Skip to main content
. 2023 Sep 2;30(12):2072–2082. doi: 10.1093/jamia/ocad168

Table 2.

Description of the registers collection, the prediction task, and the architecture by data context.

Hospital care (N = 52)
Parameter Primary care (N = 7) Consultation (N = 4) Hospitalization (N = 20) ICU (N = 28) Multiple healthcare settings (N = 11) Not reported (N = 11) Total (N = 81)
Mean number registers per person
 0-10 0 (0.0) 0 (0.0) 5 (25.0) 8 (28.6) 2 (18.2) 2 (18.2) 17 (21.0)
 11-50 0 (0.0) 2 (50.0) 2 (10.0) 2 (7.1) 1 (9.1) 4 (36.4) 11 (13.6)
 51-100 3 (42.9) 0 (0.0) 3 (15.0) 2 (7.14) 0 (0.0) 0 (0.0) 8 (9.9)
 Not reported 4 (57.1) 2 (50.0) 10 (50.0) 16 (57.1) 8 (72.7) 5 (45.5) 45 (55.6)
Frequency of registers (N = 84) (N = 9) (N = 4) (N = 20) (N = 29) (N = 11) (N = 11) (N = 84)
 Hourly (every 0.5, 1, 2, … h) 0 (0.0) 0 (0.0) 2 (10.0) 8 (27.6) 2 (18.2) 0 (0.0) 12 (14.3)
 Daily 1 (11.1) 0 (0.0) 1 (5.0) 4 (13.8) 1 (9.1) 1 (9.1) 8 (9.5)
 Weekly 1 (11.1) 1 (25.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (9.1) 3 (3.6)
 Monthly (every 1, 6, … months) 2 (22.2) 1 (25.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (18.2) 5 (6.0)
 Yearly (every 1, 2, … years) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (9.1) 1 (1.2)
 At routine follow-up 5 (55.6) 2 (50.0) 15 (75.0) 16 (55.2) 8 (72.7) 6 (54.5) 52 (61.9)
 Not fixed 0 (0.0) 0 (0.0) 1 (5.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.2)
 Not reported 0 (0.0) 0 (0.0) 1 (5.0) 1 (3.45) 0 (0.0) 0 (0.0) 2 (2.4)
Prediction task (N = 124) (N = 9) (N = 4) (N = 32) (N = 48) (N = 13) (N = 18) (N = 124)
 Clinical predictions 5 (55.5) 4 (100) 13 (40.6) 9 (18.8) 8 (61.5) 15 (83.3) 54 (43.5)
  Cancer (eg, colorectal, pancreatic) 1 (11.1) 0 (0.0) 1 (3.12) 0 (0.0) 2 (15.4) 1 (5.6) 5 (4.0)
  Cardiovascular system (eg, heart failure) 3 (33.3) 2 (50.0) 4 (12.5) 2 (4.17) 2 (15.4) 3 (16.7) 16 (12.9)
  Infections (eg, sheptic shock) 0 (0.0) 0 (0.0) 2 (6.3) 3 (6.3) 2 (15.4) 0 (0.0) 7 (5.7)
  Mental health (eg, depression, suicidal ideation) 0 (0.0) 1 (25.0) 2 (6.3) 0 (0.0) 0 (0.0) 0 (0.0) 3 (2.4)
  Metabolic (eg, diabetes, obesity) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 6 (33.3) 6 (4.8)
  Neurorological system (eg, Alzheimer’s) 0 (0.0) 1 (25.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.6) 2 (1.6)
  Respiratory system (eg, COPD) 0 (0.0) 0 (0.0) 2 (6.3) 4 (8.3) 1 (7.7) 3 (16.7) 10 (8.1)
  Urinary system (eg, kidney disease) 1 (11.1) 0 (0.0) 2 (6.3) 0 (0.0) 1 (7.7) 1 (5.6) 5 (4.0)
 Disease progression and health status 1 (11.1) 0 (0.0) 4 (12.5) 12 (25.0) 2 (15.4) 0 (0.0) 19 (15.3)
  Decompensation 0 (0.0) 0 (0.0) 0 (0.0) 3 (6.3) 0 (0.0) 0 (0.0) 3 (2.4)
  Mortality 1 (11.1) 0 (0.0) 4 (12.5) 9 (18.8) 2 (15.4) 0 (0.0) 16 (12.9)
 Outcome measures for quality care 0 (0.0) 0 (0.0) 4 (12.5) 8 (16.7) 0 (0.0) 0 (0.0) 12 (9.7)
