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Abstract

In comparing two treatments via a randomized clinical trial, the analysis of covariance (ANCOVA) 

technique is often utilized to estimate an overall treatment effect. The ANCOVA is generally 

perceived as a more efficient procedure than its simple two sample estimation counterpart. 

Unfortunately, when the ANCOVA model is nonlinear, the resulting estimator is generally 

not consistent. Recently, various nonparametric alternatives to the ANCOVA, such as the 

augmentation methods, have been proposed to estimate the treatment effect by adjusting the 

covariates. However, the properties of these alternatives have not been studied in the presence 

of treatment allocation imbalance. In this article, we take a different approach to explore how 

to improve the precision of the naive two-sample estimate even when the observed distributions 

of baseline covariates between two groups are dissimilar. Specifically, we derive a bias-adjusted 

estimation procedure constructed from a conditional inference principle via relevant ancillary 

statistics from the observed covariates. This estimator is shown to be asymptotically equivalent to 

an augmentation estimator under the unconditional setting. We utilize the data from a clinical trial 

for evaluating a combination treatment of cardiovascular diseases to illustrate our findings.
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1. Introduction

In comparing two treatment groups, let θ be the parameter of interest for quantifying the 

between-group difference with respect to the study endpoint. For example, let Y  be the 

outcome variable, Z be the binary treatment indicator, μ0 = E Y ∣ Z = 0 , μ1 = E Y ∣ Z = 1 , 

and θ = μ1 − μ0. Let θ̂ be the corresponding two-sample estimator based on the data from a 

randomized clinical trial with the proportions of the patients assigned to Groups 1 and 0 

being π and 1 − π, respectively. If Y  is a binary outcome, θ may be the risk ratio or odds ratio 
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(OR). In general, with a large sample size, the distribution of θ̂ is approximately normal with 

mean θ. Inferences about θ can be made accordingly.

When the patient’s potentially predictive baseline covariate vector X is available, we 

routinely utilize an analysis of covariance (ANCOVA) procedure to estimate θ. A typical 

ANCOVA model is a multicovariate regression model relating the outcome to the treatment 

assignment indicator Z and covariate vector X. The estimated regression coefficient of Z
or a transformation thereof is interpreted as an estimator of θ. Unfortunately, when the 

ANCOVA model is nonlinear (e.g., a logistic or proportional hazard model), the resulting 

estimator of the treatment effect is generally not consistent for θ of our interest (Gail, 

Wieand, and Piantadosi 1984; Struthers and Kalbfleisch 1986; Lin and Wei 1989). For 

example, the treatment effect for binary outcome is often measured by log OR

θ = log pr Y = 1 ∣ Z = 1 pr Y = 0 ∣ Z = 0
pr Y = 0 ∣ Z = 1 pr Y = 1 ∣ Z = 0 . (1)

The multivariable logistic regression model assumes that the conditional log OR for given 

covariates X,

log pr Y = 1 ∣ Z = 1, X pr Y = 0 ∣ Z = 0, X
pr Y = 0 ∣ Z = 1, X pr Y = 1 ∣ Z = 0, X ,

is a constant independent of X. This quantity is the regression coefficient of Z in the model 

but, in general, is different from θ in (1). Therefore, it is inappropriate to use the regression 

coefficient of Z to estimate θ. However, ANCOVA may still be useful for two reasons: 

first, as a testing procedure for the presence of treatment effect, ANCOVA is generally valid 

without requiring the correct model specification and often more powerful than its simple 

two sample counterpart; second, when correctly specified, a version of ANCOVA can be 

used to estimate θ indirectly. Specifically, the potential outcomes of each individual is linked 

with his/her baseline covariates via appropriate regression model in both arms and the finite 

sample contrast of “predicted” outcomes measuring the treatment effect can be constructed 

accordingly. For example, noting that log OR equals to

log E pr Y = 1 ∣ Z = 1, X E pr Y = 0 ∣ Z = 0, X
E pr Y = 0 ∣ Z = 1, X E pr Y = 1 ∣ Z = 0, X ,

one may estimate θ by

θ̂ANCOVA = log E pr Y = 1 ∣ Z = 1, X E pr Y = 0 ∣ Z = 0, X
E pr Y = 0 ∣ Z = 1, X E pr Y = 1 ∣ Z = 0, X

,

where
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E pr Y = y ∣ Z, X = ∫  
exp y β̂0 + γ̂ZZ + β̂X

Tx

1 + exp β̂0 + γ̂ZZ + β̂X
Tx

dF X x ,

F X ⋅  is the empirical cumulative distribution function of observed covariates and β̂0, γ̂Z, and 

β̂X
T
 are the estimators of the intercept, coefficient of the treatment indicator, and coefficient of 

X in the logistic regression model, respectively.

