Skip to main content
. Author manuscript; available in PMC: 2024 Jan 1.
Published in final edited form as: Methods Mol Biol. 2024;2738:215–228. doi: 10.1007/978-1-0716-3549-0_14

Table 2.

Initial parameters for 2D classification and 3D refinement

2D classification 3D initial model
Input particle and box pixel size Input extracted particles from reference picking, 180 pix (bin 4) Input selected 2D class particles, 180 pix (bin 4)
Reference map and symmetry -- Reference-free, C1 symmetry
Do CTF-correction Yes Yes
Number of classes 50 1
Regularization Parameter T 2 --
Number of iterations 25 25 (Initial); 100 (In-between); 25 (Final)
Mask diameter (Å) 700 --
Sampling Yes --
Running 3 MPI 4-16 threads 3 MPI 4-16 threads
Initial angular sampling (degrees) -- 15
 
3D classification 3D auto-refine
Input particle and box pixel size Input particles from 3D initial model, 180 pix (bin 4) Input selected 3D class particles, 180 pix (bin 4)
Reference map and symmetry Input 3D initial model, low-pass filter to 60 Å and apply I3 or I4 symmetry Input map from selected 3D class, low-pass filter to 60 Å and apply the same symmetry (I3 or I4)
Do CTF-correction Yes Yes
Number of classes 4 --
Regularization Parameter T 4 --
Number of iterations 25 --
Mask diameter (Å) 800 800
Sampling Yes --
Running 3 MPI 4-16 threads 3 MPI 4-16 threads
Initial angular sampling (degrees) 7.5 7.5 (Initial), 1.8 (local search)