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Abstract

In oncology, the patient state is characterized by a whole spectrum of modalities, ranging from 

radiology, histology, genomics to electronic-health records, each one providing additional insights. 

Current AI models, however, operate mainly in the realm of single modality, neglecting the 

broader clinical context, which inevitably diminishes their potential. Integration of different data 

modalities provides opportunities to increase robustness and accuracy of diagnostic and prognostic 

models, bringing AI closer to clinical practice. At the same time, AI models are capable of 

discovering novel patterns within and across modalities suitable for explaining differences in 

patient outcomes or treatment resistance. The insights gleaned from such models can guide 

exploration studies and contribute to the discovery of novel biomarkers and therapeutic targets. To 

support these advances, here we present a synopsis of AI methods and strategies for multimodal 

data fusion. We outline approaches for AI interpretability and directions for AI-driven exploration 

through multimodal data interconnections. We examine challenges towards clinical adoption and 

discuss possible emerging solutions.

*Correspondence: Faisal Mahmood, 60 Fenwood Road, Hale Building for Transformative Medicine, Brigham and Women’s Hospital, 
Harvard Medical School, Boston, MA 02445, faisalmahmood@bwh.harvard.edu, www.mahmoodlab.org. 

Declaration of interests
The authors declare no competing interests.

HHS Public Access
Author manuscript
Cancer Cell. Author manuscript; available in PMC 2023 November 17.

Published in final edited form as:
Cancer Cell. 2022 October 10; 40(10): 1095–1110. doi:10.1016/j.ccell.2022.09.012.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

Cancer is a highly complex disease involving a cascade of microscopic and macroscopic 

changes with mechanisms and interactions that are not yet fully understood. Cancer 

biomarkers provide insights on the state and course of disease in the form of quantitative 

or qualitative measurements, which consequently guide patient management. Based on their 

primary use, biomarkers can be diagnostic, predictive or prognostic. Diagnostic biomarkers 
stand at the first line of cancer detection and diagnosis, including examples such as 

prostate-specific antigen (PSA) values or neoplastic changes in tissue biopsy. Predictive 
biomarkers determine cancer aggressiveness (e.g. grade) or predict treatment response. For 

instance, microsatellite instability predicts response to immune checkpoint-inhibitor therapy 

in colorectal cancer (Marcus et al., 2019), whereas KRAS-mutations indicate resistance 

to anti-EGFR treatment (Van Cutsem et al., 2009). Prognostic biomarkers forecast risks 

associated with clinical outcomes such as survival, recurrence or disease progression. For 

example, Oncotype-DX assays are used to estimate recurrence scores and survival likelihood 

in breast cancer (Paik et al., 2004). Despite the vital role of biomarkers, even patients 

with similar profiles can be met with diverse treatment responses (Shergalis et al., 2018), 

recurrence rates (Roy et al., 2015) or treatment toxicity (Kennedy and Salama, 2020), 

while the underlying reasons for such dichotomies are often unknown. Given the increasing 

incidence rates of cancer, there is a crucial need to identify novel and more specific 

biomarkers.

The biomarker discovery process typically involves manual examination of potentially 

informative measurements and their association with clinical endpoints. For instance, the 

Nottingham grading system in breast cancer was determined through dedicated examination 

of thousands of histopathology slides, revealing association between morphological features 

and patient outcome. Although identification of each new biomarker represents a milestone 

in oncology, this process faces several challenges. Manual assessment is time- and resource-

intensive, often without the possibility of translating observations from one cancer model to 

another. Cancer assessment is often qualitative with substantial inter-rater variability, which 

hinders reproducibility and contributes to inconsistent outcomes in clinical trials. Given 

the large complexity of medical data, current biomarkers are almost exclusively unimodal. 

However, constraining the biomarkers to a single modality can significantly reduce their 

clinical potential. For instance, glioma patients with similar genetic or histology profile 

can be met with diverse outcomes caused by macroscopic factors such as tumor location 

preventing full resection and irradiation or disruption of blood-brain barrier altering the 

efficacy of drug delivery (Miller, 2002).

Over the last years, AI has demonstrated great performance in many clinically relevant 

tasks. AI models are able to integrate complementary information and clinical context from 

diverse data sources to provide more accurate patient predictions (Fig. 1A). The clinical 

insights identified by successful models can be further elucidated through interpretability 

methods and quantitative analysis to guide and accelerate the discovery of new biomarkers 

(Fig. 1C–D). Similarly, AI models can reveal association across diverse modalities, such as 

relation between certain mutations and specific changes in cellular morphology (Coudray et 

al., 2018) or association between radiology findings and histology-specific tumor subtypes 
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(Ferreira-Junior et al., 2020; Hyun et al., 2019) or molecular features (Yan et al., 2021) 

(Fig. 1B). Such associations can identify accessible or non-invasive alternatives for existing 

biomarkers to support large scale population screenings or selection of patients for clinical 

trials (Fig. 1 E,F).

2 AI Methods in Oncology

AI methods can be categorized as supervised, weakly-supervised and unsupervised. To 

highlight the concepts specific to each strategy we present all methods in the framework of 

computer vision, as illustrated in Figure 2.

Supervised methods

Supervised methods learn a mapping from input data to predefined labels (e.g. cancer/non-

cancer) using training samples. This includes hand-crafted and deep-learning (DL) methods.

Hand-crafted methods take as input a set of predefined features (e.g. cell shape or size) 

extracted from the data before the training, not the data itself. The training is performed 

with standard machine learning (ML) models, such as random forest (RF), support-vector 

machine (SVM) or multi-layer perceptron (MLP) (Bertsimas and Wiberg, 2020) (Fig. 2). 