Since ANCOVA model is likely misspecified in practice, it is desirable to develop robust, 

nonparametric covariate-adjusted estimation procedures for θ, which are well summarized in 

a recent article by Rosenblum and van der Laan (2010). For instance, an augmentation 

estimation procedure with covariate adjustment provides a consistent estimator for θ
(Robins, Rotnitzky, and Zhao 1994; Robins 1999; Leon, Tsiatis, and Davidian 2003; Bang 

and Robins 2005; Tsiatis 2006; Van Der Laan and Rubin 2006; Tsiatis et al. 2008; Lu and 

Tsiatis 2008; Zhang, Tsiatis, and Davidian 2008; Gilbert et al. 2009; Zhang and Gilbert 

2010; Tian et al. 2012). Such an estimator, say, θ̂aug, is asymptotically equivalent to a linear 

combination of θ̂ and ΔX = X−1 − X−0, where X−k is the sample mean of the covariate vectors or a 

transformation thereof for treatment k, k = 0,1 (see Appendix A for details). The distribution 

of θ̂aug is also approximately normal with mean θ. The standard error estimate for θ̂aug can 

be substantially smaller than that based on θ̂ when the augmented covariates are highly 

correlated with the response endpoint. Unlike the ANCOVA, the augmentation method is 

a model-free technique. Note that the stochastic properties of the above estimators were 

studied only under an unconditional setting in the literature, that is, with the study size n, 

their sample space is generated by all possible realizations of a random sample consisting of 

n independent, identically distributed copies of Y , Z, XT T
. Under this unconditional setting, 

θ̂ is asymptotically unbiased.

Another important goal of using the covariate-adjustment technique for estimating the 

treatment difference is to reduce bias of θ̂ when, by chance, the observed distributions of 

the covariate vectors are dissimilar between two groups. Intuitively, θ̂ can be severely biased 

for this case. As discussed above, however, θ̂ is asymptotically unbiased unconditionally. 

Therefore, the bias of θ̂ needs to be discussed in a conditional sense. Note that the study 

subjects’ covariates and their functions are ancillary statistics, that is, they are not directly 

related to the treatment difference θ. One may consider to make more “relevant” inference 

about θ̂ by conditioning on summary ancillary statistics. Such a conditional approach helps 

us to study the stochastic behavior of θ̂ with realizations of Y , Z, XT T
 whose ancillary 

statistics would be similar to their observed counterparts (Cox 1958; Cox and Hinkley 1979; 

Fraser and McDunnough 1980; Berger et al. 1988; Casella 1992; Fraser 2004; Ghosh, Reid, 

and Fraser 2010). Unbiased estimator conditional on all observed individual covariates, 

which incorporate all aspects of covariate imbalance, can be constructed by regression 

modelling. The aforementioned estimator θ̂ANCOVA is one such example. Unfortunately, it is 

a parametric approach in nature and prone to model misspecification. For a nonparametric 

Jiang et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2023 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



procedure, it is infeasible to make inference conditional on such a fine level. In this article, 

we consider a coarser procedures only conditional on certain ancillary statistics, which 

quantify the imbalance between two treatment groups with respect to covariates. The choice 

of the conditioning ancillary statistic is not unique (Basu 1959; Cox 1971; Ghosh, Reid, 

and Fraser 2010). For the present case, instead of conditioning on the entire set of observed 

covariates, a relevant ancillary statistic for studying the stochastic behavior of estimators 

for θ would be the aforementioned ΔX, which is a natural, and commonly used summary 

measure of covariate-imbalance in clinical studies (Pocock et al. 2002). This statistic is 

also routinely used for evaluating covariate imbalance after matching, for example, via the 

propensity score (PS) method (Resa and Zubizarreta 2016). With this ancillary statistic, the 

sample space considered consists of all realizations of a random sample consisting of n

independent copies of Y , Z, XT T
, whose imbalance measured by the two-sample covariate 

mean difference is identical to the observed counterpart. Figure 1 is a schematic plot of 

aforementioned sample spaces from the biggest to the smallest:

1. all realizations of n copies of Y , Z, XT T
;

2. all realizations of n copies of Y , Z, XT T
 with the same ΔX as observed;

3. all realizations of n copies of Y , Z, XT T
 with the same observed individual 

covariates in two groups.

The naive estimator is asymptotically unbiased only in the largest sample space. When 

correctly specified, θ̂ANCOVA is asymptotically unbiased in all three, including the smallest 

sample space. Our bias-correction proposal operates in the intermediate sample space.

In this article, we show that based on this conditional inference principle, a bias-adjusted 

estimator θ̂adj reduces the bias of θ̂. We also show that unconditionally, θ̂adj is asymptotically 

equivalent to θ̂aug and can be viewed as an efficiency augmented estimator itself. We used 

the data from a comparative clinical trial to evaluate treatments for cardiovascular diseases 

to illustrate our findings. Furthermore, a numerical study is conducted to examine the 

performance of θ̂adj.. We find via this study that if the covariates of the ancillary statistics are 

highly correlated with the outcome variable and/or the treatment allocation proportions, θ̂adj

can be substantially better than two sample estimator θ̂.

