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Abstract 

Background  Idiopathic pulmonary fibrosis (IPF) is a heterogeneous disease that is pathologically characterized 
by areas of normal-appearing lung parenchyma, active fibrosis (transition zones including fibroblastic foci) and dense 
fibrosis. Defining transcriptional differences between these pathologically heterogeneous regions of the IPF lung 
is critical to understanding the distribution and extent of fibrotic lung disease and identifying potential therapeutic 
targets. Application of a spatial transcriptomics platform would provide more detailed spatial resolution of transcrip-
tional signals compared to previous single cell or bulk RNA-Seq studies.

Methods  We performed spatial transcriptomics using GeoMx Nanostring Digital Spatial Profiling on formalin-fixed 
paraffin-embedded (FFPE) tissue from 32 IPF and 12 control subjects and identified 231 regions of interest (ROIs). 
We compared normal-appearing lung parenchyma and airways between IPF and controls with histologically normal 
lung tissue, as well as histologically distinct regions within IPF (normal-appearing lung parenchyma, transition zones 
containing fibroblastic foci, areas of dense fibrosis, and honeycomb epithelium metaplasia).

Results  We identified 254 differentially expressed genes (DEGs) between IPF and controls in histologically normal-
appearing regions of lung parenchyma; pathway analysis identified disease processes such as EIF2 signaling (impor-
tant for cap-dependent mRNA translation), epithelial adherens junction signaling, HIF1α signaling, and integrin 
signaling. Within IPF, we identified 173 DEGs between transition and normal-appearing lung parenchyma and 198 
DEGs between dense fibrosis and normal lung parenchyma; pathways dysregulated in both transition and dense 
fibrotic areas include EIF2 signaling pathway activation (upstream of endoplasmic reticulum (ER) stress proteins ATF4 
and CHOP) and wound healing signaling pathway deactivation. Through cell deconvolution of transcriptome data 
and immunofluorescence staining, we confirmed loss of alveolar parenchymal signals (AGER, SFTPB, SFTPC), gain 
of secretory cell markers (SCGB3A2, MUC5B) as well as dysregulation of the upstream regulator ATF4, in histologically 
normal-appearing tissue in IPF.

Conclusions  Our findings demonstrate that histologically normal-appearing regions from the IPF lung are tran-
scriptionally distinct when compared to similar lung tissue from controls with histologically normal lung tissue, 
and that transition zones and areas of dense fibrosis within the IPF lung demonstrate activation of ER stress and deac-
tivation of wound healing pathways.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a progressive and 
fatal disease of the aging lung [1, 2] that is increasing in 
prevalence [3] and is likely underdiagnosed [4, 5]. IPF is 
heterogeneous pathologically with patchy areas of fibro-
sis mixed with areas of normal lung tissue [2, 6]. Patho-
logically, IPF is characterized by the usual interstitial 
pneumonia (UIP) pattern that includes normal appearing 
lung tissue adjacent to active areas of fibroproliferation 
(fibroblastic foci) and microscopic honeycomb lesions 
[7]. Although areas of IPF lung parenchyma without evi-
dence of lung fibrosis have recently been shown to have 
a drop-out of small airways [8], the biological activity of 
normal appearing regions of IPF lung are only beginning 
to be studied [9].

Previous investigations of transcriptional profiles of 
IPF lung have largely been performed on whole lung 
tissue and have identified several thousand genes that 
are differentially regulated in IPF [10–17]; consistently 
reported genes and pathways include extracellular matrix 
organization and regulation, TGF-β signaling, endoplas-
mic reticulum stress, epithelial-mesenchymal transition 
(EMT), mitochondrial homeostasis, bronchiolar epi-
thelial genes, fibroblast genes, smooth muscle markers, 
cytokines and chemokines, growth factors and receptors. 
More recent single cell studies [18–21] identified novel 
cell populations that appear to have a functional role in 

disease pathogenesis, such as KRT17-expressing “aber-
rant basaloid” cells [18] and “secretory-primed basal 
(SPB)” [20] cells. However, a study combining microCT 
assessment of the extent of fibrosis and bulk transcrip-
tomic analysis identified unique transcriptional profiles 
associated with the extent of fibrosis [22], suggesting that 
regional analysis of heterogeneous lung tissue may pro-
vide novel insights in this progressive disease.

In the past several years, spatial transcriptomics tech-
nology has emerged as an approach to capture whole 
transcriptome information from histological or mor-
phological regions of interest. These methods can be 
applied to frozen or FFPE tissue allowing for application 
to a broad range of studies involving patient samples. The 
general approach is to quantify RNA in FFPE tissue using 
probe-based mount specimens in which slides are stained 
directly with relevant morphology markers or serial 
staining with H&E. The slides are then imaged for selec-
tion of regions of interest (ROI) via a software platform 
(Fig. 1). The platform allows capturing ROI using various 
approaches (grid selection, circular or geometric region 
selection) to allow for highly specific capture of histologi-
cal features of interest. The resulting data provide whole 
transcriptome quantification for each ROI that can be 
compared across region types or other biological factors.