  Hospital (re)admission 0 (0.0) 0 (0.0) 3 (9.4) 1 (2.1) 0 (0.0) 0 (0.0) 4 (3.2)
  In-hospital mortality 0 (0.0) 0 (0.0) 0 (0.0) 4 (8.3) 0 (0.0) 0 (0.0) 4 (3.2)
  Length of stay 0 (0.0) 0 (0.0) 1 (3.1) 3 (6.3) 0 (0.0) 0 (0.0) 4 (3.2)
 Other predictions 3 (33.3) 0 (0.0) 11 (34.3) 19 (39.5) 3 (23.1) 3 (16.7) 39 (31.5)
  Next event (eg, diagnose, drug) 3 (33.3) 0 (0.0) 10 (31.2) 15 (31.2) 2 (15.4) 1 (5.6) 31 (25.0)
  Others (Freq. <2) 0 (0.0) 0 (0.0) 1 (3.1) 4 (8.3) 1 (7.7) 2 (11.1) 8 (6.5)
Prediction window (N = 117)
 Hours (1, 3, 6, 8 h) 0 (0.0) 0 (0.0) 3 (8.3) 4 (12.1) 3 (18.8) 0 (0.0) 10 (8.6)
 Days (1, 2, 7, 15 days) 0 (0.0) 0 (0.0) 8 (22.2) 7 (21.2) 0 (0.0) 1 (7.1) 16 (13.7)
 Months (1, 2, 3, 6, 9 months) 2 (14.3) 0 (0.0) 12 (33.3) 4 (12.1) 3 (18.8) 4 (28.6) 25 (21.4)
 Years (1, 2, 3, 4, 5, 10 years) 8 (57.1) 2 (50.0) 7 (19.4) 0 (0.0) 4 (25.0) 4 (28.6) 25 (21.4)
 Any 4 (28.6) 2 (50.0) 6 (16.7) 18 (54.5) 6 (37.5) 5 (35.7) 41 (35.0)
Architecture
 RNN-based only 5 (71.4) 3 (75.0) 14 (70.0) 14 (50.0) 8 (72.7) 6 (54.5) 50 (61.7)
  RNN/BiRNN 0 (0.0) 1 (25.0) 0 (0.0) 0 (0.0) 1 (9.1) 0 (0.0) 2 (2.5)
  GRU/BiGRU 4 (57.1) 0 (0.0) 8 (40.0) 4 (14.3) 3 (27.3) 3 (27.3) 22 (27.2)
  LSTM/BiLSTM 1 (14.3) 2 (50.0) 6 (30.0) 10 (35.7) 4 (36.4) 3 (27.3) 26 (32.1)
 Transformer-based
  BERT-based architectures 0 (0.0) 0 (0.0) 1 (5.0) 2 (7.1) 2 (18.2) 2 (18.2) 7 (8.6)
 Combinations 1 (14.3) 1 (25.0) 5 (25) 11 (39.3) 1 (9.1) 3 (27.3) 22 (27.2)
  Variational RNN 0 (0.0) 0 (0.0) 1 (5.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.2)
  CNN only or LSTM/GRU+CNN 0 (0.0) 1 (25.0) 4 (20.0) 4 (14.3) 0 (0.0) 3 (27.3) 12 (14.8)
  DAG+GRU 1 (14.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.2)
  Dense only or LSTM/GRU+Dense 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.6) 1 (9.1) 0 (0.0) 2 (2.5)
  GAN+LSTM 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.6) 0 (0.0) 0 (0.0) 1 (1.2)
  GNN only or LSTM/GRU+GNN 0 (0.0) 0 (0.0) 0 (0.0) 4 (14.3) 0 (0.0) 0 (0.0) 4 (4.94)
  GRU+GCN 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.6) 0 (0.0) 0 (0.0) 1 (1.2)
 Machine learning 1 (14.3) 0 (0.0) 0 (0.0) 1 (3.6) 0 (0.0) 0 (0.0) 2 (2.4)
  Lasso-SVM 1 (14.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.2)
  Gradient boosting tree mimic 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.6) 0 (0.0) 0 (0.0) 1 (1.2)
Number of layers
 <3 6 (85.7) 2 (50.0) 6 (30.0) 6 (21.4) 4 (36.4) 3 (27.3) 27 (33.3)
 3-5 0 (0.0) 0 (0.0) 2 (10.0) 9 (32.1) 3 (27.3) 1 (9.1) 15 (18.5)
 6-10 0 (0.0) 0 (0.0) 2 (10.0) 2 (7.14) 1 (9.1) 2 (18.2) 7 (8.6)
 Not reported 1 (14.3) 2 (50.0) 10 (50.0) 11 (39.3) 3 (27.3) 5 (45.5) 32 (39.5)

Categorical parameters are described as N (%). Some categories have been aggregated. Raw parameters are available in the Shiny app. N>81 is due to the same study considering different possibilities for the same parameter.