2. The Distributions of θ̂ Conditioning on ΔX and a Bias-Adjusted 

Estimator θ̂adj

Let θ = g μ0, μ1 , where g is a smooth function characterizing the contrast between μ0 and μ1. 

Then θ̂ = g μ̂0, μ̂1  is the two sample naive estimator for θ, where μ̂0 and μ̂1 are the simple 

naive estimators for μ0 and μ1, respectively. Under the random treatment assignments for 

designing the study, θ̂ − θ and ΔX are approximately normal with mean 0 and covariance 

matrix
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Σ =
Σ11 Σ12

Σ12 Σ22
,

where

Σ11 ≈ ġ1
2 μ0, μ1 var μ̂0 + ġ2

2 μ0, μ1 var μ̂1 ,

Σ12 ≈ ġ2 μ0, μ1 cov μ̂1, X−1 − ġ1 μ0, μ1 cov μ̂0, X−0 ,  and

Σ22 ≈ var X−0 + var X−1 ,

are the estimated variance of θ̂ − θ, the estimated covariance matrix between ΔX and θ̂ − θ, 

and the estimated covariance matrix of ΔX, respectively. Here ġ1 and ġ2 are the partial 

derivatives of g with respect to the first and second argument, respectively. Now, let dn

be the observed value of ΔX. Then for large n, the distribution of θ̂ − θ given ΔX = dn is 

approximately normal with mean Σ12Σ22
−1dn and variance Σ11 − Σ12Σ22

−1Σ21.

The following theorem summarizes this large sample approximation under mild 

assumptions.

Theorem. Let Y i, Zi, Xi
T T, i = 1, …, n, be the iid copies of Y , Z, XT T

 and π = pr Z = 1 . 

Assume that cov Y , XT T
 is a finite, nondegenerate matrix; the characteristic function of X

is integrable; and θ̂ is a regular estimator for θ, that is, n θ̂ − θ  is asymptotically equivalent 

to a sum of iid random quantities. Then

n θ̂ − θ ∣ ΔX = dn

converges weakly to a Gaussian distribution with mean Σ12Σ22
−1δ0 and variance Σ11 − Σ12Σ22

−1Σ21, 

where δ0 = limn ∞ ndn, and Σ11, Σ12, and Σ22 are the population counterparts of Σ11, Σ12, and 

Σ22, respectively.

Note that the assumptions under which the theorem holds are rather mild. For instance, the 

second assumption holds if the component of covariates X is either discrete or continuous 

with a squared integrable density function. The proof of the theorem is given in Appendix 

B. It follows from the theorem that, when δ0 is not zero, θ̂ is not n consistent under this 

conditional argument. A bias-adjusted estimator for θ is

θ̂adj = θ̂ − Σ12Σ22
−1dn .
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To illustrate how the inference procedure based on θ̂adj behaves asymptotically under various 

scenarios, let us consider a simple case of θ = μ1 − μ0 with a single covariate X. Here, the bias 

is

cov Y , X ∣ Z = 1 1 − π
var X + cov Y , X ∣ Z = 0 π

var X dn .

If the correlation between the covariate and response is weak, the bias can be negligible. On 

the other hand, if a covariate is strongly associated with the response in at least one arm, 

then the bias would not be trivial. Furthermore, if dn is small, then θ̂adj is almost identical 

to θ̂. On the other hand, if the distributions of X0 and X1 do not overlap much, dn can be 

quite large, and θ̂adj may be fairly different from θ̂. In general, if the observed distributions 

of X0 and X1 are similar and Σ12 is small, θ̂adj and θ̂ would have similar variances. The term 

Σ12Σ22
−1Σ21 represents the reduction from var θ̂  to var θ̂adj .

As a general example to illustrate how to construct θ̂adj, suppose that θ is the log-transformed 

OR, that is, g μ0, μ1 = log μ1 1 − μ0
μ0 1 − μ1

, then

θ̂adj  = log μ̂1 1 − μ̂0
μ̂0 1 − μ̂1

− Σ12Σ22
−1ΔX,

Σ11 = 1
n1μ̂1

+ 1
n1 1 − μ̂1

+ 1
n0μ̂0

+ 1
n0 1 − μ̂0

,

Σ12 = Σ121
n1μ̂1 1 − μ̂1

+ Σ120
n0μ̂0 1 − μ̂0

,  and

Σ22 = Σ221
n1

+ Σ220
n0

,

where nk, Σ12k, and Σ22k are the sample size, empirical covariance between Y  and X, and the 

variance-covariance matrix of X in the kth group, k = 0, 1, respectively.

Note that θ̂adj is equivalent or asymptotically equivalent to augmentation estimators (Tsiatis 

et al. 2008; Tian et al. 2012). The justification of this unconditional equivalence is given 

in Appendix A. Note that in this article, the dimension of the covariate vector is small 

relative to the sample size. It is interesting to explore how to deal with the case with a 

high-dimensional covariate vector for future research.