Since the feature extraction is not part of the learning process, the models typically have 

simpler architecture, lower computation cost, and may require less training data than DL 

models. Additional benefit is a high level of interpretability since the predictive features can 

be related to the data. On the other hand, the feature extraction is time consuming and can 

translate human bias to the models. Moreover, human perception cannot be easily captured 

by a set of computer rules, often leading to simpler features. Since the features are usually 

tailored to the specific disease, the models cannot be easily translated to other tasks or 

malignancies. Despite the popularity of DL methods, in many applications the hand-crafted 

methods are sufficient and preferred due to their simplicity and ability to learn from smaller 

datasets.

Deep-learning methods operate directly on raw data or in the case of large histopathology 

scans on image patches. Here we focus on convolutional neural networks (CNNs), the 

most common DL strategy for image analysis. In CNNs the predictive features are not 

defined, and the model alone must determine which concepts and features are useful for 

explaining relations between inputs and outputs, using supervision from pixel-level labels. 

For instance, in Figure 2 each training whole-slide image (WSI) is manually annotated 

to outline the tumor region. The WSI is then partitioned into rectangular patches and 

each patch is assigned with a label “cancer” or “no-cancer” determined by the tumor 

annotation. The majority of CNNs have a similar architecture, consisting of alternating 

convolutional, pooling and non-linear activation layers, followed by a small number of fully-

connected layers. A convolution layer serves as a feature extractor, while the subsequent 

pooling layer condenses the features into the most relevant ones. The non-linear activation 

function allows the model to explore complex relations across features. Fully-connected 

layers then perform the end-task such as cancer classification. The main strength of CNNs 

is their ability to extract rich feature representations from raw data, resulting in lower 

pre-processing cost, higher flexibility and often superior performance over hand-crafted 
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models. The potential limitations come from the model’s reliance on pixel-level annotations 

which are time-intensive and might be affected by inter-rater variability and human bias. 

Moreover, predictive regions for many clinical outcomes, such as survival or treatment 

resistance, may be unknown. CNNs are also often criticized for the lack of interpretability, 

since neither the model’s decision mechanisms nor the learned predictive features can (yet) 

be satisfyingly interpreted at the human-level. Despite these limitations, CNNs come with 

impressive performance, contributing to widespread usage in many medical applications.

Weakly-supervised methods

Supervised methods operate under strong supervision, where each data point (e.g. patch 

or pixel) is assigned a label. Such strong labels, however, are not routinely created during 

the clinical workflow and their construction is expensive. Weakly-supervised methods allow 

to train models with weak, patient-level labels (such as diagnosis or survival), avoiding 

the need for manual data annotations. The most common weakly-supervised methods 

include graph convolutional networks (GCNs), multiple-instance learning (MIL) and Vision 
Transformers (VITs).

Graph Convolutional Networks: Graphs can be used to explicitly capture spatial tissue 

structures and encode relation between objects. A graph is defined by nodes connected 

by edges. In histology, a node can represent a cell, image-patch or even tissue region. 

Edges encode spatial relation and interaction between nodes (Zhang et al., 2019). The 

graph, combined with the patient-level labels, is processed by a GCN (Ahmedt-Aristizabal 

et al., 2021) which can be seen as a generalization of CNNs that operate on unstructured 

graphs. In GCNs, feature representations of a node are updated by aggregating information 

from neighboring nodes. The updated representations then serve as input for the final 

classifier. In contrast to CNNs and MIL, GCNs incorporate larger context and spatial tissue 

structure. This can beneficial in tasks where the clinical context span beyond the scope of 

a single patch (e.g. Gleason score). On the other hand, the interdependence of the nodes in 

GCNs come with higher training costs and memory-requirements, since the nodes cannot be 

processed independently. As a consequence, contemporary GCNs are relatively shallow and 

typically build only on sub-samples of the WSI.

In Multiple-instance learning (Carbonneau et al., 2018; Cheplygina et al., 2019), all 

patches from a given patient are grouped into a “bag” carrying a patient-level label. The 

labels of individual patches (referred to as instances) are not known. The label of a bag 

is assumed positive if there is at least one positive instance in the bag. The goal of the 

model is to predict the bag label and to identify which instances are relevant for the 

given prediction. The MIL models comprise of three main modules: feature extraction, 

aggregation, and prediction. The first module is used to embed the image patches into lower-

dimensional embeddings to reduce memory requirements and facilitate fast training. This is 

often achieved through transfer learning (Weiss et al., 2016) and self-supervision (see next 

section). The patch-level embeddings are aggregated to create patient-level representations 

which serve as input for the final classification module. There exist several aggregation 

strategies. For instance, Fig. 2 shows attention-based pooling (Ilse et al., 2018) where two 

fully-connected networks are used to learn the relative importance of each image patch 
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toward the model predictions – the so-called attention score. The patch-level representations, 

weighted by the corresponding attention score, are summed up to build the patient-level 

representation. The attention-scores can be also used for model interpretability (see Section 

4).

