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Abstract: Immunotherapy is a promising treatment for
advanced colorectal cancers (CRCs). However, immunotherapy
resistance remains a common problem. Immunogenic cell
death (ICD), a form of regulated cell death, induces adaptive
immunity, thereby enhancing anti-tumor immunity. Research
increasingly suggests that inducing ICD is a promising avenue
for cancer immunotherapy and identifying ICD-related bio-
markers for CRCs would create a new direction for targeted
therapies. Thus, this study used bioinformatics to address these
questions and create a prognostic signature, aiming to improve
individualized CRC treatment. We identified two ICD -related
molecular subtypes of CRCs. The high subtype showed pro-
nounced immune cell infiltration, high immune activity, and
high expression of human leukocyte antigen and immune
checkpoints genes. Subsequently, we constructed and validated
a prognostic signature comprising six genes (CD1A, TSLP, CD36,
TIMP1, MC1R, and NRG1) using random survival forest ana-
lyses. Further analysis using this prediction model indicated
that patients with CRCs in the low-risk group exhibited favor-
able clinical outcomes and better immunotherapy responses

than those in the high-risk group. Our findings provide novel
insights into determining the prognosis and design of persona-
lized immunotherapeutic strategies for patients with CRCs.

Keywords: colorectal cancer, immunogenic cell death, mole-
cule subtypes, prognostic model, immunotherapy

1 Introduction

Colorectal cancer (CRC) is currently the third most com-
monly diagnosed and the second most deadly cancer world-
wide [1]. According to the Global Cancer Observatory,
approximately 1.93 million (10%) new cases and 0.94 million
(9.4%) cancer deaths due to CRC were recorded in 2020 [1].
The most common pathologic staging system for CRC is the
8th edition of the American Joint Committee Cancer Tumor
Node Metastasis system, which ranges from stage I to IV,
with stage 0 being the earliest stage of CRC [2]. Surgery and
postoperative chemotherapy/radiotherapy have improved
the prognosis of patients with early-stage CRC; however,
treating advanced CRC remains a challenge [3,4]. The mechan-
isms underlying the development and progression of CRC are
complex and have not been fully elucidated. Known factors
include patient-intrinsic factors (e.g., age, genetics, and the
microbiome), environmental factors (e.g., diet and lifestyle,
infections and chronic inflammation, tobacco, alcohol, and
pollution), and cancer cell-intrinsic mechanisms (e.g., genetic
alterations, oncogenic cell signaling, and the epithelial–
mesenchymal transition) [1,5]. Immunotherapy is a valuable
treatment option for those with late-stage CRC. For example,
immune checkpoint inhibitors received regulatory approval
in 2017 for treating mismatch-repair-deficient (dMMR) or
microsatellite instability-high metastatic CRC [6–8]. However,
immunotherapy resistance remains common. Therefore, iden-
tifying biomarkers indicative of the immunotherapy response
and prognosis of patients with CRC is vital.

According to the 2018 Nomenclature Committee on Cell
Death classifications, immunogenic cell death (ICD) is a
particular form of regulated cell death that can trigger
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an adaptive immune response [9,10]. Cells undergoing ICD
are characterized by the release of damage-associated
molecular patterns, including heat shock proteins 70 and
90, calreticulin, high-mobility group protein B1, and ATP
[11,12]. Mounting studies have shown that treatment-driven
ICD enhances the treatment effects of conventional radio-
therapy and chemotherapy by inducing effective immune
responses [13,14]. Moreover, studies have found that ICD
combined with immune checkpoint inhibitors improves
the anti-tumor immune effect [15,16]. Since ICD is inducible
with cytotoxic drugs, it offers a potential approach for
cancer immunotherapy [17].

In recent years, many preclinical studies have investi-
gated the molecular mechanisms of ICD, but few studies
have evaluated the possibility of ICD in a clinical context.
Therefore, this study recognized ICD-associated subtypes of
CRC and differences between subtypes in terms of prog-
nosis, immune landscape, and somatic mutation. And then
established a prognostic signature based on ICD-related
gene expression. Overall, we aimed to improve immu-
notherapy response predictions for patients with CRC and
provide new strategies for individualized therapy selection.

