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ABSTRACT
Cardiovascular diseases are the number one cause of death worldwide and in the United 
States (US). Cardiovascular diseases frequently progress to end-stage heart failure, and 
curative therapies are extremely limited. Intense interest has focused on deciphering 
the cascades and networks that govern cardiomyocyte proliferation and regeneration of 
the injured heart. For example, studies have shown that lower organisms such as the 
adult newt and adult zebrafish have the capacity to completely regenerate their injured 
heart with restoration of function. Similarly, the neonatal mouse and pig are also able 
to completely regenerate injured myocardium due to cardiomyocyte proliferation from 
preexisting cardiomyocytes. Using these animal models and transcriptome analyses, 
efforts have focused on the definition of factors and signaling pathways that can 
reactivate and induce cardiomyocyte proliferation in the adult mammalian injured heart. 
These studies and discoveries have the potential to define novel therapies to promote 
cardiomyocyte proliferation and repair of the injured, mammalian heart.
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INTRODUCTION

Cardiovascular disease is the number one cause of death 
worldwide and in the US.1 A number of known and unknown 
factors can perturb the heart, resulting in an injury that 
commonly progresses to heart failure with reduced ejection 
fraction (HFrEF). Several of these stressors include ischemia 
(coronary artery disease), inflammation (viral mediated 
myocarditis such as SARS-CoV-2),2 cardiomyocyte 
membrane instability (dystrophic cardiomyopathy such 
as patients with Duchenne muscular dystrophy),3,4 
hypertension,5 diabetes mellitus, obesity,6 infectious 
agents (ie, Chagas myocarditis),7 genetic mutations,8 
structural heart defects, toxins (alcohol or recreational 
drug use),9 and others. As a result of these stressors, one 
in three Americans have cardiovascular disease and more 
than 7 million Americans are living with heart failure.10 
Despite the implementation of guideline-directed medical 
therapy and device therapy (cardiac resynchronization 
therapy, defibrillator therapy, ventricular assist devices, etc), 
approximately 50% of patients living with heart failure will 
not survive more than 5 years from their initial diagnosis.11 
The only curative therapy for patients with end-stage heart 
failure is orthotopic heart transplantation.12 Unfortunately, 
this curative therapy is severely limited by the lack of 
sufficient numbers of donor organs. While it is estimated 
that more than 100,000 Americans would benefit from 
cardiac allotransplantation, only about 3,500 patients are 
recipients.13 Therefore, there is a need to explore alternative 
strategies to promote cardiac repair and regeneration. One 
strategy that has received intense interest has focused on 
deciphering the signals and the networks that promote 
cardiomyocyte proliferation.14-16 The ability to generate 
more cardiomyocytes following an acute injury or insult 
would decrease cardiac remodeling and the progression to 
heart failure. Here in this review, we will focus on the use 
of model organisms and the recent discoveries that hold 
tremendous promise for the promotion of cardiomyocyte 
proliferation and cardiac regeneration. 

CARDIAC REGENERATION IN LOWER 
ORGANISMS

Previous studies have characterized the remarkable 
reparative response of the invertebrate heart in response 
to an injury that results in cardiomyocyte proliferation, 
decreased fibrosis (scar) and improved cardiac function. 
This reparative process is evident in lower organisms 
such as the newt and zebrafish. For example, the newt 
or salamander (semi-aquatic amphibians) is able 
to regenerate a number of body parts including the 