A recent application of spatial transcriptomic technol-
ogy in IPF focused on alveolar regions, fibroblastic foci, 

Fig. 1  Overview of the GeoMx platform (A). PCA plot by disease and region (B). Example ROI selection of tissue from an IPF subject, H&E (C) 
with corresponding immunofluorescence (D) showing regions of normal appearing lung parenchyma (a,b), normal bronchiolar epithelium 
(c), transition (d), dense fibrosis (e,f ) and honeycomb epithelium (g). H&E showing regions of normal appearing lung parenchyma at higher 
magnification in a control with histologically normal lung tissue (E, F) and IPF (G)
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immune infiltrates, and blood vessel regions, however, 
this study was limited to only 10 cases of IPF [23]. In 
addition to showing distinct gene expression signatures 
and cell population variation between regions of inter-
est, the authors identified reduced inflammatory gene 
signatures in the fibrotic niche, and reduced Type I inter-
feron response in alveolar septae when comparing IPF to 
controls with histologically normal lung tissue. Here we 
report a more comprehensive study of IPF lung tissue 
utilizing spatial transcriptomic technology to compare 
normal appearing lung parenchyma and airways between 
IPF and controls with histologically normal lung tissue, 
as well as an analysis of histologically distinct regions 
within the IPF lung.

Methods
Overview
We used the Nanostring GeoMX Digital Spatial Profiler 
to obtain spatial transcriptomic data on histologically dif-
ferent regions of interest (ROIs) from FFPE tissue from 
IPF subjects and controls with histologically normal lung 
tissue. We compared whole transcriptome expression 
between IPF subjects and controls with histologically 
normal lung tissue within histologically normal tissue 
types (normal lung parenchyma and normal bronchiolar 
epithelium). In addition, we compared increasingly dis-
eased tissue regions to their comparative normal tissue 
in IPF subjects; dense fibrosis and transition zones which 
included fibroblastic foci were compared to normal 
appearing lung parenchyma, and honeycomb epithelial 
metaplasia was compared to normal appearing bron-
chiolar epithelium. To determine transcriptional differ-
ences independent of differences in cell composition, we 
estimated cell proportions of human lung cell types rel-
evant to IPF by applying the cell deconvolution method, 
SpatialDecon [24]. We performed differential expression 
adjusting for a subset of cell types identified as having the 
largest variation and influence on comparisons of inter-
est. To identify pathways, networks, and upstream regu-
lators enriched among the differentially expressed genes, 
we used Ingenuity Pathway Analysis (IPA) and Network 
Analyst on the differential expression results [25, 26]. For 
validation of the spatial transcriptomics data, we per-
formed immunofluorescence microscopy using the same 
macroarrays included in the GeoMx assays and com-
pared normal parenchyma regions between control and 
IPF subjects.

Lung tissue samples and sample preparation
Lung tissue was obtained from whole explants or surgical 
lung biopsies from 32 subjects with IPF and 12 controls 
with histologically normal lung tissue. De-identified data 
and samples were approved for use in this study by the 

Colorado Multiple Institutional Review Board (COMIRB 
#15-1147). Patients were consented and tissue was col-
lected through the NHLBI-sponsored Lung Tissue 
Research Consortium (LTRC) and at the University of 
Colorado. IPF was diagnosed in the LTRC using Ameri-
can Thoracic Society/European respiratory Society (ATS/
ERS) criteria [7] and final LTRC diagnosis was based on 
an integrated clinical, radiologic, and pathologic diagno-
sis. Samples collected at the University of Colorado fol-
lowed similar protocols to the LTRC for diagnosis and 
collection of clinical data and lung tissue. Each sample 
was reviewed by our lung pathologist (C.D.C). Control 
tissue was histologically normal tissue isolated with no 
evidence of metaplasia or lung cancer features identified 
from lung cancer resections through the LTRC and here-
after are referred to as ‘controls with histologically nor-
mal lung tissue’. Tissue from patients with IPF fulfilled the 
pathological criteria of UIP. Each slide was further subse-
lected (5 × 5 mm2) for areas of classic UIP appearance or 
normal lung in controls with histologically normal lung 
tissue. The corresponding areas in the formalin-fixed par-
affin-embedded (FFPE) tissue blocks were dissected and 
a new block consisting of up to 12 subjects was prepared. 
These macroarray blocks (Additional file 1: Fig. S1) were 
then cut at 4 μm thickness and stained with H & E.