2 Materials and methods

2.1 Data source

The Cancer Genome Atlas (TCGA)-colon adenocarcinoma
(COAD) and TCGA-rectal adenocarcinoma (READ) RNA sequen-
cing data and matching clinical information were downloaded
from the Genomic Data Commons (GDC) data portal (https://
portal.gdc.cancer.gov/) to create the training set. Principal com-
ponent analysis of the rectal and colon samples revealed no
significant differences, and merging the samples did not
require adjustments [18]. Thus, the COAD and READ samples
were combined into a TCGA-CRC cohort. The GSE17538
dataset was downloaded from the Gene Expression Omnibus
(GEO) database as a validation set [19]. Additionally, we
obtained the list of ICD-related genes from the GeneCards
database (http://www.genecards.org/).

2.2 Consensus clustering

We performed a cluster analysis to identify ICD-related mole-
cule subtypes using the “ConsensusClusterPlus” package in R
software (R Core Team, Vienna, Austria), as previously
reported [20]. Subsequently, to ensure the stability of the
results, we examined an optimal cluster size between k =

2–9 and repeated the analysis 1,000 times. The cluster map
was created using the “pheatmap” tool in R.

2.3 Differentially expressed (DE) gene and
functional enrichment analyses

DE genes were identified utilizing the “Limma” package in
R, and the false discovery rate (FDR) was used to correct for
false-positive results. The filter criteria were FDR < 0.05
and |logFoldchange (FC)| > 1. The DE genes were then
subjected to Gene Ontology (GO) enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway ana-
lyses using the R package “clusterProfiler” [21]. GO terms
and KEGG pathways were considered significantly enriched
when the corrected p-value (i.e., the q-value) was <0.05.

2.4 Gene set enrichment analysis (GSEA)

We conducted a GSEA to assess functional variations between
ICD-high and ICD -low clusters; c2kegg and c5go were used as
the reference gene sets. The screening conditions were p-
values of <0.05, FDR q-values of <0.1, and |normalized
enrichment scores (NESs)| of >1.5.

2.5 Somatic mutation analysis

We downloaded the COAD and READ somatic mutation
data from the GDC data portal. The “Maftools” package in
R was used to create waterfall plots and visualize the
mutated genes, as previously reported [22].

2.6 Immune microenvironment differences
between ICD high and low cohorts

The estimate score, immune score, stromal score, and
tumor purity were calculated for each CRC sample using
the ESTIMATE algorithm through the “estimate” package in
R [18]. We then utilized the CIBERSORT algorithm to eval-
uate the relative proportions of 22 kinds of infiltrating
immune cells in each sample, as previously reported [23].
Subsequently, we compared the expression levels of the
immune checkpoint and human leukocyte antigen (HLA)
genes between the two clusters.
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2.7 Establishing and validating an ICD-
related prognostic risk signature

Univariate Cox regression analysis and random survival
forest-variable hunting algorithm (a powerful ensemble
algorithm based on machine learning) were used for gene
selection and model construction. First, a univariate Cox
analysis was used to identify prognosis-related ICD genes.
Then, using the R package “randomForestSRC,” we set the
parameter ntree at 1,000 to predict the significant ICD
genes from preliminary screened candidates. Then, based
on the multivariate Cox analysis, Kaplan–Meier (KM) tests
were performed for several gene combination signatures,
and p-values calculated by KM analyses were sorted for
comparisons and determining the optimal combination.
Receiver operating characteristic (ROC) curves were used
to assess the prognostic accuracy of the risk signature.
The independent GSE17538 data set was used to verify
the model’s stability. Finally, after identifying indepen-
dent prognostic factors of CRC, we constructed a nomo-
gram by using the “rms” package in R and evaluated its
performance.

2.8 Immunotherapy response predictions

The tumor immune dysfunction and exclusion (TIDE) algo-
rithm is a computing architecture that integrates data on
two tumor immune escape mechanisms; we used this
algorithm to predict the response to immune checkpoint
therapy [24]. The TIDE database (http://tide.dfci.harvard.
edu/) was used to calculate the TIDE score for each TCGA-
CRC sample; then, we compared the relevance between
the risk score and immunotherapy response.

