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Abstract

Infraspinatus tendon is the most affected tendon of the rotator cuff, being an important posterior 

component of the shoulder joint. Hyperlipidemia is a predisposing factor in the progression 

of rotator cuff tears and retear. We studied the effect of hyperlipidemia on the biomechanical 

properties of rotator cuff tendons. The infraspinatus tendon of the rotator cuff from hyperlipidemic 

swine were collected and tested for ultimate tensile strength (UTS) and modulus of elasticity. 

Dynamic mechanical analysis was performed to examine viscoelastic properties. The findings 

revealed no significant difference in UTS but had significantly lower modulus of elasticity in 

the infraspinatus tendon of the hyperlipidemic group compared to the control group. Moreover, 

differences in the dynamic modulus, storage modulus, and loss modulus were not statistically 

significant between the hyperlipidemic and control swine. There was no difference in water 

content between the groups but the hyperlipidemic group had fatty infiltration aiding the initial 

decrease in mechanical properties. These findings suggest an association between fat deposition 

and early changes in the biomechanical properties of the tendons in the shoulder rotator cuff in 

hyperlipidemic state.
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1. Introduction

The force generated by the muscles of the rotator cuff are transferred to the bone by its 

tendons. Injuries and tears on the rotator cuff tendons compromise the normal function and 

in turn may lead to surgeries. Infraspinatus tendon is the most frequently affected tendon 

being the stabilizer of forces in the posterior side [1]. These impact the quality of life in 
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addition to the economic burden. The prevalence of rotator cuff injuries is 2.8–15 % leading 

to surgical repair with a failure rate of 20–94% [2–4]. These tendons are formed by the 

spatial arrangement of the fascicles bundle bound by the interfascicular matrix where the 

fascicles are formed by collagen fibers [5,6]. Researchers are investigating to understand 

the underlying cause and progression of these tears. Age, physical activities, duration of 

symptoms, diabetes, smoking are factors that affect the effective healing of rotator cuff 

injuries. Recently, there is a lot of interest in studying the association of hyperlipidemia in 

rotator cuff injuries and its onset on treatments methodologies.

Hyperlipidemia, a systemic metabolic disease, is well known for its impact on vascular 

system, but it equally affects the musculoskeletal system impacting the strength and range 

of motion [7,8]. More than 100 million adults in the United States are reported to show 

hyperlipidemia and hence the associated co-morbidities, including cardiovascular events 

and heart failure, are on the rise. Hyperlipidemia is reported to accumulate lipids in the 

ligaments and tendons [3]. In clinical studies, the association of hyperlipidemia with rotator 

cuff injuries and tears is inconsistent [3,9]. The mechanical properties of rotator cuff tendons 

of hyperlipidemic rats were reported earlier. Mechanical properties of the tendons and 

ligaments are compromised under hyperlipidemic conditions [10].

Previously we have reported that hyperlipidemia in swine models have induced pathological 

changes in the organization of the tendon, extracellular matrix (ECM), and cellularity [4]. 

We aimed to study the changes in mechanical properties of the rotator cuff tendon swine 

under hyperlipidemic diet. In this study we investigated the changes in the mechanical 

properties and viscoelastic properties of the infraspinatus tendon on hyperlipidemic swine.

2. Materials and Methods

2.1 Animals and tendon tissue collection and preparation

The Institutional Animal Care and Use Committee (IACUC) of Western University 

of Health Sciences, Pomona, CA, USA approved the experimental research protocol 

(R22IACUC034).

Female Yucatan miniswine (Sus scrofa) weighing 25–30 kg, were purchased from Premier 

Bioresources, Ramona, CA, USA. Swine were acclimatized to 12/12 hours of light-dark 

cycle and were fed twice every day with either regular pig diet (Group-I) or high-

cholesterol-high-fat diet to develop hyperlipidemia (Group II) [4,11]. After 40 weeks the 

animals were sacrificed, and the infraspinatus tendon tissues of the rotator cuff were 

collected and stored at −80°C until testing. On the day of testing the tendon tissues were 

thawed using a two-step protocol: (i) 4 h at 4°C, and (ii) 2 h at room temperature [12]. After 

thawing, two equal pieces from the tendon tissue were manually cut from the tendon core 

using scalpel blade. The cut pieces were approximately 55 mm in length for tensile testing 

and Dynamic mechanical analysis (DMA) and kept at 4°C to maintain the freshness of tissue 

until testing.
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2.2 Tensile strength and strain

