Skip to main content
. 2023 Sep 2;30(12):2072–2082. doi: 10.1093/jamia/ocad168

Table 3.

Description of the parameters related to the development of the model.

Parameter Description
Handling of missing values 26/81 (32.1)
 Compatible with model 4/26 (15.4)
 Imputation 17/26 (65.4)
 Not reported 5/26 (19.2)
Preprocessing 78/81 (96.3)
 One-hot encoding 45/78 (57.7)
 Embedding 42/78 (53.8)
 Time window aggregation 26/78 (33.3)
 Simultaneous preprocessing techniques (n) [0, 5], 1.9 (1), 2 [1-3], 100
Feature selection 6 (7.4)
Varying-length sequence handling
 Preprocessing 31/81 (38.3)
 Zero-padding 22/81 (27.2)
 Not reported 19/81 (23.5)
 Not needed 5/81 (6.2)
Number of layers [0,10], 2.9 (2), 2 [2-4], 60.5
Use of attention mechanism 45/81 (55.6)
Use of static variables 27/81 (33.3)
Hyperparameter tuning
 Performed 36/81 (44.4)
 Not performed 34/81 (42)
 Not reported 11/81 (13.6)
Hyperparameter tuning method
 Fine-tuning 13/36 (36.1)
 Grid search 7/36 (19.4)
 Others 10/36 (27.8)
 Not reported 6/36 (16.7)
Hyperparameters tuned
 Number of neurons per layer 16/36 (44.4)
 Learning rate 10/36 (27.8)
 Dropout rate 8/36 (22.2)
 Simultaneous hyperparameters being tuned (n) [1, 8], 2.6 (1.9), 2 [1-3.3] (80.6)

Categorical parameters are described as N (%), while quantitative parameters as [min, max], mean (SD), median [Q1-Q3], (% studies reported).