Remark 1. For the continuous outcome, the treatment effect can be assessed by the mean 

difference between two groups. For the survival outcome, the treatment effect can be 

measured by the difference in restricted mean survival time (RMST, Zhao et al. 2016). 
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In both cases, the naive estimator for the treatment effect can be easily constructed. The 

construction of the bias adjusted estimator follows the same procedure as that used for the 

log OR with minor modifications on the relevant variance and covariance estimations. We 

illustrate the bias adjustment as well as relevant statistical inference procedure in Appendix 

C.

3. Example

In this section, we used the data from a cardiovascular trial: “Valsartan in acute myocardial 

infarction” (VALIANT) study (Pfeffer et al. 2003) to illustrate our findings. The study 

patients were equally randomized to three groups: ARB valsartan, captopril, and a 

combination of these two drugs. Here, we consider a binary outcome as the endpoint, which 

indicates whether the patient had hospitalization/death by month 18. Since the 18-month 

incidence rates of hospitalization/death from two mono-therapies are almost identical, we 

combined the data from these two mono-therapy groups to evaluate the effect of combo-

therapy. Note that pooling two groups is not a common practice and for illustrative purpose 

only. The study enrolled a total of 14,703 patients. The observed event rates for mono- and 

combo are 0.58 and 0.57, indicating that there was no benefit from the combo with respect 

to this outcome. On the other hand, with the data from 302 patients in Australia, the mono-

therapy somehow appears to be statistically significantly better than its combo counterpart 

based on the simple two sample estimate (the observed event rates for combo and mono are 

0.80 and 0.67, respectively). Now, let θ be the log OR, and θ̂ be its naive estimate. The point 

estimate of OR (combo vs. mono), that is, exp θ̂  and 0.95 confidence interval are 1.99 and 

(1.12, 3.51), respectively. Among 24 countries participated in the VALIANT study, Australia 

was the only one whose patients appear to have better outcomes for the mono-therapy. It 

is not clear whether Australian patients were quite different from those from the rest of 

world to have such a discrepancy on the treatment effect. On the other hand, since the 

sizable treatment by country interaction is rare in practice, the statistically significant OR for 

Australian patients may be a false discovery. To explore this further for Australia patients, 

we found that there was treatment allocation imbalance between these two treatment groups 

with respect to, for example, the patient’s binary preexisting diabetes status (DIAS) and 

baseline heart rate (HR), which is a potential source of the bias of the naive estimator. In 

Figure 2, we show the fitted curves stratified by DIAS via two logistic regression models 

with the treatment assignment being the outcome and standardized HR, HR2 and HR3 as the 

independent variables. If the randomization treatment allocation scheme were working for 

Australia patients, these two curves would be flat around 2/3. Figure 2 indicates that there 

was indeed nontrivial treatment allocation imbalance between the mono and combo groups. 

Now, let θ̂adj be the biased-adjusted estimate for the log OR. The corresponding bias-adjusted 

estimator of OR, that is, exp θ̂adj  and the 0.95 confidence interval conditional on the observed 

imbalance in DIAS, HR, HR2 and HR3 are 1.68 and (0.95, 2.94), respectively. Here, the point 

estimator is closer to 1 and the confidence interval contains the null value. In view of the 

data from other countries, the adjustment toward the null is likely in the right direction. Note 

that one of the reasons we considered the HR variable to the third order for the conditioning 

inference is that most distributions can be characterized with their first three moments. This 
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conditioning setting would be approximately the same as that with the entire distribution of 

HR.

4. Simulation Study

We further explore the finite sample properties of the proposed estimator via simulation 

studies. Mimicking the VALIANT study, we first generate the binary diabetes status and 

standardized heart rate, (DIAS, HR), for 300 patients via the following distributions

pr DIAS = 1 = 0.22,

HR  ∣ DIAS = 1 N 0.042,1.4 ,  and

HR  ∣ DIAS = 0 N − 0.045,1.1 ,

which are estimated using the observed Australia data. We then randomly assign 

300 simulated patients into two groups with 200 patients in the mono-therapy group 

and 100 patients in the combo-therapy group. The four-dimensional covariate vector 

of interest is X = DIAS, HR, HR2, HR3 T
. To examine the finite sample performance 

of the proposed method, we need to perform the conditional inference only among 

samples with a given imbalance in covariates. To this end, we examine ΔX = X−1 − X−0, 

the mean difference in covariates between two groups, in each of the simulated 

datasets and only keep those with approximately the “same” covariates imbalance 

as that observed in Australian patients. Specifically, we require that the observed 

ΔX ∈ 0.155, 0.165 × − 0.06, − 0.04 × 0.26, 0.30 × − 0.33, − 0.21 . The center and width of 

these intervals are the corresponding component of observed ΔX in Australian patients and 