Tensile test is a destructive testing that measures the force required to break the sample 

material and the elongation of the sample material at that breaking point. The tensile testing 

was conducted on 6 tendons from control animals and 8 tendons from hyperlipidemic 

animals. Approximately 55 mm of the tendon core were cut, and the length, width and 

thickness were measured using digital vernier caliper. The smaller dimensions were used 

in calculating the cross-sectional area. The tendons were secured in between sandpaper and 

mounted using the tension grips on to TA Electroforce 3300 (TA Instruments, New Castle, 

DE, USA) equipped 1000 N load cell. The gauge length was 30 mm. The samples were 

preconditioned using for 10 cycles at a frequency of 1.0 Hz between 0 and 10 N under 

load control [13]. Following to preconditioning, the tendon tissue samples were ramped 

to failure at a crosshead speed set to 100μm/s while recording the force and displacement 

continuously. Failure was defined as the decrease in load below 20% of the maximum load. 

The engineering stress (σ) and engineering strain (ε) were determined, and the stress-strain 

curve was plotted. The modulus of elasticity (E) was obtained from the slope of the linear 

region of the stress-strain curve. The ultimate tensile strength (UTS) and the strain at failure 

were also calculated [14,15].

2.3 Dynamic mechanical analysis

Dynamic mechanical analysis (DMA) is a basic tool used to measure the viscoelastic 

properties of materials. A small oscillating force is applied (stress) and the strain is 

measured, and the viscoelastic properties are determined in relation to temperature, time, 

or frequency. For dynamic mechanical analysis (DMA) 6 tendons from Group I–animals 

with regular diet and 8 tendons from Group II–hyperlipidemic diet. Approximately 55 mm 

of the tendon core were cut, and the length, width and thickness were measured using digital 

vernier caliper. The tendons were secured in between sandpaper and mounted using the 

tension grips on to TA Electroforce 3300 (TA Instruments, New castle, DE, USA) equipped 

1000 N load cell. An initial load of 2.0 N was applied to remove any slack and the gauge 

length was recorded. The tendon tissues were preconditioned with 10 cycles at a frequency 

of 1.0 Hz between 0 and 10 N under load control. Sinusoidal loading between 10 N and 

20 N was applied and two frequency sweep was performed at (i) 0.2 Hz to 2.0 Hz with an 

increase in frequency of 0.2Hz until 2 Hz, and (ii) 1 Hz to 41 Hz with increase in frequency 

of 10 Hz until 41 Hz. Throughout the testing, the samples were kept immersed in PBS at 

room temperature to prevent excess drying. The viscoelastic properties, dynamic modulus 

(E*), storage modulus (E’), loss modulus (E”) and damping ability (Tan δ) were calculated 

and recorded by the machine [12,13].

2.4 Water content

The water content of the tendon core (10 mm length, 3–4 mm width and thickness) was 

calculated based on the weight of tendon tissues before (Wwet) and after drying (Wdry) for 

72 hours at 40°C. The samples were weighed using analytical balance with the resolution of 

0.01 mg. The water content was calculated using the below formula:
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W ater content = W wet − W dry
W wet

× 100

2.5 Histology

Tendon tissue samples were fixed with 10% buffered formalin for 72 hours, processed, 

embedded in paraffin, and 7 μm thick sections were cut. The sections were stained with 

hematoxylin and eosin (H&E) and analyzed for cellularity, ECM organization, and tendon 

alignment.

2.6 Statistical analysis

The statistical analyses for tensile testing and modulus of elasticity were done using 

unpaired Student t-test and dynamic mechanical analysis were calculated using two-way 

analysis of variance (ANOVA) using GraphPad Prism.9.5.1 software. The p-value of < 0.05 

was considered statistically significant.

3. Results

3.1 Tensile strength

The ultimate tensile strength (UTS), failure strain percentage, and the modulus of elasticity 

(E) are shown in Figure 1. There was no significant difference in the mean value of the UTS 

between the control group receiving normal pig diet and the hyperlipidemic group (Figure 

1A). However, the modulus of elasticity was significantly decreased in the hyperlipidemic 

animals compared to the control group (Figure 1B). The failure strain percentages did not 

have statistically significant difference between the control swine and the hyperlipidemic 

swine (Figure 1C).