Vision transformers (Dosovitskiy et al., 2020; Vaswani et al., 2017) are type of 

attention-based learning. In contrast to MIL, where patches are assumed independent 

and identically distributed, VITs account for correlation and context among patches. The 

main components of VITs include positional encoding, self-attention and multi-head self-

attention. Positional encoding learns the spatial structure of the image and the relative 

distance among patches. Self-attention mechanism determines the relevance of each patch 

while also accounting for the context and contribution from the other patches. Multi-head 

self-attentions simultaneously deploys multiple self-attention blocks to account for different 

types of interactions between the patches and combines them into a single self-attention 

output. A typical VIT architecture is shown in Fig. 2. A WSI is converted into a series 

of patches, each coupled with positional information. Learnable encoders map each patch 

and its position into a single embedding vector, referred to as a token. Additional token 

is introduced for the classification task. The class token together with the patch tokens 

are fed into the transformer encoder to compute multihead self-attention and output the 

learnable embeddings of patches and the class. The output class token serves as a slide-level 

representations used for the final classification. The transformer encoder consists of several 

stacked identical blocks. Each block includes multi-head self-attention and MLP, along 

with layer-normalization and residual connections. The positional encoding and multiple 

self-attention heads allows to incorporate spatial information, increase the context and 

robustness (Li et al., 2022; Shamshad et al., 2022) of VIT methods over MIL. On the other 

hand, VIT tend to be more data hungry (Dosovitskiy et al., 2020).

Often it is difficult to know a priori which model is most suitable for the given task. While 

GCNs methods tend to perform better in tasks that require larger spatial context, such as 

Gleason grade, Bulten et al. (Bulten et al., 2022) showed that MIL can predict the Gleason 

score with clinical-grade accuracy even without the graph-based models. Without proper 

benchmarks offering head-to-head comparison of methods on the same data and tasks, it is 

difficult to make strong conclusions.

Weakly-supervised methods offer several benefits. The liberation from manual annotations 

reduces the cost of data pre-processing and mitigates the bias and inter-rater variability. 

Consequently, the models can be easily applied to large datasets, diverse tasks and also 

situations where the predictive regions are unknown. Since the models are free to learn 

from the entire scan, they can identify predictive features even beyond the regions typically 

evaluated by pathologists. The great performance demonstrated by weakly-supervised 

methods suggests that many tasks can be addressed without expensive manual annotations or 

hand-crafted features.

Unsupervised methods

Unsupervised methods explore structures, patterns and subgroups in data without relying on 

any labels. This includes self-supervised and fully-unsupervised strategies.
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Self-supervised methods are designed to improve performance of fully/weakly-supervised 

models, where limited data are available and overfitting might be of concern. Self-

supervised methods exploit available un-labeled data to learn high-quality image features 

and then transfer this knowledge to supervised models. To achieve this, supervised methods 

such as CNNs are used to solve various pretext tasks (Jing and Tian, 2019) for which the 

labels are generated automatically from the data. For instance, a patch can be removed 

from an image and a network is trained to predict the missing part of the image from its 

surroundings, using the actual patch as label. The patch-prediction has no direct clinical 

relevance, but it guides the model to learn general-purpose features of image characteristics 

which can be beneficial for other practical tasks. The early layers of the network usually 

capture general image features, while the later layers pick features relevant for the pretext 

task. The later layers are thus excluded, while the early layers serve as feature extractors in 

the fully/weakly supervised models (i.e. transfer learning).

Fully-unsupervised methods search for correlations, structures, and subgroups in the 

data itself, without having a prescribed task-specific outcome or label. The most common 

unsupervised methods include clustering and dimensionality reduction. Clustering methods 

(Rokach and Maimon, 2005) partition data into subgroups such that the similarity within the 

subgroup and separation between subgroups are maximized. Although the output clusters 

are not task-specific, they can reveal different cancer subtypes or patient subgroups. The aim 

of dimensionality reduction is to obtain low-dimensional representation capturing the main 

characteristics and correlations in the data. Common DL approach include autoencoders. An 

autoencoder (Hinton and Salakhutdinov, 2006) consists of two neural networks: encoder and 

decoder. The encoder learns to encode data into a lower-dimensional feature vector similar 

to feature extraction in CNNs. At the same time, a decoder is trained to reconstruct the 

original input data from the lower-dimensional vector. Along this process, the encoder learns 

to identify the most relevant aspects of the data. The encoder can be used as the feature 

extractor in supervised methods (Sharmay et al., 2021), similar to the encoder obtained 

through self-supervised learning. There is no guarantee that an unsupervised model will 

result in a desired output; rather, these models serve as tools for data exploration and feature 

learning.

3 Multimodal data fusion

The aim of multimodal data fusion is to extract and combine complementary, contextual 

information across different modalities for better decision making. This is of particular 

relevance in medicine where similar findings in one modality may have diverse 

interpretations in combination with other modalities. For instance, mass in lung X-ray scans 

can be interpreted as pneumonia, COVID-19, or also tumor – depending on accompanying 

symptoms such as fever, elevated blood count, or biopsy assessment. Similarly for 

cancer biomarkers, IDH1 mutation status or histology profile alone are insufficient for 

explaining the variance in patient outcomes, whereas the combination of both have been 

recently used to redefine the WHO classification of diffuse glioma (Louis et al., 2016). 

AI offers automated and objective way for incorporating complementary information 

and clinical context from diverse data for improved predictions. The models can also 

utilize supplementary information in modalities; if unimodal data are noisy or incomplete, 
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supplementing redundant information from other modalities can improve the robustness and 

accuracy of the predictions. AI-driven data fusion strategies (Baltrušaitis et al., 2018) can be 

divided as early, late, and intermediate (see Fig. 3).

Early fusion integrates information from all modalities at the input level before feeding 

it into a single model. The modalities can be represented as raw data, hand-crafted or deep-

features. The joint representation is build through operations such as vector concatenation, 

element-wise sum, element-wise multiplication (Hadamard Product) or bilinear pooling 

(Kronecker Product) (Huang et al., 2020a; Ramachandram and Taylor, 2017). In early 

fusion, only one model is trained which simplify the design process. However, it is assumed 

that the single model is well suited for all modalities. Early fusion requires a certain level of 

alignment or synchronization between the modalities. Although this is more obvious in other 

domains, such as synchronization of audio and visual signals in speech recognition, it is also 

relevant in clinical settings. If the modalities come from significantly different time points, 

such as pre- and post-interventions, then early fusion might not be appropriate choice.