20% of the (unconditional) standard deviation thereof, respectively. After obtaining 5000 

such datasets, we generate the binary outcome via the logistic regression model

pr Y = 1 ∣ X, Z = ℎ β0 + γ0Z + m X

where

m X = κ β1 DIAS−μD + β2 HR−μ1 +β3 HR2 − μ2 + β4 HR3 − μ3 ,

ℎ ⋅ = expit ⋅ , β0, β1, β2, β3, β4
T = 0.69,0.78, − 0.25, 0.33, − 0.02 T

 is the maximum likelihood 

estimator (MLE) of the regression coefficient based on Australia data, μD and μj are 

expectation of DIAS and HRj, respectively, and κ = 0,2, or 4 is the tuning parameter to 

control the size of the covariate effect. For each simulated dataset, we obtain the naive 

and bias adjusted estimators for θ = log OR . In the first setting, we let γ0 = 0, that is, the 

distribution of Y  does not dependent Z and there is no treatment effect. In the second setting, 
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we let γ0 = 1, representing a higher incidence rate in group Z = 1. In this case, the true value 

of θ can be obtained by computing

log E ℎ γ0 + ξ E 1 − ℎ ξ
E 1 − ℎ γ0 + ξ E ℎ ξ ,

where the expectation is with respect to ξ = β0 + m X . Based on 5000 such simulated 

datasets with approximately the same covariates imbalance, we obtain the empirical biases 

of estimators with and without adjusting covariates imbalance and the empirical coverage 

level of the corresponding 95% confidence intervals. The results are summarized in Table 

1. When the covariates effect is strong κ = 4 , the naive estimator has a nontrivial bias, 

especially relative to its standard error. The estimated variance of the naive estimator 

overestimates the conditional variability and yields wide confidence intervals. Even with 

this upward bias in variance estimation, the 95% confidence interval based on the naive 

estimator fails to cover the truth at the nominal level, since the interval is centered at 

a biased location. On the other hand, the estimated variance of the adjusted estimator 

approximates the underlying conditional variance and the empirical coverage level of the 

95% confidence interval is fairly close 0.95. When there is no covariates effect κ = 0 , 

two estimators have a comparable performance as anticipated. If we consider unconditional 

distribution of these two estimators, we don’t need to restrict to the generated data with the 

given covariate imbalance and the bias-adjusted estimator becomes a version of efficiency 

augmented estimator in the literature. In such a case, one may expect that both estimators 

are asymptotically unbiased but the variance of the bias-adjusted estimator is smaller than 

that of the naive estimator. The results based on 5000 simulations are summarized in 

Table 2, which confirms the efficiency improvement reported in the literature. We have 

also compared the “bias-adjusted” estimator with the efficiency augmented counterpart 

proposed by Tsiatis et al. (2008) and Zhang, Tsiatis, and Davidian (2008) unconditionally 

and obtained almost identical results as shown in Figure 3, which is consistent with 

their asymptotic equivalence. In Figure 4, we have plotted the density functions of the 

naive estimator (both unconditional and conditional on the covariates imbalance, κ = 0) 

to highlight the fact that the distribution of an estimator can be substantially altered by 

conditioning on an ancillary statistics. In the same figure, we have also plotted the density 

functions of the bias adjusted estimator for comparison purpose. It is clear that the biased-

adjusted estimator is unbiased both conditionally and unconditionally.

We have repeated the simulation for continuous as well as survival outcomes. In the former 

case, the outcome Y i is generated via

Y = β0 − γ0Z + m X + N 0, σ0
2 ,

where β0, β1, β2, β3, β4
T = 2.23, − 0.45, − 0.01, − 0.38,0.05 T

 and σ0 = 2.04 are MLEs of the 

log-normal regression model based on Australia data. For the latter case, the survival time 

is the exponential of the generated continuous outcome. The censoring time is generated 

uniformly between 18 and 39 months, corresponding to the minimal and maximal censoring 
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time in the VALIANT data, respectively. For the survival outcome, the parameter of interest 

is the difference in RMST

θ = E min Y , τ ∣ Z = 1 − E min Y , τ ∣ Z = 0 ,

where τ = 33 months is the maximum observed survival time in the Australia data. The 

results for the continuous endpoints are presented in Tables 3 and 4 for the conditional and 

unconditional distributions, respectively. Likewise, the results for the survival endpoints are 

presented in Tables 5 and 6. The results are similar to those for binary outcomes.

5. Discussion

For the conventional causal inference procedures, for example, the PS method, we assume 

that the underlying population distributions of the covariate vectors between two groups 

are expected to be different. Then unconditionally, the naive two sample estimator is not 

consistent. The PS method tries to reduce this systematic bias. Under our setting, the 

underlying distributions of the covariate vectors between two groups are the same due to 

treatment allocation randomization, but the corresponding observed distributions may be 

different by chance. For this situation, the parametric ANCOVA is a standard practice for 

obtaining an estimator for the treatment effect to reduce bias. Note that the ANCOVA is a 

conditional inference procedure (i.e., conditional on all the individual patients’ covariates). 