3.2 DMA and water content

The viscoelastic properties recorded from the dynamic mechanical analysis at low 

frequencies are shown in Figure 2. The dynamic modulus and storage modulus increased 

with increase in frequency while the loss modulus decreased with increase in frequency. No 

significant difference in dynamic modulus, loss modulus, or damping ability was observed 

between the two groups in the respective low frequencies tested (0.2–2 Hz) (Figure 2) and at 

higher frequencies tested (Figure 3). The control group showed a more viscous nature than 

the hyperlipidemic group at low frequencies. The water content of tendons from the control 

group (65.52 ± 4.55 %) and the hyperlipidemic group (65.60 ± 4.10 %) were not different 

(Table 1).

3.3 Histology

The representative image of H&E staining of the tendon tissue is shown in Figure 4. 

The control group had longitudinally arranged fibers with the presence of decreased cells. 

The cells are presented with elongated nuclei, a characteristic of mature tenocytes. On 

the other hand, the hyperlipidemic group showed disorganized extracellular matrix (ECM) 
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and increased infiltration of inflammatory cells and proliferating teloblast like cells. The 

hyperlipidemic group also showed fat deposition in the tendons.

4. Discussion

Hyperlipidemia is a risk factor for number of comorbid conditions such as hypertension, 

diabetes, heart failure [16]. Hyperlipidemia is also associated with the accumulation of 

lipids within the extracellular matrix of the tendon and hence can reduce the mechanical 

properties of the tendon [3]. Hence, mechanical testing of the tendon tissues is important in 

understanding the inherent strength and viscoelastic properties that are responsible for the 

biological functions. We studied the differences in mechanical properties of the infraspinatus 

tendon of the rotator cuff in swine that received normal diet and swine that received 

hyperlipidemic diet. The ultimate tensile strength of the control and the hyperlipidemic 

group were not statistically significant. Similarly, failure strain % also did not have a 

significant difference between the two groups as expected. The modulus of elasticity (E) 

calculated from the linear portion of the stress-strain curve was lower in the hyperlipidemic 

group of animals when compared to the control group and is statistically significant (p=0.03) 

when analyzed with a student-t test. Our results varied from the previous studies conducted 

on supraspinatus tendon of hyperlipidemic mouse rat and monkey where they have observed 

an increase in the tensile strength and the modulus of elasticity [17]. Moreover, we have 

collected the tendon tissues at a mean age of 40 weeks, and this might be a contributing 

factor for having similar tensile strength. Age is a factor that would have contributed factor 

to this trend. Meanwhile the tensile modulus or the modulus of elasticity has decreased 

in the hyperlipidemic group as expected, stating there are other factors contributing to 

the decrease of modulus of elasticity than age factor. The collagen content in the tendons 

decreases with increase in age. In an earlier study where the collagen content and tensile 

modulus were analyzed among older me (age 67 ± 3 yr) and younger men (age 27 ± 2 

yr) with similar physical activities it was observed there was a decrease in the collagen 

content but no significant difference in the tensile modulus. But the loss of collagen was 

balanced by the inter and intra molecular crosslinking of collagen in older men which 

was less pronounce in younger men [18]. The linear range of the tendon extension is 

caused by the sliding of the collagen fibers. Hence, age could not be the decisive factor in 

causing the difference in tensile modulus between the normal and hyperlipidemic group of 

animals. Mechanical properties of tendons decrease with age [19,20], physical activities and 

comorbid conditions [21]. Hyperlipidemia could be a contributing factor in the lowered of 

mechanical properties in the hyperlipidemia group of animals.

The dynamic mechanical analysis was performed in the linear range of the tendon extension 

just above the toe region. The low frequency ranges (0.2 −2.0 Hz) in our study showed no 

significant differences in viscoelastic properties of the tendons of the hyperlipidemic group 

compared to the control group animals. The viscoelastic properties give the strain dependent 

dynamic mechanical behavior of biological tissues. The viscoelastic properties of soft tissues 

increase with decrease in water content of the tissues [13]. Dynamic mechanical analysis 

was carried out in a PBS bath to reduce and make sure there is now drying of tissues which 

affects the viscoelastic properties while testing. Decrease in water content in of the tissues 

will enhance the mechanical properties of soft tissues such as tendons and ligaments [22,23]. 
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We observed the water content of the tendon tissue samples from the control group (65.60 ± 

4.18) and the hyperlipidemic group of animals (65.52 ± 4.55) was not significantly different. 