2.9 Statistical analysis

R v4.1.2 (https://cran.r-project.org/) or GraphPad Prism soft-
ware was used to analyze data. Continuous variables were
reported as means and standard deviations and compared
using a Student’s t-tests with p-values. Data were visua-
lized using R v4.1.2, GraphPad Prism, SangerBox (http://
vip.sangerbox.com), Figdraw (https://www.figdraw.com),
and Hiplot (https://hiplot.com.cn) software.

3 Results

3.1 Differential ICD-associated genes and
biological functions

Figure 1 presents a workflow overview. First, 859 ICD-
related genes were obtained from the GeneCards database;
they were screened based on protein-coding genes and
relevance scores larger than the median. Then, we identi-
fied 298 DE-ICD genes; 154 were up-regulated, and 144 were
down-regulated based on a differential analysis between
tumor and normal samples in TCGA-CRC (Figure 2a and b).
GO and KEGG analyses indicated that the DE-ICD genes
were primarily enriched in the activation and regulation
of inflammatory cells, activities associated with immunity,
and cancer-related biological processes and signaling path-
ways (Figure 2c and d). To further understand the connections
among these DE-ICD genes, we constructed a protein-protein
interaction network using the STRING database (https://string-
db.org), which was visualized usingCytoscape (Figure A1).
Figure 2e–g presents the top ten hub genes and the two
most significant modules identified using the CytoHubba
and MCODE Cytoscape plugins.

3.2 ICD-related subtypes

We determined the ICD-related clusters of TCGA-CRC
through consensus clustering. Two subgroups were identi-
fied from the univariate analysis based on the prognosis-
related genes (Figure 3a and b). DE-ICD gene expression
levels were compared between the two clusters; cluster
C1 was defined as the ICD-high group, and cluster C2 as
the ICD-low group (Figure 3c). Then, a survival analysis
between the two groups was performed, resulting in
different clinical outcomes. The ICD-low and ICD-high
subtypes were linked to favorable and unfavorable prog-
noses, respectively (Figure 3d).

3.3 Signal pathways, somatic mutations, and
tumor microenvironment differences
between the ICD subtypes

Further comparison of the low and high ICD subtypes identi-
fied 1,302 dysregulated genes (Figure 4a); Figure 4b presents
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the top 50 genes ordered by the logFC values. GO enrichment
and KEGG pathway analyses were performed using the genes
up-regulated in the ICD-high subtype. These genes were
enriched in biological functions and signaling pathways,
including leukocyte migration, signaling receptor activator
activity, cytokine activity, cytokine–cytokine receptor interac-
tion, B-cell receptor, and the PI3K–Akt signaling pathway
(Figure 4c and d). Several immune-related pathways were
also associated with the ICD-high subtype, including natural
killer cell-mediated cytotoxicity (NES = 2.3681, FDR < 0.0001),
immune receptor activity (NES = 2.4150, FDR < 0.0001), T-cell
receptor signaling pathway (NES = 2.1195, FDR = 0.0011), and
B-cell receptor signaling pathway (NES = 2.2384, FDR =

0.0003), identified by GSEA (Figure 4e and f).
Furthermore, we explored somatic mutations between

the two subtypes. APC, TP53, TTN, KRAS, and SYNE1 were
the top five genes with the highest mutation frequencies in
both the high and low ICD subtypes, but their relative
frequencies differed in each group (Figure 4g and h).

Increasing evidence has demonstrated that ICD is impor-
tant in activating anti-tumor immune responses. Thus, we

dissected the differences between the tumor microenviron-
ment in the high and low ICD subtypes. The ESTIMATE algo-
rithm showed that the ICD-high subtype had a higher immune
score and lower tumor purity than the ICD-low subtype
(Figure 5a). Subsequently, the CIBERSORT algorithm was
used to analyze the differentiation in infiltration of immune
cells between the two subtypes; Figure 5b presents the results
of each TCGA-CRC sample. Patients in the ICD-high subtype
had higher percentages of CD8 T cells, naive B cells, activated
memory CD4 T cells, macrophages, and neutrophils than those
in the ICD-low subtype (Figure 5c). In addition, most HLA and
immune checkpoint genes were up-regulated in the ICD-high
subtype (Figure 5d and e). Therefore, the ICD-high subtype
may be related to the immune-hot phenotype.