Applications of early-fusion include integration of similar modalities such as multimodal, 

multiview ultrasound images for breast cancer detection (Qian et al., 2021) or fusion of 

structural CT and/or MRI data with metabolic PET scans for cancer detection (Le et al., 

2017), treatment planning (Lipková et al., 2019), or survival prediction (Nie et al., 2019). 

Other examples include fusion of imaging data with electronic medical records (EMRs) 

such as integration of dermoscopic images and patient data for skin lesion classification 

(Yap et al., 2018), or fusion of cervigram and EMRs for cervical dysplasia diagnosis (Xu 

et al., 2016). Several studies investigate the correlation between changes in gene expression 

and tissue morphology, integrating genomics data with histology and/or radiology images 

for cancer classification (Khosravi et al., 2021), survival (Chen et al., 2020b, 2021c) and 

treatment response (Feng et al., 2022; Sammut et al., 2022) prediction.

Late fusion, also known as decision-level fusion, trains a separate model for each 

modality and aggregates the prediction from individual models for the final prediction. 

The aggregation can be performed by averaging, majority voting, Bayes-based rules 

(Ramanathan et al., 2022), or learned models such as MLP. Late fusion allows to use 

different model architecture for each modality and does not pose any constrains on data 

synchronization, making it suitable for systems with large data heterogeneity or modalities 

from different time points. In case of missing or incomplete data, late fusion retains the 

ability to make predictions since each model is trained separately and aggregations, such as 

majority voting, can be applied even if a modality is missing. Similarly, inclusion of a new 

modality can be performed without the need to retrain the full model. Simple covariates, 

such as age or gender, are often included through late fusion due to its simplicity (see 

Fig. 3 B). If the unimodal data do not complement each other or do not have strong 

interdependencies, late fusion might be preferable thanks to the simpler architecture and 

smaller number of parameters compared to other fusion strategies. This is also beneficial 

in situations with limited data. Furthermore, errors from individual models tend to be 

uncorrelated, resulting in potentially lower bias and variance in late-fusion predictions. In 

situations when information density varies significantly across modalities, predictions from 

shared representations can be heavily influenced by the most dominant modality. In late 
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fusion the contribution from each modality can be accounted for in a controlled manner by 

setting equal or diverse weights per modality in the aggregation step.

Examples of late fusion include integration of imaging data with non-imaging inputs, such 

as fusion of MRI scans and PSA-blood tests for prostate cancer diagnosis (Reda et al., 

2018), integration of histology scans and patient gender for inferring origin of metastatic 

tumors (Lu et al., 2021), fusion of genomics and histology profiles for survival prediction 

(Chen et al., 2021c; Shao et al., 2019), combination of pre-treatment MRI or CT scans with 

EMRs for chemotherapy response prediction (Joo et al., 2021) and survival estimation (Nie 

et al., 2016).

Intermediate fusion is a strategy where the loss from the multimodal model propagates 

back to the feature extraction layer of each modality to iteratively improve feature 

representations under the multimodal context. For comparison, in early and late fusion 

the unimodal embeddings are not affected by the multimodal information. Intermediate 

fusion can combine individual modalities at different levels of abstractions. Moreover, in 

systems with three and more modalities the data can be fused either all at once (Fig. 

3C) or gradually across different levels (Fig. 3D). The intermediate single-level fusion 

is similar to early fusion, however, in the early fusion the unimodal embeddings are not 

affected by the multimodal context. Gradual fusion allows to combine data from highly 

correlated channels at the same level, forcing the model to consider the cross-correlations 

between specific modalities, followed by fusion with less correlated data in later layers. 

For instance, in Fig. 3D, genomics and histology data are fused first, to account for the 

interplay between mutations and changes in the tissue morphology, while the relation with 

the macroscopic radiology data is considered in the later layer. Gradual fusion has shown 

improved performance over single-level fusion in some applications (Joze et al., 2020; 

Karpathy et al., 2014). Guided fusion uses information form one modality to guide feature 

extraction from another modality. For instance, in Fig. 2E, genomics information guides 

the selection of histology features. The motivation is that different tissue regions might 

be relevant in the presence of specific mutations. Guided fusion learns co-attention scores 

that reflect relevance of different histology features in the presence of specific molecular 

information. The co-attention scores are learned with the multimodal model, where the 

genomics feature and the corresponding genomics-guided histology features are combined 

for the final model predictions.

Examples of intermediate fusion include integration of diverse imaging modalities such as 

fusion of PET and CT scans in lung cancer detection(Kumar et al., 2019), fusion of MRI 

and ultrasound images in prostate cancer classification (Sedghi et al., 2020), or combination 

of multimodel MRI scan in glioma segmentation (Havaei et al., 2016). Fusion of diverse 

multi-omics data was used for cancer subtyping (Liang et al., 2014) or survival prediction 

(Lai et al., 2020). Genomics data have been used in tandem with histology (Vale-Silva and 

Rohr, 2021) or mammogram (Yala et al., 2019) images for improved survival prediction. 

Guided fusion of different radiology modalities was used to improve segmentation of liver 

lesions (Mo et al., 2020) and anomalies in breast tissue (Lei et al., 2020). EMRs were used 

to guide feature extraction from dermoscopic (Zhou and Luo, 2021) and mamography (Vo 

et al., 2021) images to improve detection and classification of lesions. Chen et al. (Chen et 
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al., 2021b) used genomics information to guide selection of histology features for improved 

survival prediction in multiple cancer types.