The extension of tendons in response to load is characterized by (1) an initial uncoiling of 

collagen fibers, (2) sliding of fibers and fibrils along the linear region, and (3) stretching 

of the tropocollagen backbone until final rupture of the fibril. The inter and intra collagen 

enzymatic crosslinking formed initially are immature divalent bonds which over time form 

trivalent bonds [18,24–26].

The H&E staining of the sections of the hyperlipidemic group of animals showed infiltration 

of fat in the tendon tissues and inflammatory cells in the tendon tissue, which was not 

present in the control tendon tissues. Injury and remodeling of the tendons have recruitment 

of actively dividing teloblasts and inflammatory cells to the site of injury [27,28]. We 

have earlier shown that hyperlipidemia increases fat depositions in swine [29–31] and is a 

predisposing factor for the risk of rotator cuff tear and reinjury [32,33]. The fatty infiltration 

in the tendon tissues would have contributed to the lowered tensile modulus with no changes 

in the viscoelastic properties. Infiltration of fat in the tendon would have contributed to the 

reduced modulus of elasticity, but it would not have altered the inter and intra bonds between 

the collagen fibers which is expected as the deposition of fat is increased. And hence the 

collagen sliding during the extension in the initial region of the linear phase of extension 

would have been unaffected and as the deposition increases would bring differences in 

viscoelastic properties. In our study we observed the lowering of tensile modulus in the 

hyperlipidemic swine. There may be other factors also involved in weakening of collagen 

fibrils of the tendons that need to be studies. Long term studies would give insights on the 

changes in tensile strength as the increase in fatty infiltration is higher with increase in age 

and to study the force transferred by the tendons.

5. Conclusion

This study reveals the early onset of changes in the dynamic mechanical properties with 

decreased modulus of elasticity and viscoelastic properties of the infraspinatus tendons 

in hyperlipidemic swine. However, long-term studies would be required to elucidate the 

changes in the tensile strength as the fatty infiltration would be more pronounced with age 

and other predisposing factors.

6. Limitations

The tendon tissues at the time of tissue collection were relatively young and the sample 

size was small. Also, the mechanical properties vary with variation in physical activities. 

The measurement of extension was calculated from the crosshead displacement of clamps 

to compute the strain values. Measurement with video extensometer would have provided 

better information on the parameters. Moreover, the variation in the physical activities 

warrants further investigation in detail as the swine were allowed to walk freely in the pen.
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Figure 1: 
Mechanical properties of tendon tissues: (A) Ultimate tensile strength, (B) Modulus of 

elasticity, (C) Failure strain %. Control indicates the group of animals that received normal 

diet (group 1), Hyp-L indicates the group of animals that received high-cholesterol-high-fat 

diet (Group 2). Values are shown as mean ± SD; n=6–8). * Indicates significant difference 

(p<0.05, student-t test).
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Figure 2: 
Viscoelastic properties of the tendon tissues at low frequencies: (A) dynamic modulus (E*), 

(B) storage modulus (E’), (C) loss modulus (E”) and (D) damping ability (Tan δ). Control 

indicates the group of animals that received normal diet, Hyp-L indicates the group of 

animals that received high-cholesterol-high-fat diet. Values are shown as mean ± SD and 95 

% CI; n=6–8).
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Figure 3: 
Viscoelastic properties of the tendon tissues at higher frequencies: (A) dynamic modulus 

(E*), (B) storage modulus (E’), (C) loss modulus (E”) and (D) damping ability (Tan δ). 

Control indicates the group of animals that received normal diet, Hyp-L indicates the group 

of animals that received high-cholesterol-high-fat diet. Values are shown as mean ± SD and 

95 % CI; n=6–8).
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Figure 4: 
Representative image of tendon histology (H&E). Control indicates the group of animals 

that received normal diet (group 1), Hyp-L indicates the group of animals that received 

high-cholesterol-high-fat diet (Group 2). The images were acquired in 40x magnification.
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Table 1:

Water content of tendons of the control group and hyperlipidemic group.

Control Hyperlipidemic group

% Water content (wt/wt) 65.52 ± 4.55 65.60 + 4.10%
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