However, if a nonlinear ANCOVA model is not correctly specified, it is not clear how 

to interpret the resulting treatment effect estimate. Our nonparametric approach cannot 

consider this fine level of conditioning. We derived the new procedure by taking advantage 

of study randomization and using a conditional inference argument based on an ancillary 

summary statistic reflecting the observed covariate imbalance. As far as we know, there 

are no such methods similar to our proposal in the literature. On the other hand, it is a 

pleasant surprise that this conditional procedure turns out to be asymptotically equivalent 

to a class of augmentation methods unconditionally. This connection may enhance the 

usage of the augmentation procedures in practice. Now, we may claim that the new 

estimator improves the asymptotic efficiency unconditionally and is “unbiased” conditional 

on observed covariates imbalance at the same time.

Like ANCOVA or efficiency augmentation methods, the choice of covariates in our 

conditional procedure can be crucial. The bias adjusted estimators conditional on different 

covariates imbalances are all valid but have different interpretations. Thus, we suggest 

identifying those covariates before implementing the conditional analysis. Empirically, one 

may first include variables, which show imbalances via the standard two-sample test. Since 

the bias reduction can be substantial if the covariates of concern are highly correlated with 

the outcome, we suggest to additionally include covariates empirically associated with the 

outcome based on univariate analysis. The number of covariates in the bias adjustment 

procedure may be determined a priori based on the sample size to avoid over adjustment. 

In practice, one may examine the conditional number of the matrix Σ22, which would be 

near-singular if over adjusted. Note that theoretically, the procedures proposed by Zhu et 

al. (2011) and Tian et al. (2012), which have built-in variable selection algorithms, are 

only valid under the unconditional setting. For the unconditional case, the two sample 
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naive and any augmented estimators are consistent, therefore, the choice of augmentation 

terms is solely driven by their variance. On the other hand, when we deal with the 

current (conditional) case, the naive estimator may not be consistent. It is not clear how 

to generalize these variable selection methods to the conditional setting. Further research 

along this line is needed.

The generalization to more general observational studies is possible by considering the new 

ancillary statistics

1
n1 i = 1

n Zi
π Xi

Xi − 1
n0 i = 1

n 1 − Zi
1 − π Xi

Xi,

where π Xi  is the correct PS. However, such an extension requires the knowledge of the 

PS, which is a difficult task by itself. Furthermore, the bias associated with the ancillary 

statistics is merely the “residual bias” after the PS adjustment, which removes the systematic 

bias between two groups. Thus, it is less important than, for example, developing a good 

PS model at the first place. If we can correctly specify the conditional distribution of 

outcome given covariates in both groups, the model-based ANCOVA method can be used to 

construct an unbiased estimator even for data from an observational study. However, such a 

model-based method may be rather sensitive to model misspecification. Covariate matching, 

such as the one based on PS, is also a common approach to recover the balance in baseline 

covariates, and ΔX is often used to quantify imbalance after matching (Stuart 2010). This 

further justifies the usage of this type of ancillary statistic in our conditional inference.

Stratified analysis can be regarded as a special case of the covariate-adjusted procedure. 

On the other hand, due to its discrete nature of possible values of the covariates, using the 

present conditioning approach, one may consider the ancillary statistics consisting of the 

entire observed covariate vectors for stratified analysis. For the general case when some of 

the covariates are continuous, however, such a fine level of conditioning would be difficult, 

if not impossible to implement.
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Appendix A: Equivalence Between θ̂aug and θ̂adj

Let Y i, Zi, Xi
T T, i = 1, …, n, be the iid copies of Y , Z, XT T

. The efficiency-augmented 

estimator for θ = g μ0, μ1  studied by Tsiatis et al. (2008) and Zhang, Tsiatis, and Davidian 

(2008) is given by
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θ̂aug = g μ0
†, μ1

† ,

where

μ1
† = μ̂1 −

i = 1

n
1 − π n1

−1â1 Xi Zi − n0
−1â1 Xi 1 − Zi ,

μ0
† = μ̂0 −

i = 1

n0

π n0
−1â0 Xi 1 − Zi − n1

−1â0 Xi Zi .

Here, nk is the sample size for the kth group, âk x = α̂k + β̂k
Tx and α̂k and β̂k are the least 

squares estimators of αk and βk in regression model E Y i ∣ Xi, Zi = k = αk + βk
TXi, k = 0,1, 

respectively. Using the fact that ∑i = 1
n I Zi = k α̂k + β̂k

TXi = μ̂k, we have

μ1
† = πμ̂1 + 1 − π α̂1 + β̂1

TX−0  and

μ0
† = 1 − π μ̂0 + π α̂0 + β̂0

TX−1 .