amputated limb, the mandible, the retina, and the 
heart.17 This remarkable capacity is clearly evident as 
the amputated limb forms a blastema at the site of 
injury and progresses to “rebuild” its muscular and 
skeletal architecture with digits and function that is 
indistinguishable from its other limbs.17 This temporal 
and spatial memory that is required for the formation 
of a perfectly symmetrical and functional limb remains 
incompletely defined. Similarly, the newt adult heart 
has the capacity for regeneration. Amputation of the 
ventricular apex is followed by the formation of a thrombin 
clot. The blastema is then formed at the border of the 
injured heart, which promotes the dedifferentiation of 
cardiomyocytes and inflammatory response characterized 
by macrophages that begin to phagocytose the necrotic 
tissue. The dedifferentiated cardiomyocytes then begin to 
proliferate and, over a 6- to 8-week period, will completely 
restore the cellular and structural architecture of the injured 
heart, resulting in normal function and an absence of fibrosis 
(Figure 1).18,19 Studies have focused on the definition of 
pathways that may govern this regenerative response in the 
injured newt heart. Transcriptional and proteomic profiling 
of the injured newt heart revealed that inflammatory 
pathways and signaling pathways (ie, transforming growth 
factor beta signaling pathway, fibroblast growth factor 
pathway, bone morphogenetic protein pathway, sonic 
hedgehog (SHH) pathway, and others) were dynamically 
regulated during this reparative process.17,20,21 Moreover, 
Singh et al. demonstrated that inhibition of the SHH pathway 
using the small molecule inhibitor, cyclopamine, completely 
abolished the cardiomyocyte proliferative response 
and cardiac regeneration in the injured newt heart.18 
Furthermore, long-term organ cultures of newt hearts in 
vitro underscored the importance of dedifferentiation of the 
cardiomyocytes and cell cycle reentry resulting in cellular 
proliferation.22 Additionally, the newt heart has a distinct 
anatomy (3-chambered heart and limited wall thickness 
to promote diffusion of nutrients from the circulating 
blood) and is composed of primarily mononucleated 
cardiomyocytes (> 95%) compared with 25% in mice and 
75% in the human heart. While the adult newt heart has 
a tremendous regenerative capacity, the inability to use 
genetic technologies (gene knock-in, gene disruption, 
transgenesis, fate mapping strategies), the aquatic habitat, 
and the absence of a sequenced genome collectively limit 
the research using this unique regenerative animal model. 

An alternative research model is the zebrafish model 
(Figure 1), which has largely replaced the newt. Like the newt, 
zebrafish have a remarkable regenerative capacity as they 
can completely repair the injured heart, fins, kidney, spinal 
cord, retina, and other organs. The zebrafish genome has 
been sequenced to facilitate the engineering of transgenic 
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and gene disruption models. Moreover, zebrafish are relatively 
transparent, which facilitates phenotypic screens. The 
zebrafish heart is a 2-chambered heart (single ventricle and 
single atrium) and has tremendous regenerative capacity.23 
Previous studies, using transgenic fate mapping strategies, 
demonstrated that amputation of the ventricular apex of 
the zebrafish heart resulted in cardiomyocyte proliferation 
and repopulation of the amputated chamber, with complete 
restoration of architecture and function within 60 days of the 
injury.24 Importantly, these injuries lacked a fibroproliferative 
response and, therefore, essentially no scar was associated 
with the regenerated heart. Moreover, genetic disruption 
studies established the essential role of networks including 
NF-κB, ErbB2, vitamin D, Notch, BMP10, Neuregulin, Wnt, 
and others.24 Additionally, the endocardium and epicardium 
provide important cues in addition to the vascularization 
and innervation that collectively promote cardiomyocyte 
proliferation. Like the newt, > 95% of the cardiomyocytes 
are mononucleated, and uniformly these cells may all be 
capable of reentering the cell cycle in response to appropriate 
cues. Transgenic fate mapping strategies support the notion 
that all the newly formed cardiomyocytes are derivatives of 
preexisting cardiomyocytes. The overall goal for studying 
the regenerative pathways associated with cardiac injury 
in lower organisms (such as the newt and zebrafish) is 
the notion that evolutionary conserved pathways may 
serve as a key to unlock the gateway that regulates tissue 
regeneration in the mammalian organism.18 

NEONATAL CARDIAC REGENERATION IN 
THE MAMMALIAN HEART

Studies undertaken by the Field’s laboratory using 
thymidine incorporation assays defined a second wave 
of cardiomyocyte proliferation that peaked on P4.6 days 
and continued to decrease thereafter.25 Twenty years 
later, the Sadek lab at University of Texas Southwestern 
Medical Center at Dallas demonstrated that cardiac 
injury (amputation of the apex of the left ventricle or 
left anterior descending (LAD) or LAD coronary artery 
ligation injury) in the P0 to P2 neonatal mouse heart 
could completely regenerate as a result of proliferating 
cardiomyocytes that were derivatives of preexisting 
cardiomyocytes.26 This regenerative window was limited 
because P7 cardiac injuries were unable to regenerate and 
were associated with a robust fibroproliferative response. 
The cardiomyocyte proliferation in the neonatal heart 
was shown to be enhanced by Meis1 deletion, hypoxia, 
and decreased oxidative stress.27 These and subsequent 
studies demonstrated that neonatal cardiac regeneration 
was dependent on the transition from mononucleated 
to binucleated cardiomyocytes, the metabolic transition 
of the neonatal heart, oxygen signaling, DNA damage 
response(s), and transient molecular mechanisms that 
govern key signaling pathways.26,27 