Nanostring geoMX digital spatial profiler
We used the Nanostring GeoMX Digital Spatial Profiler 
(DSP) platform to obtain human whole transcriptome 
data from lung tissue macroarrays [27]. Region of interest 
(ROI) selection was performed on immunoflourescently 
stained tissue for morphology markers pan-cytokeratin, 
E-cadherin, α-smooth muscle actin (SMA), and DNA. 
Importantly, serially cut H&E slides were used by our 
pathologist to guide ROI selection. Normal parenchymal 
tissue was characterized by relatively thin and delicate 
alveoli (Fig.  1C, E–G). Transition-type tissue demon-
strated areas of septal thickening and fibroblastic foci 
adjacent to near-normal alveolar epithelium. The fibro-
blastic areas were highlighted by the SMA immunofluo-
rescent stain. Densely fibrotic areas consisted of collagen 
admixed with variable degrees of chronic inflammation. 
The densely fibrotic areas were generally less cellular, 
which was confirmed by fewer nuclei visible by DNA 
immunofluorescence. Bronchiolar epithelium was deter-
mined by the presence of ciliated columnar epithelium 
surrounded by circumferential smooth muscle on H & E 
and confirmed with positive immunofluorescent staining 
for pancytokeratin. Honeycomb metaplastic epithelium 
consisted of dilated spaces lined by squamous-to-colum-
nar epithelium, often filled with mucus, and surrounded 
by disorganized, non-circumferential fibrosis. The epi-
thelium of the honeycomb cysts was highlighted by the 
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pan-cytokeratin marker. ROIs featuring normal lung 
parenchyma, transition, or densely fibrotic areas were 
drawn using the ellipse drawing tool while ROIs captur-
ing normal bronchiolar and honeycomb metaplasia epi-
thelium were drawn using the freeform drawing tool to 
focus on the bronchiolar-like epithelium. Examples of 
selected ROIs are shown (Fig. 1D).

QC and normalization
We followed the GeoMx RNA-Seq pipeline to convert 
raw DCC files to normalized expression data [28–30]. 
We kept samples having greater than 1000 reads, 80% 
reads trimmed, 80% reads stitched, 70% reads aligned, 
and sequencing saturation above 50%. To remove genes 
with low signal to noise ratio, we retained targets with 
expression above the limit of quantification (LOQ) score 
(defined in (1)) in 2% or more of the total number of sam-
ples that were included. We performed Q3 normalization 
based on all remaining gene targets. All analyses were 
performed using R version 4.1.2 (2021-11-01) [31].

Statistical analysis
Principal component analysis was performed on the log2 
Q3 normalized counts. To perform differential expres-
sion, we modeled the log2 Q3 normalized counts using 
linear mixed effects model with a categorical variable 
representing disease and region as the main predictor 
(Eq.  2). Based on initial QC and investigation of PCA 
plots, all models were adjusted for batch based on day of 
macrorray processing. We included a random effect for 
subject to account for the correlation of ROIs within the 
same subject.

Geneij is the Q3 normalized expression data for a given 
gene for sample i for subject j. βGroup represents the coef-
ficient for the fixed effect term Groupij. Groupij is the dis-
ease region variable which included control normal lung 
parenchyma, control normal bronchiolar epithelium, 
IPF normal lung parenchyma, IPF normal bronchiolar 
epithelium, IPF transition, IPF dense fibrosis and IPF 
honeycomb epithelium metaplasia. We applied contrast 
statements to compute differential expression between 
groups of interest. For the disease-focused research 
question, we compared IPF to control within normal 

(1)
LOQi = geomean (NegProbei) ∗ geoSD (NegProbei)

2

Geneij = β0 + βGroup × Groupij + αi + ǫij

(2)εij ∼ N 0, σ 2 ,αi ∼ N 0, σ 2
aj

, i = 1, 2, . . . , m; j = 1, 2, . . . ,M

lung parenchyma and normal bronchiolar epithelium. 
For the region focused research question within IPF, 
we compared normal lung parenchyma tissue to tran-
sition and dense fibrosis tissue and compared normal 
bronchiolar epithelium to honeycomb epithelium. To 
adjust for multiple comparisons, we applied a Benjamini-
Hochberg adjustment where genes with an FDR adjusted 
p-value < 0.05 were considered significant. We did not 
consider genes significant if the model was determined to 
be singular. Linear mixed models were computed using 
the lmerSeq R package [32].

Cell deconvolution analysis
To examine how the selected ROIs differ in the com-
position of different lung cell types, we applied a cell 
deconvolution method, SpatialDecon, developed spe-
cifically for spatial transcriptomic data [24]. This method 
uses a log mean deconvolution algorithm which is more 
appropriate for the distribution of counts characteristic 
of GeoMx data. We deconvolved the spatial data using 
two references: (1) a normal human lung cell atlas which 
included marker gene lists for 21 cell types [33] and (2) 
an IPF lung cell atlas of 38 cell types [18]. We applied the 
functions from the SpatialDecon R package to the Q3 
normalized counts and the background correction fac-
tors computed from the negative probes. To examine dif-
ferences in the proportions of IPF cell types, we modeled 
log-transformed proportions by disease regions adjusting 
for batch as a covariate and subject as a random effect 
using a linear mixed effects model. In the same way we 
tested expression, we tested for changes in proportions 
between groups for our comparisons of interest using 
contrast statements; p-values were adjusted for multiple 
comparisons across cell types with a Benjamini-Hoch-
berg adjustment. We removed cell types estimated as 5% 
or less in more than 95% of samples. Prior to log transfor-
mation, proportions equal to zero were set at 1/1000.