3.4 Establishing and validating an ICD-
related prognostic risk model

To better predict the prognosis of patients with CRC, we
built a prognostic model comprising six ICD genes. In the

Figure 1: Study workflow diagram. CRC: colorectal cancer; DE: differentially expressed; GO: Gene Ontology; GSEA: gene set enrichment analysis; HLA:
human leukocyte antigen; ICD: immunogenic cell death; KEGG: Kyoto Encyclopedia of Genes and Genomes; KM: Kaplan–Meier; PPI: protein–protein
interaction; ROC: receiver operating characteristic; TCGA: The Cancer Genome Atlas; TIDE: tumor immune dysfunction and exclusion.

4  Chun Yu et al.



univariate Cox analysis of 298 DE-ICD genes, 41 were asso-
ciated with overall survival (OS) in the TCGA-CRC cohort
(Figure 6a). These genes were reserved for further analysis,
and a six-gene prognostic risk model was established in the
random survival forest analysis (Figure 6b and c). The risk
score formula was: risk score = (−1.2621 × CD1A) + (0.7546 ×
TSLP) + (0.4412 × CD36) + (0.4615 × TIMP1) + (0.3879 ×

MC1R) + (−0.9271 × NRG1).
Patients in the TCGA-CRC cohort were stratified into

high- and low-risk groups based on the median risk score
value, and the association between survival status and risk
score was visualized. The number of deceased patients in
the high-risk group was considerably higher than that in
the low-risk group. Figure 6d illustrates the expression
level differences of the six genes between the two groups.

KM analysis indicated that patients with CRC and low-
risk scores in the TCGA cohort had better OS times than
those with high-risk scores. The predictability and sensi-
tivity of the risk score model were validated by ROC analysis
(Figure 6e). The areas under the curve of the prognostic
model at 1, 2, and 3 years in the TCGA dataset were 0.70,
0.72, and 0.74, respectively, demonstrating its excellent
predictive model performance. As an independent external
validation set, GSE17538 was used to further evaluate
the efficiency of the constructed prognostic model,
which also confirmed the model’s good performance
(Figure 6f and g).

In addition, we performed univariate and multivariate
Cox regression analyses, finding that age, tumor stage, and
risk score were independent prognostic factors in patients

Figure 2: DE-ICD genes and a functional enrichment analysis of the DE-ICD genes. (a) Volcano plot of 154 up-regulated and 144 down-regulated ICD
genes in the TCGA-CRC dataset (FDR < 0.05 and |logFoldchange| > 1). (b) Heatmap illustrating the DE-ICD genes in normal and CRC samples. (c) The
top 30 enriched terms in GO enrichment analysis of the DE-ICD genes. (d) The top 30 enriched terms in the KEGG analysis. (e) The top 10 hub genes. (f
and g) Modules obtained from the “MCODE” plugin. CRC: colorectal cancer; DE: differentially expressed; FDR: false discovery rate; ICD: immunogenic
cell death; TCGA: The Cancer Genome Atlas.
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with CRC (Figure 7a and b). Subsequently, a nomogram
including the risk score, stage, and age was created (Figure
7c). Calibration plots revealed that the predicted probability
of OS probabilities at 3, 4, and 5 years were highly concordant
with the actual OS (Figure 7d–f).

3.5 Correlations between tumor immune cell
infiltration and immunotherapy
response and the ICD risk signature

ICD plays a considerable role in anti-tumor immune response.
Thus, we assessed the connections between the risk scores and
infiltrating immune cells. The risk scores of samples in the
TCGA-CRC cohort samples negatively correlated with activated
memory CD4 T cells, CD8 T cells, and plasma cells (Figure 8a).
Similar results were obtained using the GSE17538 dataset
(Figure 8b).

We then used the TIDE algorithm to evaluate the pre-
dictive power of the ICD-related risk score in response to
immunotherapy. Compared with those in the high-risk
group, patients in the low-risk group were associated
with low TIDE scores in the TCGA cohort (Figure 8c),
demonstrating that patients with CRC and low-risk scores
should benefit from immunotherapy more than those with
high-risk scores.