Since α̂k = μ̂k − β̂k
TX−k and μ̂k − μk

2 + μk
† − μk

2 = oa.s. n−1/2 ,

θ̂aug  − θ̂ =   − 1 − π ġ2 μ̂0, μ̂1 μ̂1 − α̂1 + β̂1
TX−0 −πġ1 μ̂0, μ̂1 μ̂0 − α̂0 + β̂0

TX−1 + oa.s. n−1/2

= − 1 − π ġ2 μ̂0, μ̂1 β̂1 − πġ1 μ̂0, μ̂1 β̂0
TΔX + oa.s.  n−1/2 .

Now, β̂k = Σ22k
−1 Σ12k

T
. It follows that

θ̂aug  = θ̂ − 1 − π ġ2 μ̂0, μ̂1 Σ121Σ221
−1 −πġ1 μ̂0, μ̂1 Σ120Σ220

−1 ΔX + oa.s.  n−1/2 ,

where Σ22k is the empirical estimate for var X ∣ Z = k  and Σ12k is the empirical estimate for 

cov Y , X ∣ Z = k , k = 0,1. Note that in constructing the bias-adjusted estimator,

Σ12 = n−1 ġ2 μ̂0, μ̂1 Σ121
π − ġ1 μ̂0, μ̂1 Σ120

1 − π  and

Σ22 = n−1 Σ221
π + Σ220

1 − π .
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This, coupled with the fact that Σ221 − Σ220 = oa.s. 1 , implies that

1 − π ġ2 μ̂0, μ̂1 Σ121Σ221
−1 − πġ1 μ̂0, μ̂1 Σ120Σ220

−1 − Σ12Σ22
−1 = oa.s.  1 ,

and

θ̂aug − θ̂adj = oa . s . ΔX + n−1/2 .

Therefore

pr n1/2 θ̂aug  − θ̂adj  ≥ δ ∣ ΔX = oa.s.  1

as n ∞ for any positive δ.

Appendix B: Proof of Theorem

In Appendix B, we will drive the limiting distribution of

n1/2 θ̂ − θ ,

given ΔX under the following three conditions that

(A1) cov Y , XT T
 is a finite, nondegenerate matrix;

(A2) the characteristic function of X is integrable;

(A3) θ̂ is a regular estimator for θ, that is,

θ̂ − θ = n−1
i = 1

n
Ui + ξθ,

where

Ui = ġ2 μ0, μ1
Zi Y i − μ1

π + ġ1 μ0, μ1
1 − Zi Y i − μ0

1 − π ,    i = 1, …, n,

are iid random variables, π = pr Z = 1 = 1/ M + 1 , and ξθ = oa.s.  n−1/2 .

Under Condition (A3),

θ̂ − θ
ΔX − ΔX

= n−1
i = 1

n Ui

Vi
−

ξθ

ξX
, (B.1)
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where Vi = π−1Zi Xi − τ + 1 − π −1 1 − Zi Xi − τ , τ = E X  and ξX = oa.s. n−1/2 . Let 

Un = n−1/2∑i = 1
n Ui and Vn = n−1/2∑i = 1

n Vi. Then Un, Vn
T T converges weakly to U, VT T

, a 

Gaussian vector with mean 0 and a finite covariate matrix nΣ, where

Σ =
Σ11 Σ12

Σ12 Σ22
.

Here

Σ11 = n−1ġ1
2 μ0, μ1

var Y ∣ Z = 1
π + n−1ġ2

2 μ0, μ1
var Y ∣ Z = 0

1 − π ,

Σ12 = n−1ġ1 μ0, μ1
cov Y , X ∣ Z = 1

π − n−1ġ2 μ0, μ1
cov Y , X ∣ Z = 0

1 − π ,  and 

Σ22 = n−1 var X
π 1 − π .

Now, let vn ∈ An  be a sequence of vectors such that vn v0, a constant vector, as n ∞, 

where An is the support of Vn. It follows from Steck (1957) that under Conditions (A1) and 

(A2),

sup
u

Fn
vn u − Fv0 u = oa.s.  1 , (B.2)

where Fn
v u  is the cumulative distribution function of the conditional distribution of Un

given Vn = v, and Fv u  is the cumulative distribution function of the conditional Gaussian 

distribution of U given V = v.

Let Bn be the support of n1/2ΔX. For any sequence of vectors δn ∈ Bn, such that 

δn − δ0 = o 1 , δn also converges to δ0, as n ∞, where δn = δn − ξX ∈ An. Therefore,

Pr n1/2 θ̂ − θ ≤ u ∣ n1/2ΔX = δn

= Pr Un ≤ u − n1/2ξθ ∣ Vn = δn + oa.s.  1
= Fn

δ0 u − n1/2ξθ + oa.s.  1
= Fδ0 u + oa.s.  1 .

(B.3)

Note that the first equality is a direct consequence of (B.1), and the last equality is implied 

by (B.2) and the fact that Fδ u  is uniform continuous in u.