To adjust for differences in cell composition, we applied 

the linear mixed model outlined above and included the 
estimated cell proportions as covariates. Our primary 
differential expression analysis adjusted for cell types 
estimated from the normal human lung reference and 
selected based on biological relevance in IPF pathology 
(alveolar epithelial cells Type 1(AEC1), alveolar epithelial 
cells Type 2 (AEC2), fibroblasts and ciliated cells).

Pathway analysis
We applied the Ingenuity Pathways Analysis [25, 26] to 
the differential expression results adjusted for batch and 
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cell proportions of AEC1, AEC2, fibroblasts, and ciliated 
cells based on the normal human lung reference.

Immunofluorescence and quantification
For validation of GeoMx data, immunofluorescence 
microscopy was used to compare normal alveolar regions 
from control and IPF tissue using the same macroar-
rays included in the GeoMx assays above. Samples were 
deparaffinized using xylene and antigens retrieved by 
boiling in 10mM citrate, pH 6.0. Specimens were blocked 
for 1  h using 2.5% BSA in PBS, then labelled with spe-
cific antibodies overnight in PBS containing 0.25% BSA 
at 4̊C. Slides were washed 3x with 0.1% Triton-X100 in 
PBS, then labelled with secondary antibodies for one 
hour at room temperature. Samples were then washed 
3x again in 0.1% Triton-X100 in PBS, washed again to 
remove detergent, and stained with DAPI, then mounted 
with Floromount G (Southern Biotech). For a complete 
list of antibodies and concentrations used in these stud-
ies, see Additional file 1:  Table S2. For each sample, nine 
adjacent 20x immunofluorescence images arranged in a 
3 × 3 grid were acquired based on typical alveolar features 
selected at random using a Keyence BZ-X800 inverted 
microscope. Composite images were stitched together 
using the manufacturer’s BZ-H4A software and exported 
as TIFs for further processing in ImageJ. Fluorescent 
labels were thresholded to eliminate background, con-
verted to masks, and quantified by area and number of 
fluorescent foci. Measurements were normalized accord-
ing to the numbers of nuclei present in the image. Data 
were exported to PRISM where differences in normalized 
area between IPF and controls with histologically normal 
lung tissue were tested according to Mann-Whitney U 
test and statistical significance was set at p < 0.05.

Results
We selected a total of 231 ROIs from 32 IPF subjects 
(ROI N = 196) and 12 controls with histologically nor-
mal lung tissue (ROI N = 35). The distribution of age, 
sex, smoking status and race were comparable between 
IPF subjects and controls with histologically normal lung 
tissue (Table  1). ROIs from controls with histologically 
normal lung tissue consisted of normal tissue types (nor-
mal parenchyma and normal bronchiolar epithelium) 
and ROIs from IPF subjects consisted of normal appear-
ing parenchyma and bronchiolar epithelium in addition 
to disease tissue (transition, dense fibrosis, and honey-
comb epithelium metaplasia) (Table  1). We analyzed 
10,262 genes after removing 8415 genes that had a low 
signal to noise ratio. We observed variation in expression 

Table 1  Summary of subject demographics information

Demographics Controls with 
histologically normal 
lung tissue
(N = 12)

IPF
(N = 32)

Sex

 Male 7 (58) 22 (69)

 Female 5 (42) 10 (31)

Age

 Min 28 36

 Median 64.5 65

 Max 74 78

 Mean (SD) 60.00 (12.88) 61.91 (8.89)

Smoker

 Yes 9 (75) 21 (66)

 No 3 (25) 11 (34)

Race

 White 11 (92) 28 (88)

 Black 0 (0) 3 (9)

 Asian 1 (8) 0 (0)

 Unknown 0 (0) 1 (3)

Ethnicity

 Non-Hispanic 12 (100) 30 (94)

 Hispanic 0 (0) 1 (3)

 Unknown 0 (0) 1 (3)

Comorbidities

 Angina 1 (8) 5 (16)

 Heart failure 0 (0) 1 (3)

 Arrhythmia 2 (17) 5 (16)

 Hyperlipidemia 3 (25) 13 (41)

 Diabetes 3 (25) 6 (19)

 Lung cancer 2 (17) 0 (0)

 Other cancer 4 (33) 2 (6)

 Rheumatoid arthritis 0 (0) 2 (6)

 Gerd 4 (33) 11 (34)

 Asthma 0 (0) 1 (3)

 Pulmonary hypertension 1 (8) 0 (0)

