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Abstract

As a novel form of human machine interaction (HMI), hand gesture recognition (HGR) has

garnered extensive attention and research. The majority of HGR studies are based on visual

systems, inevitably encountering challenges such as depth and occlusion. On the contrary,

data gloves can facilitate data collection with minimal interference in complex environments,

thus becoming a research focus in fields such as medical simulation and virtual reality. To

explore the application of data gloves in dynamic gesture recognition, this paper proposes a

data glove-based dynamic gesture recognition model called the Attention-based CNN-

BiLSTM Network (A-CBLN). In A-CBLN, the convolutional neural network (CNN) is

employed to capture local features, while the bidirectional long short-term memory

(BiLSTM) is used to extract contextual temporal features of gesture data. By utilizing atten-

tion mechanisms to allocate weights to gesture features, the model enhances its under-

standing of different gesture meanings, thereby improving recognition accuracy. We

selected seven dynamic gestures as research targets and recruited 32 subjects for partici-

pation. Experimental results demonstrate that A-CBLN effectively addresses the challenge

of dynamic gesture recognition, outperforming existing models and achieving optimal ges-

ture recognition performance, with the accuracy of 95.05% and precision of 95.43% on the

test dataset.

1. Introduction

With the rapid development of computer technology and artificial intelligence, Human

Machine Interaction (HMI) has emerged as one of the most prominent research fields in con-

temporary times. The driving force behind HMI is our expectation that machines will become

intelligent and perceptive like humans [1]. HMI refers to the process of exchanging informa-

tion between humans and machines through effective dialogue. HMI systems can collect

human-intended information and transform it into a format understandable by machines,

enabling machines to operate based on human intent [2]. Traditional HMI primarily relies on

tools such as joysticks, keyboards, and mice to control terminals, which usually require fixed
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operational spaces. This severely restricts the range of human expressive actions and dimin-

ishes work efficiency. Consequently, to enhance the naturalness of HMI, the next generation

of HMI technology needs to be human-centric, diversified, and intelligent [3]. In real-life situ-

ations, besides verbal communication, gestures serve as one of the most significant means for

humans to convey information, enabling direct and effective expression of user needs.

Research conducted by Liu et al. pointed out that hand gestures constitute a significant part of

human communication, with advantages including high flexibility and rich meaning, making

them an important modality in HMI [4]. Consequently, Hand Gesture Recognition (HGR)

has emerged as a new type of HMI technology and has become a research hotspot with enor-

mous potential in various domains. For instance, in the healthcare domain, capturing and ana-

lyzing physiological characteristics related to finger movements can significantly assist in

studying and developing appropriate rehabilitation postures [5]. In the field of mechanical

automation, interaction between fingers and machines can be achieved by detecting finger

motion trajectories [6]. In the field of virtual reality, defining different gesture commands

allows users to control the movements of virtual characters from a first-person perspective [7].

Research on HGR can be classified into two categories based on the methods of acquiring

gesture data: vision-based HGR and wearable device-based HGR. Vision-based HGR relies on

cameras as the primary tools for capturing gesture data. They offer advantages such as low cost

and no direct contact with the human hands. However, despite the success of high-quality

cameras, vision-based systems still have some inherent limitations, including a restricted field

of view and high computational costs [8, 9]. In certain scenarios, robust results may require

the combined data acquisition from multiple cameras due to issues like depth and occlusion

[10, 11]. Consequently, the presence of these aforementioned challenges often hinders vision-

based HGR methods from achieving optimal performance. In recent years, wearable device-

based HGR has witnessed rapid development due to advancements in sensing technology and

widespread sensor applications. Compared to vision-based approaches, wearable device-based

HGR eliminates the need to consider camera distribution and is less susceptible to external

environmental factors such as lighting, occlusion, and background interference. Data gloves

represent a typical example of wearable devices used in HGR. These gloves are equipped with

position tracking sensors that enable real-time capture of spatial motion trajectory information

of users’ hand postures. Based on predefined algorithms, gesture actions can be recognized,

mapped to corresponding response modules, and thus complete the HMI process. HGR sys-

tems based on data gloves have become a research hotspot in the relevant field. These systems

offer several advantages, including stable acquisition of gesture data, reduced interference

from complex environments and satisfactory modeling and recognition results, especially

when dealing with large-scale gesture data [12].