Now, let δn = n1/2dn. Since Fδ0 ⋅  is a conditional Gaussian distribution function with 

mean Σ12Σ22
−1δ0, (B.3) implies n1/2 θ̂ − θ  given n1/2ΔX = δn converges to a conditional 

Gaussian distribution with mean n1/2Σ12Σ22
−1δ0 almost surely. Since δ0 − n1/2dn = o 1  and 
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Σij − Σij = oa.s. 1 , the bias-adjusted estimator θ̂ − Σ12Σ22
−1dn is an asymptotically unbiased 

estimator for θ under the conditional setting with asymptotic variance Σ11 − Σ12Σ22
−1Σ21.

Appendix C: The Adjusted Estimators for the Continuous and Survival 

Endpoints

For the continuous endpoint, the parameter of interest is the mean difference

θ = E Y ∣ Z = 1 − E Y ∣ Z = 0 ,

where g a, b = b − a. A commonly used estimator for θ can be constructed as θ̂ = μ1 − μ0. The 

components used in the bias adjustment can be estimated as

Σ11 = 1
n i = 1

n Zi
π Y i − μ1

2 + 1 − Zi
1 − π Y i − μ0

2

Σ12 = 1
n i = 1

n Zi
π Y i − μ1 Xi − X−1

T − 1 − Zi
1 − π Y i − μ0 Xi − X−0

T .

For the survival endpoint Y  subject to right censoring, we observe T , D , where 

T = min Y , C , D = I Y ≤ C  and C is the censoring time. The treatment effect is measured by 

the difference in RMST

θ = E min Y , τ ∣ Z = 1 − E min Y , τ ∣ Z = 0 ,

for fixed τ, and g a, b = b − a. The naive estimator of θ can be constructed as

θ̂ =
0

τ
Ŝ1 t dt −

0

τ
Ŝ0 t dt,

where Ŝj ⋅  is the Kaplan–Meier (KM) estimator for the survival function of T ∣ Z = j based 

on observations from group j, j = 0,1. Note that θ̂ is a nonparametric estimator for θ in that 

its validity does not depend on any specific parametric or semiparametric assumption in 

contrast to the hazard ratio. It follows from the classical results about the KM estimator in 

survival analysis,

θ̂ − θ = − 1
n i = 1

n Zi
π 0

τ
s
τS1 t dt
p1 s dMi s + 1 − Zi

1 − π 0

τ
s
τS0 t dt
p0 s dMi s + op n−1/2 ,

where Mi t = I T i ≤ t Di − ∫0
tI T i ≥ s dΛ s ∣ Zi , Λ t ∣ Z  is the cumulative hazard function of 

Y ∣ Z, and pj t = pr T ≥ t ∣ Z = j , j = 1, 2 . Therefore, the variance components used in the 

bias adjustment can be estimated as

Jiang et al. Page 15

J Am Stat Assoc. Author manuscript; available in PMC 2023 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Σ11 = 1
n i = 1

n Zi
π

0

τ
s
τŜ1 t dt
p̂1 s dM̂i s

2
+ 1 − Zi

1 − π
0

τ
s
τŜ0 t dt
p̂0 s dM̂i s

2

and

Σ12 = 1
n i = 1

n Zi
π

0

τ
s
τŜ1 t dt
p̂1 s dM̂i s Xi − X−1

T− 1 − Zi
1 − π

0

τ
s
τŜ0 t dt
p̂0 s dM̂i s Xi − X−0

T ,

where M̂i t = I T i ≤ t Di − ∫0
tI T i ≥ s dΛ s ∣ Zi , Λ t ∣ Z  is the Nelson–Aalen estimator 

for the cumulative hazard function of Y ∣ Z,  p̂1 t = n1
−1∑i = 1

n ZiI T i ≥ t , and 

p̂0 t = n0
−1∑i = 1

n 1 − Zi I T i ≥  t .
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Figure 1. 
The sample spaces within which the statistical inference is made.
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Figure 2. 
The treatment allocation proportions to mono-therapy group: solid line is for DIAS = 1; 

dashed line is for DIAS = 0. HR stands for heart rate.
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Figure 3. 
(a) The comparison between the efficiency augmented and bias adjusted estimators for 

binary outcomes when γ0, κ = 0,4 . Here the median of ∣ θaug − θadj /esdadj over 5000 

simulations is 0.02 with esdadj being the empirical standard deviation of θadj over 5000 

simulations. (b) The comparison between the efficiency augmented and bias adjusted 

estimators for binary outcomes when γ0, κ = 1,4 . Here the median of θaug − θadj /esdadj over 

5000 simulations is 0.02 with esdadj being the empirical standard deviation of θadj over 5000 

simulations.
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Figure 4. 
(a) The empirical density functions for θ̂ and θ̂adj when γ0, κ = 0,4 . (b) The empirical 

density functions for θ̂ and θ̂adj when γ0, κ = 1,4 .
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