4 Discussion

In recent years, immunotherapy has become an important ther-
apeutic method for patients with metastatic CRC. However,
owing to the low response rate and side effects, cancer immu-
notherapy is effective in only a small subset of patients; how-
ever, inducing ICDsmaymitigate these challenges [25]. As a new
form of regulatory cell death, ICD has been found to induce

Figure 3: Identification of ICD-associated subtypes by consistent clustering. (a) Consensus clustering matrix when k = 2. (b) Relative change in the area
under the cumulative distribution function curve for k = 2–9. (c) Heatmap of ICD-related gene expressions between the ICD-high and ICD-low
subtypes. (d) KM curves of OS in ICD-high and ICD-low subtypes. CDF: cumulative distribution function; ICD: immunogenic cell death.
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Figure 4: Analyses of DE genes, signaling pathways, and somatic mutations between the high and low ICD subtypes. (a) Volcano plot of 1,302
dysregulated genes and (b) a heatmap presenting the top 50 genes ordered based on the log foldchange values between the two subtypes. (c) The
top 10 enriched terms in GO enrichment analysis and (d) the top 30 enriched terms in KEGG analysis of the genes up-regulated in the ICD-high
subtype. GSEA between the ICD- (e) high and (f) low subtypes. The most frequently mutated genes in the ICD- (g) high and (h) low subtypes. DE:
differentially expressed; ICD: immunogenic cell death.

A model of ICD in colorectal cancer  7



adaptive immunity, thereby enhancing anti-tumor immunity.
Thus, identifying ICD-related biomarkers may help distinguish
CRC patients who could benefit from immunotherapy, similar to
ICD markers in melanoma [26], head and neck squamous cell
carcinoma [27], and neuroblastoma [28]. Furthermore, a recent
study reported a breast cancer prognostic riskmodel comprising

seven ICD genes for estimating the prognosis of patients with
breast cancer and their response to immunotherapy [29], similar
to our research aim.

To our knowledge, this study is the first to describe the
role of ICD genes in tumor microenvironment differentia-
tion and CRC prognosis. We identified two distinct subtypes

Figure 5: Tumor microenvironment analyses between the high and low ICD subtypes. (a) Violin plots of immune and tumor purity scores. (b) Relative
proportion of immune infiltration in each CRC sample obtained from TCGA. (c) Immune cell infiltration differences between the high and low ICD
subtypes. DE of (d) multiple HLA genes and (e) immune checkpoint genes between the high and low ICD subtypes. *p < 0.05, **p < 0.01, ***p < 0.001,
and ****p < 0.0001. CD: cluster of differentiation; DE: differential expression; ICD: immunogenic cell death; NK: natural killer.
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Figure 6: Construction and validation of the ICD risk signature. (a) Volcano plot of 41 genes associated with OS identified by univariate Cox analysis.
(b) Top 10 genes ranked by importance in the random forest analysis. (c) Combinations of genes as a prognostic model were ordered based on the
−log10 (p-value). Distribution of individual risk scores and survival statuses and heatmaps of the prognostic six-gene signature demonstrate
significant differences between the high-risk and low-risk groups in (d) TCGA-CRC and (f) GSE17538 cohorts. KM and ROC analysis in (e) TCGA-CRC and
(g) GSE17538 cohorts. AUC: area under the curve; CI: confidence interval; CRC: colorectal cancer; HR: hazard ratio; ICD: immunogenic cell death; ROC:
receiver operating characteristic; TCGA: The Cancer Genome Atlas.
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Figure 7: Construction and internal validation of a predictive nomogram of OS for patients with CRCs. (a) Univariate and (b) multivariate Cox analyses
evaluating the independent prognostic value of the risk signature in patients with CRC. (c) Nomogram based on age, stage, and signature risk score.
Calibration plots of the nomogram for predicting the probability of (d) 3-, (e) 4-, and (f) 5-year survival. CRC: colorectal cancer; OS: overall survival.