There is no conclusive evidence that one fusion type is ultimately better than the others, as 

each type is heavily data- and task-specific.

4 Multimodal Interpretability

Interpretability is a crucial component of AI development, deployment and validation. With 

the ability of AI models to discover their own features, there is a worry that the models 

might use spurious shortcuts for predictions, instead of learning clinically relevant aspects. 

Such models might fail to generalize when presented with new data or discriminate against 

underrepresented populations (Banerjee et al., 2021; Chen et al., 2021a). On the other 

hand, the models can discover novel and clinical relevant insights. Here we present a brief 

overview of different levels of interpretability used in oncology (Fig. 4), while technical 

details can be find in the recent review (Arrieta et al., 2020).

In histopathology, VIT or MIL can reveal relative importance of each image patch for the 

model predictions. The attention scores can be mapped to their spatial location to obtain 

slide-level attention heatmaps as shown in Fig. 4A, where a MIL model was trained to 

classify cancer suptyes in WSIs. Although no manual annotations were used, the model 

learned to identify morphology specific for each cancer type and to discriminate between 

normal and malignant tissues. Class activation methods (CAMs), such as GradCAM 

(Selvaraju et al., 2017) or GradCAM++ (Chattopadhay et al., 2018), allow to determine 

importance of the model inputs (e.g. pixels) by computing how the changes in the inputs 

affect the model outputs for each prediction class. GradCAM is often used in tandem 

with the guided-backpropagation method, so-called Guided-GradCAM (Selvaraju et al., 

2016), where the guided-backpropagation determines the pixel-level importance inside the 

predictive regions specified by the GradCAM. This is illustrated in Fig. 4B, where a CNN 

was trained to classify cancer subtypes in image patches. For comparison, in the attention 

methods the importance of each instance is determine during the training while the CAM-

based methods are model-agnostic i.e. independent on the model training.

In radiology, the interpretability methods are similar to those used in histology. The 

attention-scores can reflect the importance of slides in a 3D scan. For instance, in Fig. 

4D. MIL model was trained to predict survival in glioma patients (Zhuang et al., 2022). 

The model considered the 3D MRI scan as a bag, where the axial slides are modeled as 

individual instances. Even in the absence of manual annotations, the model has placed 

high-attention to the slides with tumor, while low-attention was assigned to healthy tissue. 

CAM-based methods can be consequently deployed to localize the predictive regions within 

individual slides (Fig. 4F).

Molecular data can be analyzed by Integrated Gradient method (Sundararajan et al., 2017) 

which computes attribution values indicating how changes in specific inputs impact the 

model outputs. For the regression tasks, such as survival analysis, the attribution values 

can reflect the magnitude of the importance as well as the direction of the impact: features 
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with positive attribution increase the predicted output (i.e. higher risk) while features with 

negative attribution reduce the predictive values (i.e. lower risk). At the patient-level, these 

is visualized as a bar plot, where the y-axis corresponds to the specific features (ordered by 

their absolute attribution value) and the x-axis shows the corresponding attribution values. 

At the population-level, the attributions plots depict the distribution of the attributions scores 

across all subjects. Fig. 4C shows the attribution plots for most genomics features used 

for survival prediction in glioma patients (Chen et al., 2021c). Other tabular data, such 

as hand-crafted features or values obtained from EMR can be interpreted in the same 

way. EMRs can be also analyzed by natural language processing (NLP) methods, such as 

Transformers, where the attention scores determine importance of specific words in the text 

(Fig. 4E.)

In multimodal models, the attribution plots can also determine contribution of each 

modality towards the model predictions. All previously mentioned methods can be used 

in multimodal models to explore interpretability within each modality. Moreover, shifts in 

feature importance under unimodal and multimodal settings can be investigated to analyze 

impact of the multimodal context.

The interpretability methods usually come without any accuracy measures and thus it is 

important not to over-interpret them. While CAM- or attention-based methods can localize 

the predictive regions they cannot specify which features are relevant, i.e. they can explain 

where but not why. Moreover, there is no guarantee that all high-attention/attribution region 

carry clinical relevance. High scores just mean that the model has considered these regions 

more important than others.

5 Multimodal data interconnection

The aim of multimodal data interconnection is to reveal associations and shared information 

across modalities. Such associations can provide new insights on cancer biology and guide 

discovery of novel biomarkers. Although there are many approaches for data explorations, 

here we illustrate few possible directions (Fig. 5).

Morphological associates:

Malignant changes often propagate across different scales; oncogenic mutations can affect 

cell behaviour, which in turn reshape tissue morphology or tumor microenviroment visible 

in histology images. Consequently, the microscopic changes might impact tumor metabolic 

activity and macroscopic appearance detectable by PET or MRI scans. The feasibility of 

AI methods to identify associations across modalities was first demonstrated by Coudray 

et al. (Coudray et al., 2018) who showed that certain mutations in lung cancer can be 

inferred directly from hematoxylin and eosin (H&E)-stained WSIs. Other studies have 

followed shortly, predicting the mutation status from WSIs in liver (Chen et al., 2020a), 

bladder (Loeffler et al., 2021), colorectal (Jang et al., 2020), thyroid cancer (Tsou and 

Wu, 2019), as well as pan-cancer pan-mutation studies attempting to predict any genetic 

alternation in any tumor type (Fu et al., 2020; Kather et al., 2020). Additional molecular 

biomarkers, such as gene expression (Anand et al., 2020; Binder et al., 2021; Schmauch et 

al., 2020), hormone-receptor status (Naik et al., 2020), tumor mutational burden (Jain and 
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Massoud, 2020), and microsatellite instability (Cao et al., 2020; Echle et al., 2020) have also 

been inferred from WSIs (Murchan et al., 2021). In radiology, AI models have predicted 

IDH mutation and 1p/19q co-deletion status from preoperative brain MRI scans (Bangalore 

Yogananda et al., 2020; Yogananda et al., 2020), BRCA1 and BRCA2 mutational status 

from breast mammography (Ha et al., 2017) and MRI (Vasileiou et al., 2020) scans, while 

EGFR and KRAS-mutation have been detected from CT scans in lung (Wang et al., 2019) 

and colorectal (He et al., 2020) cancer.