Recent studies performed by the Zhang laboratory 
demonstrated that apical resection of the left ventricle 

Figure 1 Lower organisms have a remarkable regenerative capacity following myocardial injury. The adult newt and zebrafish are 
examples of lower organisms that can completely regenerate their hearts following an acute injury. This regenerative process is due 
to cardiomyocyte dedifferentiation and proliferation in the absence of a fibroproliferative (ie, scar) response. In contrast, the adult 
mammalian heart has a very limited regenerative capacity, and repair of the adult heart is associated with extensive fibrosis in order to 
stabilize the injured heart. Figure is adapted from references 17-20.
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of the P1 piglet was associated with cardiomyocyte 
proliferation and complete restoration of the cardiac 
architecture (without the presence of scar), but this 
response was even more limited than the mouse since later 
injuries were not associated with repair and regeneration.28 
Follow-up studies, which included a second injury on P28, 
also demonstrated complete restoration of the ventricle 
and function.29,30 These latter results using sequential 
injuries (P1 and P28) are consistent with the notion that 
cycling cardiomyocytes were responsible for the repair 
and regeneration of the second injury. Collectively, these 
results support the evolutionary conservation of pathways 
and factors that promote cardiomyocyte proliferation 
and support the notion that these pathways or factors 
may be harnessed to promote repair of the injured adult 
mammalian heart.15,16,18 

CARDIOMYOCYTE TURNOVER OR 
PROLIFERATION IN THE ADULT 
MAMMALIAN HEART

Adult mammalian tissues and organs have variable 
regenerative potential. At one extreme is adult mammalian 
skin, liver, bone marrow, skeletal muscle, and other tissues 
and organs that have an extremely high regenerative 
capacity following injury. For example, an injury that 
destroys up to 90% of skeletal muscle is associated with 
a highly regenerative response resulting in complete 
restoration of the cellular architecture and preserved 
function within a one- to two-month period.31-35 On the 
other extreme are organs such as the heart and brain that 
have a very limited regenerative potential. 

Previous studies have examined cardiomyocyte turnover 
using an array of techniques including the quantification 
of mitotic figures in the adult heart, incorporation (pulsing) 
of DNA nucleosides such as 5-bromo-2’-deoxyuridine 
or quantification of mononucleated or binucleated 
cardiomyocytes. Subsequently, Friesen’s laboratory 
undertook an analysis of human cardiomyocyte turnover 
using radiocarbon dating,36 a technique that was readily 
established and used extensively to date fossils. The 
technique was based on the concept of 14C generation in the 
atmosphere that was incorporated into plants/vegetation 
(via photosynthesis) and ultimately entered the food 
chain via animals and humans.37 After plants or animals 
die, the 14C decays over time at a constant rate, which is 
used to determine the age of the fossil by comparing the 
measured levels in the sample to the atmospheric levels 
of 14C (Figure 2). This approach was adapted by the Friesen 
laboratory to determine the age of cardiomyocytes in the 
human heart.36,38 In the 1960s, above-ground nuclear 

testing released a 14C pulse into the atmosphere, although 
the pulse was limited because all above-ground nuclear 
tests were halted following the Nuclear Test Ban Treaty 
(1963).39 Therefore, the pulse of 14C (by the nuclear tests) 
was used to demonstrate that approximately 0.5% to 1% 
new cardiomyocytes were formed each year resulting in 
the replacement of about half the heart over a lifetime in 
the average human (Figure 2).36,38 These studies verified 
that the human heart had cardiomyocyte turnover 
(proliferation) but at a very low rate. Importantly, these 
results have been further verified by other investigators 
using animal (mammalian) models.40 