Figure 8: Correlations between the risk signature and tumor microenvironment. Scatter plots present the relationships between the risk score and
the infiltration of plasma cells, activated memory CD4 T cells, and CD8 T cells in the (a) TCGA-CRC and (b) GSE17538 datasets. (c) The TIDE scores in the
high- and low-risk groups. CRC: colorectal cancer; TCGA: The Cancer Genome Atlas; TIDE: tumor immune dysfunction and exclusion.
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of patients with CRC based on the expression of ICD-related
genes, which correlated with diverse infiltration levels
of various immune cells and different survival prognoses.
The ESTIMATE algorithm showed that patients with the
ICD-high subtype had high immune scores, low tumor purity,
and increased immune cell infiltration. Furthermore, the up-
regulated genes in the ICD-high subtype were enriched
in leukocyte migration, signaling receptor activator activity,
cytokine activity, and cytokine–cytokine receptor interac-
tion; immune-related signaling pathways were also signifi-
cantly enriched. Most HLA genes and immune checkpoint
genes were also up-regulated in the ICD-high group. Some
have reported that tumors can escape immune surveil-
lance by reducing the expression of major histocompat-
ibility complex (MHC) molecules [30]. Immune checkpoint
inhibitors have also become a promising treatment method
in cancer immunotherapy [31]. Our results demonstrated
that the ICD-high subgroup was related to the immune-hot
phenotype.

Moreover, we constructed and validated a six-gene
(CD1A, TSLP, CD36, TIMP1, MC1R, and NRG1) prognostic
risk signature. The risk score was associated with the
immune context of the tumor microenvironment, and it
has the potential ability to predict an immunotherapy
response. TSLP is a pro-Th2 cytokine primarily expressed
by epithelium cells and is thought to be a key cytokine
linking innate and adaptive immune systems [32,33]. Many
reports have noted that TSLP-dependent inflammatory Th2-
type response and pro-tumorigenic functions play roles in
pancreatic, breast, and cervical cancers [34–36]. TSLP also
affects CRC progression by regulating the function of tumor-
specific regulatory T cells [37]. CD36, a transmembrane gly-
coprotein receptor, is expressed in tumor, stromal, and
immune cells and plays a significant role in regulating cell
adhesion, immune response, metastasis, and angiogenesis in
tumors [38,39]. Decreased CD36 expression might contribute
to tumor cell evasion from the immune system and targeting
CD36 may be a potential therapeutic strategy in cancer
immunotherapy [40,41]. TIMP1 suppresses immune responses
indirectly by regulating matrix metalloproteinase expression
[42,43]; it also has an essential role in the development
of gastrointestinal malignancies [44,45]. In patients with
CRC, up-regulated TIMP1 expression is related to distant
metastasis, vascular invasion, and lymphatic metastasis
[46]. MC1R was initially described in cells of melanocytic
origin but was later found on fibroblasts and most
immune cells, indicating that it can affect innate and
adaptive immunities [47,48]. Reports suggest that high
MC1R expression might be significantly related to micro-
satellite instability and poor prognosis in CRC [49]. CD1A
is an MHC class I-like molecule expressed by immune

cells, including dendritic and Langerhans cells [50]. CD1A-
positive dendritic cell infiltration is associated with favorable
prognosis in patients with CRC [51], esophageal carcinoma
[52], and breast cancer [53].

Our study has some limitations. Above all, the prog-
nostic risk model was only validated on the GEO database,
and prospective studies with more extensive sample
numbers are needed to demonstrate the clinical value of
the model. Furthermore, in vivo and in vitro biological
experiments of the six genes in CRC are needed. Finally,
this study only suggested a possible relationship between
immune status and ICD subtypes or the risk model. Thus,
we will collect sufficient samples in future studies to eval-
uate the value of this typing method and risk model in
immunotherapy.

5 Conclusion

In this study, bioinformatics analyses of abnormally expressed
ICD genes identified two distinct ICD subtypes in CRC: low and
high. The ICD-low and ICD-high subtypes were associated with
favorable and unfavorable prognoses, respectively. Moreover,
we used ICD-related genes (CD1A, TSLP, CD36, TIMP1, MC1R,
and NRG1) to construct and validate a prognostic risk signa-
ture of CRC; patients with low-risk scores had longer OS and
might benefit from immunotherapy more than those with
high-risk scores. This study highlights the predictive value of
the ICD-related genes in CRC and immunotherapy response
prognoses.
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Appendix

Figure A1: Protein-protein interactions network of the differentially expressed (DE) - immunogenic cell death (ICD) genes.
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