 Emphysema 2 (17) 3 (9)

rs35705950 genotype

 GG 5 (42) 13 (41)

 GT 6 (50) 16 (50)

 TT 1 (8) 3 (9)

 Summary of ROIs # regions
(# subj)

# regions
(# subj)

 Normal lung parenchyma 25 (12) 33 (27)

 Normal bronchiolar epithe-
lium

10 (10) 22 (22)

 Transition 59 (32)

 Dense fibrosis 58 (32)

 Honeycomb metaplasia 24 (19)
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captured by disease status and tissue type as evidenced 
by principal component analysis separating samples by 
disease (PC1) and region type (PC2) (Fig.  1). Addition-
ally, we identified separation of PCs by batch (indicator 
for the day the tissue macroarrays were processed), and 
consequently adjusted for batch in all models (Additional 
file 1:  Fig. S2).

Cell deconvolution identifies differences in cell proportions
We examined estimated cell proportions of 10 cell types 
from the normal human lung reference and 19 cell types 
from the IPF diseased reference panel (Additional file 1:   
Fig. S3). Among the 19 IPF cell types that were observed 
with the IPF reference, we observed fewer ciliated cells 
(p = 0.007) and greater pericytes (p = 7 × 10−5) between 
IPF and controls with histologically normal lung tissue 
in the normal parenchymal regions (Fig. 2A, Additional 
file 1: Table S2). There were no significant differences in 
cell proportions between IPF and controls with histo-
logically normal lung tissue in the normal bronchiolar 
regions. In contrast, we observed greater changes in cell 

composition within IPF samples between histologically 
different regions. We observed an increased proportion 
of B plasma cells, fibroblasts, myofibroblasts, lymphatic 
cells, mast cells, smooth muscle cells and cytotoxic T 
cells in transition and dense fibrosis regions compared 
to normal parenchyma. There was a significant decrease 
in the proportion of alveolar epithelial cells (AEC1 and 
AEC2), vascular cells (VE Capillary A and B cells) and 
pericytes. Additionally, we found a significant increase in 
aberrant basaloid cells from normal parenchyma to tran-
sition but not for the comparison with regions of dense 
fibrosis.

The cellular composition based on the normal human 
lung reference were comparable to that of the IPF dis-
eased reference panel, in which the composition of 
normal parenchymal and normal bronchiolar regions 
between IPF and control subjects were similar (Addi-
tional file 1: Fig. S3). As expected, we observed changes 
in cell composition across the histologically different 
regions; AEC1 and AEC2 were highest in the normal 
and non-fibrotic samples (control and IPF) and lower in 

Fig. 2  Mean cell proportions estimated with SpatialDecon based on IPF cell reference (A). Histology image showing changes in alveolar cell 
composition (B). Immunofluorescence changes in SFTPC and AGER between IPF and controls with histologically normal lung tissue in normal 
parenchyma regions (C). FOVs were chosen based on presence of features of interest (e.g. parenchyma, bronchiolar, etc.) in each section and 9 
20x images centered randomly within the feature of interest were assembled into a composite. Pairwise comparisons are Mann-Whitney U test 
with significance set to (*) p < 0.05, (**) p < 0.01, (***) p < 0.001, (****) p < 0.0001
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disease regions within IPF subjects, and fibroblasts were 
observed at the highest proportions in the transition 
and dense fibrosis samples. We also observed a substan-
tial increase in the proportion of ciliated cells in nor-
mal bronchiolar epithelium and honeycomb epithelium 
metaplasia.

We leveraged immunofluorescence microscopy to vali-
date cell type predictions derived from spatial deconvo-
lution. Using the same tissue macroarrays we observed 
reductions in AEC2 markers SFTPC and STFPB, as well 
as the AECI marker AGER (Fig.  2B and C; Additional 
file 1: Fig. S6). Based on these results, we chose to adjust 
for the estimated cell proportion of these four potentially 
influential cell types (AEC1, AEC2, fibroblasts, and cili-
ated cells).

Transcriptional changes observed between IPF and con-
trols with histologically normal lung tissue in non-fibrotic 
lung tissue.

To understand the transcriptional changes in non-
fibrotic lung tissue in individuals with IPF compared 
to controls with histologically normal lung tissue, we 
compared expression in histologically normal appear-
ing regions between IPF and control subjects. We iden-
tified 254 differentially expressed genes (DEGs) between 
IPF and controls with histologically normal lung tis-
sue in histologically normal appearing regions of lung 
parenchyma. The number of DEGs remained the same 
(N = 254) after adjusting for cell proportions of AEC1, 
AEC2, fibroblasts, and ciliated cells (Fig.  3A; Table  2, 
Additional file 2). The majority of these DEGs (229/254; 
90.1%) were upregulated in IPF subjects compared to 