By discovering presence of morphological associates across modalities, AI models can 

enhance exploratory studies and reduce the search space for possible biomarker candidates. 

For instance, in Fig. 5A, the AI has revealed that one of the studied mutations can be 

reliably inferred from WSI. Although the predictive features used by the model might be 

unknown, interpretability methods can provide additional insights. Attention-heatmaps can 

reveal tissue regions relevant for the prediction of the specific mutation. Distinct tissue 

structures and cell types withing high and low-attention regions can be identified, and their 

properties such as nuclei shape or volume can be further extracted and analyzed. Clustering 

or dimensionality reduction methods can be deployed to examine the promising features, 

potentially revealing associations between mutation status and distinct morphological 

features. The identified morphological associates can serve as cost-efficient biomarker 

surrogates to support screening in low-to-middle income settings or reveal new therapeutic 

targets.

Non-invasive alternatives:

Similarly, AI can discover relationships between non-invasive and invasive modalities. For 

instance, AI models were used to predict histology sutypes or grades from radiomics 

features in lung (Sha et al., 2019), brain (Lasocki et al., 2015), liver (Brancato et al., 

2022) and other cancers (Blüthgen et al., 2021). The predictive image regions can be further 

analyzed to identify textures and patterns with possible diagnostic values (see Fig. 5B), 

which in turn can serve as non-invasive surrogates for existing biomarkers.

Outcome associates:

Benefits of personalized medicine are often limited by paucity of biomarkers able to explain 

dichotomies in patient outcomes. On the other hand, AI models are demonstrating great 

performance in predicting clinical outcomes, such as survival (Lai et al., 2020), treatment 

response (Echle et al., 2020), recurrence (Yamamoto et al., 2019), and radiation toxicity 

(Men et al., 2019) using unimodal and multimodal (Chen et al., 2020b, 2021c; Joo et al., 

2021; Mobadersany et al., 2018) data. These works imply the feasibility of AI models to 

discover relevant prognostic patterns in data, which might be elucidated by interpretability 

methods. For instance in Fig. 5C, a model is trained to predict survival from histology 

and genomics data. Attention heatmaps reveal tissue regions related to low and high risk 

patients groups while the molecular profiles are analyzed through attribution plots. The 

predictive tissue regions can be further analyzed by examining tissue morphology, cell 

subtypes or other human-intepretable data characteristics. Tumor-infiltrating lymphocytes 

can be estimated through co-localization of tumor and immune cells to specify immune hot 

and cold tumors. Attribution of specific modalities as well as shift in feature importance 
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in unimodal vs. multimodal data can be explored to determine the influence of multimodal 

contextualization.

Such exploration studies have already provided new clinical insights. For instance, Geessink 

et al. (Geessink et al., 2019) showed that tumor-stroma ratio can serve as independent 

prognosticator in rectal cancer, while the ratio of tumor area to metastatic lymph node 

regions has prognostic value in gastric cancer (Wang et al., 2021). Other morphological 

features, such as arrangement of collagen fibers in breast histology (Li et al., 2021) or spatial 

tissue organization in colorectal tissue (Qi et al., 2021) have been identified as possible 

biomarkers for aggressiveness or recurrence.

Early predictors:

AI can also explore diverse data acquired prior to patient diagnosis to identify potential 

predictive risk factors. EMRs provide rich information on patient history, medication, 

allergies or immunization, which might contribute to patient outcome. Such diverse data 

can be efficiently analyzed by AI models to search for distinct patient subgroups (Fig. 5 

D). Identified subgroups can be correlated with different patient outcomes, while attribution 

plots can identify relevance of different factors at the patient and population level. Recently, 

Placido et al. (Placido et al., 2021) showed the feasibility of AI to identify patients with a 

higher risk of developing pancreatic cancer by exploration of EMR. Similarly EMRs were 

used to predict treatment response prediction (Chu et al., 2020) or length of hospital stay 

(Alsinglawi et al., 2022). The identified novel predictive risk factors can support large-scale 

population screenings and early preventive care.

Outside of the hospital setting, smartphones and wearable devices offer another great 

opportunity for real-time and continuous patient monitoring. Changes in the measured 

values, such as decrease in patient step counts, have been shown as robust predictors 

of worse clinical outcome, treatment toxicity, and increased risk of hospitalization 

(Low, 2020). Furthermore, the modern wearable devices are continually expanding their 

functionality including measurements of temperature, stress levels, blood-oxygen saturation, 

or electrocardiograms. These measurements can be analyzed in tandem with clinical data to 

search for risk factors indicating early stages of increased toxicity or treatment resistance, 

to allow personalized interventions during the course of treatment. Research on personalized 

monitoring and nanotechnologies is investigating novel directions such as detection of 

patient measurements in sweat (Xu et al., 2019) or ingestible sensors to monitor medication 

compliance and drug absorption (Weeks et al., 2018). All these novel devices provide useful 

insights on the patient state, which could be analyzed in larger clinical context through AI 

models.