FACTORS AND PATHWAYS THAT 
PROMOTE CARDIOMYOCYTE 
PROLIFERATION IN THE ADULT 
MAMMALIAN HEART

As previously outlined, the invertebrate heart and the 
neonatal mouse heart have tremendous regenerative 
capacity due to cardiomyocyte proliferation. These 
studies as well as the definition of pathways that govern 
cardiomyocyte proliferation during embryogenesis, 
have provided an important platform to examine their 
impact on the cell cycle reentry of adult mammalian 
cardiomyocytes (Figure 3). Moreover, the carbon dating 
studies supported the notion that cardiomyocyte 
turnover occurred but at a limited rate, and intense 
efforts have attempted to decipher the factors and 
pathways that promoted cardiomyocyte cell cycle 
reentry and proliferation as a platform to promote cardiac 
regeneration. Overexpression of cell cycle activators 
in the heart has been extensively pursued and shown 
to promote cardiomyocyte proliferation. Screening 
strategies using proliferating fetal cardiomyocytes 
identified CDK4-cyclin D1, CDK1/CDK4/cyclin B1/cyclin D1 
as cell cycle regulators that, when overexpressed in rodent 
or human cardiomyocytes, promoted proliferation.41 An 
independent initiative by the Zhang lab at the University 
of Alabama at Birmingham and Zangi lab at the Icahn 
School of Medicine at Mount Sinai demonstrated that 
cardiomyocyte specific overexpression of the cell cycle 
regulator, CCND2, in the injured mouse and porcine 
hearts resulted in increased cardiomyocyte proliferation, 
decreased infarct size, and improved cardiac function 
(Figure 3).42 This latter study was important as it 
demonstrated the ability to promote cardiomyocyte 
proliferation using a transient, nonintegrating delivery 
system (ie, modRNAs).42 

Genetic mouse models using gene disruption 
strategies to delete candidate factors such as NRG1, 
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E2F, and others decreased cardiomyocyte proliferation, 
whereas transgenic overexpression of factors including: 
GATA4,43 TBX20,44 miR-302,45 miR199a,46 miR-294,47 or 
knockout of miR-128,48 Meis1,27,49,50 Hox13,51 or ErbB452 
increased CM proliferation. Studies undertaken in the 
Institute for Pediatric Research Kühn laboratory at the 
University of Pittsburg Medical Center defined the growth 
factor, Neuregulin1 (NRG1),52 as one of the first factors 
that promoted cardiomyocyte proliferation in the mouse 
and human heart.52 Database mining of single cell multi-
omics and artificial intelligence have identified new 
factors and hold tremendous promise for the definition 
of factors that govern cardiomyocyte proliferation. 

Similarly, the modulation of signaling pathways has 
been shown to induce CM proliferation. For example, 
the phosphoinositide-3-kinase/protein kinase B (PI3K-
AKT) signaling pathway has been shown to control cell 

cycle activity. Small molecules that activate PI3K-AKT 
signaling have successfully induced neonatal and adult 
CM proliferation.53 Studies have also shown that the PI3K-
AKT pathway may also play a cardioprotective role and/
or promote cellular survival, which may be beneficial 
following an injury.54 

The Hippo signaling pathway has been shown to have 
a critical role in regulating the size of an organ during 
embryogenesis. This pathway relies on the regulation of the 
phosphorylation status of yes-associated protein, which 
is a transcriptional coactivator that regulates a number 
of downstream effectors including cell cycle regulators,55 
insulin-like growth factor-1,56 Wnt57 signaling, and others. 
Studies from several laboratories have demonstrated 
that inhibition of the pathway promotes cardiomyocyte 
proliferation. For example, the Martin Heart Lab at the Texas 
Heart Institute performed LAD ligation-induced cardiac 

Figure 2 The adult human heart has a low turnover of cardiomyocytes. (A) Radiocarbon dating of the human heart relies upon a pulse 
(B) of 14C via the aboveground atomic tests, which was then incorporated into vegetation (via photosynthesis) and consumed by animals 
and humans. The levels of 14C found in cardiomyocyte nuclei were used to determine the birth date of the cardiomyocytes. These studies 
support the notion that 0.5% to 1.0% of human cardiomyocytes turn over each year. While this number is relatively low, these studies 
emphasize that pathways and subpopulations of cells are present and could be enhanced as a therapeutic initiative. Figure is adapted 
from references 36–38.
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injury in adult mice and pigs, and 2 weeks following the 
injury they delivered an AAV-9 vector, which knocked down 
the Hippo pathway gene (Salvador) and demonstrated 
improved cardiac function (~14% improvement in the 
ejection fraction), reduced scar size, and cardiomyocyte 
proliferation.58,59 Collectively, these studies emphasized 
the impact of targeting the border zone surrounding the 
initial injury, the importance of the Hippo pathway in 
regulating cell proliferation, and the use of an AAV9 vector 
to modulate lineage specific pathways (Figure 3). 