Fig. 3  Differential expression between IPF and controls with histologically normal lung tissue in normal appearing lung parenchyma (A). Top 
15 Ingenuity canonical pathways in the IPF vs. control normal lung parenchyma comparison (B). The activation z-score is a statistical measure 
based on the directional relationships between genes and their biological function. Orange indicates increased predictions over that of the null 
(positive z score), blue indicates decreased predictions (negative z score) and white z score of zero. Differential expression between IPF and controls 
with histologically normal lung tissue in normal bronchiolar regions (C) adjusting for batch and estimated cell proportions of AEC1, AEC2, fibroblasts 
and ciliated cells

Table 2  Summary of differential expression results (unadjusted and adjusted for cell proportions)

Comparison # DEG
unadjusted

# DEG adjusting for 4 
cell types (proportions) 
(AEC1, AEC2, 
Fibroblasts,
Ciliated)

IPF normal appearing lung parenchyma vs. control normal lung parenchyma 254 254

IPF normal bronchiolar vs. control normal bronchiolar 61 58

IPF transition zones of fibrosis vs. IPF normal appearing lung parenchyma 347 173

IPF dense fibrosis vs. IPF normal appearing lung parenchyma 939 198

IPF honeycomb epithelium metaplasia vs. IPF normal bronchiolar 334 1
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controls with histologically normal lung tissue. Among 
upregulated genes in IPF are markers of senescence 
(CDKN1A) and B cell specific transcripts (IGKC). This 
was reflected in the canonical pathway analysis (Fig. 3B), 
with the majority of the pathways activated in IPF sam-
ples, including pathways relevant to disease processes 
such as epithelial adherens junction signaling [34], HIF1α 
signaling [35], and integrin signaling [36]. A lung-specific 
protein-protein interaction (PPI) network of our DEGs 
built in Network Analyst demonstrated enrichment for 
similar pathways as identified by Ingenuity among upreg-
ulated DEGs ([26]; Additional file 1: Fig. S4).

We observed a smaller number of transcriptional dif-
ferences in normal bronchiolar regions between IPF and 
control samples. There were 61 DEGs between IPF and 
controls with histologically normal lung tissue in normal 
bronchiolar epithelium (Fig.  3C). The number of DEGs 
slightly decreased (n = 58) after adjusting for cell propor-
tions of AEC1, AEC2, fibroblasts, and ciliated cells. Inge-
nuity and Network Analyst enrichment analyses did not 
identify any enriched features, potentially due to a small 
number of DEGs. Among upregulated genes were DNA 
Damage Inducible Transcript 4 (DDIT4) or REDD1, 
a member of the same gene family as CHOP/DDIT3 
which is known to be induced via HIF1α-mediated tran-
scription [37] and is involved in negative regulation of 
the mammalian target of rapamycin (MTOR) signaling. 
Several MTOR signatures were enriched in our path-
way analysis, but the direction of the gene enrichments 
was inconsistent. Taken together, these transcriptional 
changes observed in histologically non-fibrotic lung tis-
sue and bronchiolar epithelium regions of IPF lung may 
represent potentially important targets for early disease 
detection and treatment.

Transcriptional changes observed between histologically 
different regions of the IPF lung
To determine how histologically different regions of the 
IPF lung diverge transcriptionally, we compared tran-
scriptional changes in non-fibrotic IPF lung to transi-
tion areas of lung fibrosis and to areas of dense fibrosis. 
To understand the progression of lung tissue from non-
fibrotic lung parenchyma to dense fibrosis, we indi-
vidually compared non-fibrotic regions of IPF lung 
parenchyma to either transition regions of lung fibrosis 
or regions of dense fibrosis, and then explored the over-
lap between these comparisons. We identified 347 DEGs 
between transition and non-fibrotic regions; however, 
the number of DEGs decreased to 173 after adjusting for 
cell composition of AEC1, AEC2, fibroblasts, and cili-
ated cells (Fig.  4A; Table  2; Additional file  1: Table  S3). 
We identified 939 DEGs between dense fibrosis regions 
and non-fibrotic regions, and after adjustment for cell 

composition, we observed 198 DEGs between regions 
of dense fibrosis and non-fibrotic regions of lung paren-
chyma (Fig. 4B; Table 2). Of the 198 DEGs between dense 
fibrosis and histologically normal-appearing lung, 55% 
(N = 109) were also differentially expressed between 
transition and non-fibrotic regions of lung parenchyma 
(Fig. 4C). Among pathways that are dysregulated in both 
transition and dense fibrotic areas compared to normal 
lung parenchyma of IPF lung are activation of the EIF2 
signaling pathway and deactivation of the “wound heal-
ing signaling pathway” (Fig.  4D). Upstream regulator 
analysis revealed shared activation of MYC and YAP 
transcriptional programs with concomitant deactivation 
of immune-related transcriptional programs (Fig. 4E and 
Additional file 1: Fig. S5).