6 Challenges and path towards clinic

The path of AI into clinical practice is still laden with obstacles, many of which are 

amplified in the presence of multimodal data. While several recent works discus challenges, 

such as fairness and datasets shifts (Banerjee et al., 2021; Chen et al., 2021a; Cirillo et al., 

2020; Howard et al., 2021; Mehrabi et al., 2021; Zhang et al., 2018), limited interpretability 

(Adebayo et al., 2018; Linardatos et al., 2020; Reyes et al., 2020) or regulatory guidelines 
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(Cruz Rivera et al., 2020; Topol, 2020; Wu et al., 2021), here we focus on challenges 

specific to multimodal learning.

Missing data

The challenge of missing data refers to the absence of part of modality or complete 

unavailability of one or more modalities. The missing data impact both, the model 

training and deployment since majority of existing AI models cannot handle missing 

information. Moreover, the need to train models with complete multimodal data significantly 

constrains the size of the training datasets. For instance, The Cancer Genome Atlas 

(TCGA) dataset contains over 900 WSIs from glioma patients, however, only 127 cases 

contain corresponding radiology and genomics information. The incomplete modalities still 

contain valuable information, and the inability to deploy them pose a significant limitation, 

especially in fields like medicine where data are precious. Below we discuss two strategies 

for handling missing data.

Synthetic data generation can be used to complement the missing information. If part of 

an image is corrupted or if specific mutations are not reported, the missing information 

can be fabricated from the remaining data. If a whole modality is missing, its synthetic 

version can be derived from existing similar modalities. For instance, Haan et. al (de 

Haan et al., 2021) trained a supervised model for translation of H&E-stains into special 

stains, using the special stains as ground truth labels. The model was trained on pairs 

of perfectly aligned data obtained e.g through re-staining of the same slides. If paired 

data are not available, unsupervised methods such as cycle generative adversarial networks 

(GANs) (Zhu et al., 2017) can be used. While synthetic data can improve performance 

of detection and classification methods, they are less suitable for outcome prediction or 

biomarker exploration, where the predictive features are not well understood and thus there 

is no guarantee that the synthetic data contain the relevant disease characteristics. Moreover, 

the algorithms can hallucinate malignant features also into the supposedly normal synthetic 

images (Cohen et al., 2018) which can further hurt prediction results.

Drop-out based methods, aims to make models robust to missing information. For instance, 

Choi et. al(Choi and Lee, 2019) proposed EmbraceNet model which can handle incomplete 

or missing data during training and deployment. The EmbraceNet model probabilistically 

selects partial information from each modality and combines it into a single representation 

vector, which then serves as an input for the final decision model. When missing or 

invalid data is encountered, it is not sampled; instead, other more complete modalities 

are used to compensate for the missing data. The probabilistic data selection has also 

a regularization effect, similar to the dropout mechanism. The authors have tested the 

EmbraceNet method on natural images and videos, whereas its utility in clinical settings, 

although very promising, is yet to be explored.

Data alignment

To investigate cancer processes across different scales and modalities, a certain level of data 

alignment is required This might include alignment of: i) similar or ii) diverse modalities.
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Alignment of similar modalities typically involves different imaging modalities of the 

same system. This is usually achieved through image registration, which is formulated as an 

optimization problem minimizing the difference between the modalities.

In radiology, rigid anatomical structures can guide the data alignment. For instance, 

registration of MRI and PET brain scans is usually achieved with high accuracy, even 

with simple affine registration, thanks to the rigid skull. The situation is more complex in 

the presence of motion and deformations, e.g. breathing in lung imaging or changes in the 

body posture between scanning sessions. Alignment of such data usually require deformable 

registrations using natural or manually placed landmarks for guidance. A particularly 

challenging situation is the registration of scans between interventions, e.g. registration of 

preoperative and postoperative scans, which exhibit lot of non-trivial changes due to tumor 

resection, response to treatment, or tissue compression (Haskins et al., 2020).

In histology, each stained slide usually come from different tissue cut. Even in consecutive 

tissue cuts there are substantial differences in the tissue appearance caused by changes in 

tissue microenviroment or artefacts such as tissue folding, tearing or cutting (Taqi et al., 

2018), which all complicate data alignment. Automated registration of histology images is 

still an open problem (Borovec et al., 2020) and thus many studies deploy non-algorithmic 

strategies such as clearing and re-staining of the tissue slides (Hinton et al., 2019). A newly 

emerging direction is stainless imaging, including approaches such as ultraviolet microscopy 

(Fereidouni et al., 2017), stimulated Raman histology (Hollon et al., 2020) or colorimetric 

imaging (Balaur et al., 2021).

Alignment of diverse modalities refers to the integration of data from different scales, 

time points or measurements. Often an acquisition of one modality results in the destruction 

of the sample, preventing collection of multiple measurements of the same system. For 

instance, most omics measurements require tissue disintegration which inevitably affects the 

possibilities to study relations between cell appearance and corresponding gene expressions. 

Here, cross-modal autoencoders can be used to enable integration and translation between 

arbitrary modalities. Cross-modal autoencoders (Dai Yang et al., 2021) build a pair of 

encoder-decoder networks for each modality, where the encoder maps each modality into 

a lower-dimensional latent space, while the decoder maps it back into the original space. 

A discriminative objective function is used to ensure that different modalities are matched 

in the shared latent space. Having the shared latent space, one can combine an encoder of 

one modality with the decoder of another modality to translate one modality to another one. 

Yang et al. (Dai Yang et al., 2021) demonstrated translations between single-cell chromatin 

images and RNA-seq data. The feasibility and utility of the cross-modal autoencoders are 

yet to be tested with more advanced data. However, if proven potent, they hold great 

potential to address challenges with alignment and harmonization of data from diverse 

sources.