The Sonic hedgehog pathway (SHH) has been shown 
to have critical roles during embryogenesis and cancer. 
The downstream effectors of this pathway are Gli1, Gli2, 
and Gli3.18,60 These transcriptional regulators have been 
shown to promote cardiomyocyte proliferation and cardiac 
regeneration following LAD ligation-induced injury in 
the newt, mouse, and human model systems.18 The SHH 
pathway has also been shown to regulate other pathways 
including the Wnt/β-catenin,18,61 the Notch Pathway,62 and 
others. These latter pathways may also (independent of 
the SHH pathway) promote cardiomyocyte proliferation. 
For example, Wnt/β-catenin inhibition has been shown 
to increase cyclin D, which is associated with cell cycle 
progression for the cardiomyocytes. Using both genetic 

mouse models and a modified RNA delivery strategy to 
promote the SHH pathway, the Garry lab demonstrated 
improved cardiac function, decreased scar size, and 
increased cardiomyocyte proliferation following myocardial 
infarction in the adult mammalian heart (Figure 3).18 

Oxygenation and the metabolic milieu have been shown 
to be powerful regulators of cardiomyocyte proliferation. 
Studies performed by the Sadek laboratory have shown 
that systemic hypoxemia following LAD ligation to 
induce cardiac injury robustly activates cardiomyocyte 
proliferation, decreases fibrosis (scar formation), and 
improves cardiac function (Figure 3).49 Mechanistically, 
these responses are a result of an induction of Hif1 (and 
its downstream effectors), decreased oxidative damage, 
and decreased mitochondrial metabolism. Furthermore, 
considerable interest has been directed towards an 
enhanced understanding of the metabolic status of 
the adult cardiomyocyte and its capacity to reenter the 
cell cycle and proliferate. For example, the transition of 
the adult cardiomyocyte from fatty acid utilization to 
glucose utilization (by deleting pyruvate dehydrogenase 
kinase 4 or PDK4) in mice has been shown to increase 
cardiomyocyte proliferation.63 Similarly, studies have 
shown that overexpression of pyruvate kinase muscle 

Figure 3 Factors and pathways promote cardiomyocyte proliferation in the adult mammalian heart. Schematics outlining several of the 
factors, environmental conditions, and pathways that have been reported to promote cardiomyocyte proliferation following injury of the 
adult mammalian heart. Figure is adapted from references 36-38.
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isoenzyme 2 (Pkm2) using a lineage-specific modified RNA 
delivery strategy resulted in increased cardiomyocyte cell 
division and improved cardiac function.64 These studies 
emphasize the important role of metabolic pathways as 
regulators of the cardiomyocyte cell cycle reentry and 
cardiac regeneration. 

The above referenced stimulators of cardiomyocyte 
proliferation are examples of the exciting new strategies 
that are aimed at promoting cardiomyocyte proliferation 
during a transient period following an acute injury. 
Single cell analyses in combination with nonintegrating 
delivery systems hold tremendous promise for emerging 
regenerative therapies for cardiovascular diseases. 

CONCLUSIONS

Comprehensive analyses of the regenerating heart in lower 
organisms and the injured neonatal mammalian heart 
have uncovered important factors and signaling pathways 
that promote cardiomyocyte proliferation and myocardial 
repair. Hypoxia, metabolic pathways, cell cycle regulators, 
transcriptional factors, and signaling pathways have been 
shown to induce cardiomyocyte proliferation in the adult 
mammalian heart following injury. The development 
of viral vectors and modified RNAs holds great promise 
focused on the targeting of specific lineages, the promotion 
of cardiomyocyte proliferation, and repair/regeneration of 
the injured adult heart. 

KEY POINTS

•	 Lower organisms such as the newt and zebrafish have 
the capacity for complete repair and regeneration of 
the injured adult heart.

•	 The injured neonatal mouse and pig hearts are 
capable of complete repair due to proliferating 
cardiomyocytes. 

•	 The adult mammalian heart has approximately 0.5% 
to 1.0% cardiomyocyte turnover each year.

•	 Modulation of factors and signaling pathways have 
been shown to increase cardiomyocyte proliferation 
and improve cardiac function following injury of the 
adult mammalian heart.
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