In comparing honeycomb epithelium metaplasia to 
normal bronchiolar epithelium in IPF lung tissue, there 
were 334 DEGs. However, after adjustment for cell com-
position, there was only a single differentially expressed 
gene (Additional file  1: Table  S5). The largest differ-
ences in cell proportion between honeycomb epithe-
lium metaplasia and normal bronchiolar epithelium 
was among ciliated cells. Examination of the 334 DEGs 
prior to cell adjustment confirmed strong enrichment 
for ciliary genes, such as GO biological process cilium 
assembly (GO:0060271), GO cellular component cilium 
(GO:0005929) and motile cilium (GO:0031514).

Dysregulation of protein synthesis in IPF tissue
We noted enrichment of EIF2 pathway genes in normal 
alveolar regions from IPF patients compared to control 
alveoli. EIF2 is a multicomponent complex that facilitates 
cap-dependent mRNA translation and protein synthesis 
by the ribosome. Under conditions of nutrient depriva-
tion, viral infection, and endoplasmic reticulum stress, 
EIF2α is phosphorylated, impairing guanine exchange 
and disassociation from EIF2B, inhibiting translation. 
The increase in EIF2 signal in IPF suggested the possi-
bility that IPF tissue is more translationally active than 
control tissue. In support of this, we found increases in 
synthesis of the secretory cell marker, MUC5B in IPF, but 
not control, alveolar epithelia (Fig. 4, F and G; Additional 
file 1: Fig. S6).

Our previous data suggested that protein synthesis 
was dysregulated in mice treated with bleomycin and in 
individuals with IPF, and that ER stress increased in mice 
harboring copies of the MUC5B IPF risk variant [38]. 
However, the presence of a strong EIF2 transcriptional 
signature suggested against prohibitive ER stress in nor-
mal-appearing IPF tissues. To indirectly validate activa-
tion of EIF2, we stained for ATF4, which is translated by 
an alternative cap-independent mechanism when EIF2α 
is phosphorylated. Concordant with activation of EIF2 in 
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IPF, we found that ATF4 translation was downregulated 
in these tissues (Fig. 4, F and G). However, we observed 
an increase in the number of ATF4/KRT8 double posi-
tive cells, suggesting that ATF4 is increased in these 
transitional alveolar stem cells [39, 40]. Taken together, 
these data suggest cap-dependent protein synthesis is 
increased in normal-appearing IPF alveoli, and that acti-
vation of the ATF4 arm of ER stress response pathways 
may be genotype-, or context-dependent [38].

Discussion
Our findings indicate that the normal appearing lung 
in IPF is biologically abnormal and that the IPF lung 
includes distinct molecular patterns that are associated 
with the extent of lung fibrosis. In histologically normal 
appearing lung parenchyma and bronchiolar epithelium 
from the IPF lung, we have identified transcriptionally 
distinct patterns of gene expression, including ER stress 
and cell adhesion signaling, when compared to similar 
appearing lung tissue from controls with histologically 
normal lung tissue. We also show that some of the same 

pathways that are identified in these analyses are also 
differentially regulated but to a greater degree when we 
compared normal regions of lung parenchyma to transi-
tion zones of lung fibrosis and areas of dense lung fibrosis 
within the IPF lung. These findings are consistent with a 
recent publication that performed bulk RNA sequencing 
on regions of IPF lung with progressive amount of fibro-
sis, quantified by microCT-measured alveolar surface 
density (ASD) and confirmed by histology [22]. McDon-
ough et  al. identified a core set of genes increased or 
decreased before fibrosis was histologically evident that 
continued to change with advanced fibrosis. In aggregate, 
these findings indicate that the molecular patterns of 
abnormal gene expression in the IPF lung extend to nor-
mal appearing parenchyma and distal airways, and that 
these patterns of transcriptional activity are microscopi-
cally distinct and are associated with the extent of lung 
fibrosis.

The most highly activated canonical pathway that 
was identified in both the normal regions IPF lung and 
the areas of increased lung fibrosis was EIF2 signaling. 