Transparency and prospective clinical trials

Given the complexity of AI methods, it is possible that their mechanisms will not be fully 

understood in the near future. However, many aspects in medicine are not fully understood 

either (Kirkpatrick, 2005). And thus, rather than dwelling on the full opacity of AI methods, 

Lipkova et al. Page 14

Cancer Cell. Author manuscript; available in PMC 2023 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



we should advocate for their rigorous validation under randomized clinical trials, same as 

is done for other medical devices and drugs. Prospective trials will allow to stress-test the 

models under real-world conditions, compare their performance against standard-of-care 

practice, estimate how clinicians interact with the AI-tool and find the best way in which 

the models can enhance, rather than disturb the clinical workflow. In the case of biomarker 

surrogates discovered by AI methods, regulation paths similar to “me-too” drugs and devices 

(Aronson and Green, 2020) should be required to ensure comparable-level of performance. 

Transparency about study design and the used data are necessary to determine the intended 

use and conditions under which the model performance has been verified to prevent misuse 

under non-tested conditions. Prospective clinical trials are inevitable to truly demonstrate 

and quantify the added value of AI models, which will in turn increase trust and motivation 

of practitioners towards the AI tools.

7 Outlook and Discussion

AI has potential to impact the whole landscape of oncology, ranging from prevention to 

intervention. AI models can explore complex and diverse data to identify factors related 

with high risks of developing cancer to support large population screenings and preventive 

care. The models can further reveal associations across modalities to help identify diagnostic 

or prognostic biomarkers from easily accessible data to improve patient risk stratification 

or selection for clinical trials. In a similar way, the models can identify non-invasive 

alternatives to existing biomarkers to minimize invasive procedures. Prognostic models can 

predict risk factors or adverse treatment outcomes prior to interventions to guide patient 

management. Information acquired from personal wearable devices or nanotechnologies 

could be further analyzed by AI models to search for early signs of treatment toxicity or 

resistance, with other great application yet to come.

As with any great medical advances, there is a need for rigorous validation and examination 

under prospective clinical trials to verify the promises made by AI models. The role of AI in 

advancing the field of oncology is not autonomous, rather it is a partnership between models 

and human experience that will drive the further progress. AI-models come with limitations 

and challenges, however, these should not intimidate but rather inspire us. With increasing 

incidence rates of cancer, it is our obligation to capitalize on benefits offered by AI methods 

to accelerate discovery and translation of advances into clinic practice to serve patients and 

health care providers.
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Figure 1. AI-driven multimodal data integration.
A) AI models can integrate complemenatary information and clinical context from diverse 

data sources to provide more accurate outcome predictions. The clinical insights identified 

by such models can be further elucidated through C) interpretability methods and D) 

quantitative analysis to guide and accelerate the discovery of new biomarkers or therapeutic 

targets (E-F). B) AI can reveal novel multimodal interconnestions, such as relation between 

certain mutations and changes in cellular morphology or associations between radiology 

findings and histology tumor subtypes or molecular features. Such associations can serve 

as non-invasive or cost-efficient alternatives to existing biomarkers to support large-scale 

patient screening (E-F)
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Figure 2. Overview of AI methods.
A) Supervised methods use strong supervision where each data point (e.g. feature or image 

patch) is assigned with a label. B) Weakly-supervised methods allow to train model with 

weak, patient-level labels, avoiding the need for manual annotations. C) Unsupervised 

methods explore patterns, subgroups and structures in unlabelled data. For comparison, all 

methods are illustrated on binary cancer detection task.
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Figure 3. Multimodal data fusion.
A.) Early fusion builds a joint representation from raw data or features at the input level, 

before feeding it to the model. B.) Late fusion trains a separate model for each modality 

and aggregates the predictions from individual models at the decision level. (C-E) In 

intermediate fusion, the prediction loss is propagated back to the feature extraction layer 

of each modality to iteratively learn improved feature representations under the multimodal 

context. The unimodal data can be fused at C.) single-level or D.) gradually in different 
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layers. E.) Information from one modality can be also used to guide feature extraction from 

another modality. F.) Legend of the used symbols.
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Figure 4. Interpretability methods.
Histology: MIL model was trained to classify subtypes of renal-cell carcinoma in WSIs, 

while CNN was trained to perform the same task in image patches. A) Attention-heatmaps 

and patches with the lowest/highest attention score. B.) GradCAM attributions for each 

class. Radiology: MIL model was trained to predict survival from MRI scans using 

axial slides as individual instances. D.) Attention-heatmaps mapped into the 3D MRI 

scan and slides with the highest/lowest attention. F.) GradCAM was used to obtain pixel-

level interpretability in each MRI slide. A 3D pixel-level interpretability is computed by 

weighting the slide-level GradCAM maps by the attention score of the respective slide. 

Integrated gradient attributions can be used to analyze C.) Genomics or E.) EMRs. The 
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attribution magnitude corresponds to the importance of each feature and direction indicates 

feature impact towards low (left) vs. high (right) risk. The color specifies the value of the 

input features: copy number gain/presence of mutation are shown in red, while blue is 

used for copy number loss/wild-type status. E.) Attention scores can be used to analyse the 

importance of words in the medical text.
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Figure 5. Multimodal data interconnection.
A.) AI can identify associations across modalities, such as feasibility of inferring certain 

mutations from histology or radiology images or B.) relation between non-invasive and 

invasive modalities, such as prediction of histology subtype from radiomics features. C.) The 

models can uncover associations between clinical data and patient outcome, contributing 

to discovery of predictive features within and across modalities. D.)Information acquired 

by EMRs or wearable devices can be analyzed to identify risk factors related with cancer 

onset or uncover patterns related with treatment response or resistance, to support early 

interventions.
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