries can still analyze the differences in
related parameters trained and uploaded during the FL proc-
ess to obtain private information.64 As an example, Hitaj et
al65 proposed a generative adversarial networks (GAN)-based
reconstruction attack against convolutional neural networks
trained on image data, in which the trained generator success-
fully mimics the training samples.66 To further address this
data leakage issue, differential privacy (DP) techniques67 have
been integrated with FL frameworks to add artificially con-
trolled noise14 before, during, or after model training.68 DP
has also been combined with GANs to generate synthetic data
that can be shared with collaborators. This approach is par-
ticularly useful for structured data,25 since GANs have a
greater flexibility in modeling distributions compared to their
statistical counterparts.69

While only 5 articles17,19,24,25,35 in this review addressed
the integration of DP with FL, broader reviews of FL in com-
puter science68,70 have shown that it is a popular topic for
general FL applications. As FL continues to be adopted for
large-scale and widespread medical applications, the integra-
tion of FL with technologies such as DP is likely to become
increasingly important in the future.

Standardized pipelines and domain-specific FL for

structured medical data

Our review found that many existing FL studies lack sufficient
detail on model selection and data preprocessing procedures.
The unavailability of open-source codes further obstructs the
reproducibility and future applications of FL. To tackle these
issues, we recommend fostering close collaborations between
FL researchers and healthcare professionals to create more
standardized processes and assessment techniques in future
studies. Additionally, we encourage future researchers to
emphasize the importance of benchmark datasets and evalua-
tions, in order to develop standardized, open-source pipelines
that could accelerate and facilitate research in the field.

We also observed that all the reviewed papers have focused
on modeling tasks, thereby overlooking the potential of FL to
enhance nonmodeling aspects of healthcare research. A perti-
nent example is Zhou et al,71 which proposed using an
FL-based generative adversarial nets for missing value impu-
tation. Although this example comes from a nonhealthcare
domain, few studies have employed similar techniques to
process healthcare data. Nonetheless, these methods hold
promise if they can reduce bias in data analysis, ultimately
leading to more robust and trustworthy healthcare findings.

Limitations

This review aims to provide a comprehensive overview of the
applications of FL on structured clinical data. As such, we did
not delve into detailed analyses of the mathematical and tech-
nological aspects of FL frameworks, especially those related
to optimization.

Conclusion

The application of FL on structured medical data is still in its
early stages. Most studies primarily focus on prediction tasks
and often lack robust demonstrations of clinically significant
results. Further exploration combining engineering- and
statistics-based FL algorithms may present novel opportuni-
ties. Additionally, this review underscores the importance of
establishing standardized methodologies and protocols, as
well as promoting the release of open-source codes, to ensure
reproducibility and transparency in future FL research in
healthcare.
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