Fig. 4  Differential expression between transition and normal appearing lung parenchyma regions (A) and dense fibrosis and normal appearing 
lung parenchyma (B) in IPF subjects adjusting for batch and estimated cell proportions of AEC1, AEC2, fibroblasts and ciliated cells. Venn diagram 
showing the overlap in DEGs between comparisons with normal lung parenchyma (C). Ingenuity canonical pathway (D) and upstream regulator 
analysis (E) of DEGs.  The activation z-score is a statistical measure based on the directional relationships between genes and their biological 
function. Orange indicates increased predictions over that of the null (positive z score), blue indicates decreased predictions (negative z score) 
and white z score of zero. Dots indicate that z score did not reach significance (1.645). Histology image showing changes in MUC5B and ATF4 
(F). Immunofluorescence changes in MUC5B, ATF4 and ATF4 in KRT8 + cells between IPF and control in normal parenchyma regions (G). FOVs 
were chosen based on presence of features of interest (e.g. parenchyma, bronchiolar, etc.) in each section and 9 20x images centered randomly 
within the feature of interest were assembled into a composite. Pairwise comparisons are Mann-Whitney U test with significance set to (*) p < 0.05, 
(**) p < 0.01, (***) p < 0.001, (****) p < 0.0001
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EIF2α facilitates cap-dependent translation but can 
be phosphorylated by the unfolded protein response 
(UPR) activator protein PERK to promote translation 
of cap-independent ER stress proteins ATF4 and CHOP 
[41]. We observe the loss of AEC1 and AEC2 cells from 
normal-appearing IPF parenchyma through transition 
zones and dense fibrosis, with arrival of fibroblasts, 
myofibroblasts, and smooth muscle cells. Stimulation 
of collagen synthesis by fibroblasts and myofibroblasts 
is cap-dependent suggesting that mesenchymal cells in 
normal-appearing IPF tissues may give rise to the EIF2 
signals we observed in our study [42]. Additional stud-
ies are needed to more fully elucidate the role of EIF2 
signaling in development of lung fibrosis.

Among the activated upstream regulators are HIF1α 
and ATF4. Activation of pathologic ER stress pathways, 
including ATF4 specifically, has been identified by oth-
ers as a key molecular feature of IPF [43]. In a lung 
fibrosis model, mice following bleomycin treatment 
also demonstrated activation of ER stress genes, ATF4 
and ATF6, in the distal airway and honeycomb cysts 
[38]. Moreover, previous work has shown that HIF1α 
triggers ER stress and CHOP-mediated apoptosis in 
alveolar epithelial cells in IPF [44]. Our data show an 
increase of ATF4 in KRT8 + transitional alveolar stem 
cells.

Among upstream regulators that are activated in both 
transition zones and densely fibrotic areas of IPF lung are 
MYC and YAP transcriptional programs. Aberrant acti-
vation of YAP/TAZ has been associated with increased 
fibrotic remodeling in IPF in the alveolar epithelium and 
activated fibroblasts [45] as well as the airway epithelium 
[46], while the role for MYC in IPF is only emerging [47]. 
Among upstream regulators that are deactivated in both 
transition zones and densely fibrotic areas of IPF lung are 
immune-related transcriptional programs.

The use of the GeoMX platform to perform spatial 
transcriptomics on lung specimens allowed for careful 
selection of normal appearing lung parenchyma, as well 
as disease relevant regions of interest. Current single cell 
approaches such as droplet-based technologies capture 
the transcriptional information for a single cell from dis-
sociated tissue, where the loss of spatial information can 
be critical to understanding the disease process. This is 
especially relevant in the context of a heterogenous dis-
ease of the lung, as is the case in IPF. Though the GeoMx 
platform does not provide single cell level information, 
the ability to capture normal-appearing regions within 
IPF, as well as transition zones which include fibroblastic 
foci, makes this approach advantageous to current sin-
gle cell studies on dissociated lung tissue. In this study, 
we used two existing single cell datasets to elucidate the 
cellular changes between histologically distinct regions, 

however, direct investigation of single cell data to charac-
terize molecular changes could be useful. Future work to 
utilize emerging platforms that perform spatial transcrip-
tomics with single cell resolution will greatly improve our 
understanding of the early disease processes in the nor-
mal parenchyma and transition zones.

We recognize that the findings of this study could be 
limited to the patient demographic that was captured, 
predominantly males (69%), ever-smokers (66%) and 
NHW (94%); however, these demographics are repre-
sentative of IPF [48]. Regarding the potential impact 
of smoking on our finding’s, smoking status was not 
statistically different between IPF and controls with 
histologically normal lung tissue (Fisher’s exact test 
p = 0.72).

Patients with IPF are usually diagnosed only after the 
fibroproliferative process has caused permanent and 
extensive lung parenchymal damage. Considering the 
irreversible nature of this disease, even approved treat-
ments for IPF (pirfenidone [49] and nintedanib [50]) 
only modestly slow progression and have not been 
shown to alter the 3–5 year median survival after diag-
nosis. We have found that EIF2-dependent protein syn-
thesis is active in normal appearing distal airways and 
lung parenchyma in IPF, in contrast to our previous 
finding that restoring normal protein synthesis in epi-
thelia can ameliorate fibrosis [38]. This result suggests 
that this pathway may prove important in understand-
ing the development of progressive lung fibrosis.
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control normal lung parenchyma, IPF normal bronchiolar vs control 
normal bronchiolar, IPF transition zones of fibrosis vs IPF normal appearing 
lung parenchyma, IPF dense fibrosis vs IPF normal appearing lung paren-
chyma and IPF honeycomb epithelium metaplasia vs IPF normal bron-
chiolar.  All gene lists are adjusted for batch and cell proportions of AECI, 
AECII, fibroblasts and ciliated.  ***Denotes McDonough core IPF gene.
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