In the field of HGR, researchers primarily focus on two types of gestures: static gestures and

dynamic gestures. Static HGR systems analyze hand posture data at a specific moment to

determine its corresponding meaning. However, static gesture data only provide spatial infor-

mation of hand postures at each moment, while temporal information of hand movements is

disregarded. As a result, the actual semantic information conveyed is limited, making it chal-

lenging to extend to complex real-world applications. Dynamic HGR systems, on the other

hand, deal with information regarding the changes in hand movement postures over a period

of time. These systems require a comprehensive consideration of both spatial and temporal

aspects of hand postures. Clearly, compared to static gestures, dynamic gestures can convey

richer semantic information and better align with people’s actual needs in real-life scenarios.

Although numerous research efforts have been dedicated to dynamic HGR algorithms, most

are based on vision systems, and the challenge of dynamic HGR using data gloves remains.
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The dynamic gesture investigated in this study is the seven-step handwashing, which is a

crucial step in the healthcare field. Proper handwashing procedures can effectively reduce the

probability of disease transmission. Our work applies the seven-step handwashing to medical

simulation training, where users wear data gloves to perform the handwashing process. Addi-

tionally, we design an automated dynamic gesture recognition algorithm to assess whether

users correctly execute the specified hand gesture steps. Specifically, we developed a data

glove-based dynamic HGR algorithm in this paper by incorporating deep learning techniques.

This algorithm considers both spatial and temporal information of gesture data. Firstly, the

Convolutional Neural Network (CNN) is utilized to extract local features of gesture data at

each moment. Subsequently, these features are incorporated into the Bidirectional Long

Short-Term Memory (BiLSTM) structure to model the temporal relationships. Finally, an

attention mechanism is employed to enhance the gesture features and output the recognition

results of dynamic gestures. In summary, this paper makes three main contributions:

1. Within the context of medical simulation, a data glove-based seven-step handwashing

dynamic hand gesture data collection process was defined, and dynamic hand gesture data

from 32 subjects were collected following this procedure.

2. A novel data glove-based dynamic HGR algorithm, called Attention-based CNN-BiLSTM

Network (A-CBLN), was designed by combining deep learning techniques with the charac-

teristics of dynamic gesture data. A-CBLN integrates the advantages of CNN and BiLSTM,

effectively capturing the spatiotemporal features of gesture data, and further enhancing the

features using an attention mechanism, resulting in precise recognition of dynamic

gestures.

3. Extensive experiments were conducted to verify the effectiveness of the A-CBLN algorithm

for dynamic gesture recognition, and key parameter settings within A-CBLN were thor-

oughly discussed. The results obtained from the test dataset demonstrated that our pro-

posed method outperformed other comparative algorithms in terms of accuracy, precision,

recall and F1-score.

The remaining sections of this paper are organized as follows. In Section 2, we review recent

works related to HGR, with a particular focus on data glove-based HGR methods. Section 3

provides a detailed description of the proposed algorithm for dynamic gesture recognition.

Section 4 encompasses the data collection methodology for gestures and provides implementa-

tion details of the conducted experiments. The relevant experimental results and analysis are

presented in Section 5, followed by a concise summary of this paper in Section 6.

2. Related works

In recent years, research in the HGR field has focused on two main aspects: the type of gesture

data (static or dynamic) and the sensors used for data collection (visual systems or wearable

devices). This section provides an overview of relevant studies in HGR, emphasizing research

involving wearable devices like data gloves.

Static hand gesture recognition research primarily focuses on analyzing the spatial features

of gesture data without considering its temporal variations. This type of research is primarily

applied in sign language recognition scenarios. A static hand gesture recognition system based

on wavelet transform and neural networks was proposed by Karami et al. [13]. The system

operated by taking hand gesture images acquired by a camera as input and extracting image

features using Discrete Wavelet Transform (DWT). These features were fed into a neural net-

work for classification. In the experimental section, 32 Persian sign language (PSL) letter

PLOS ONE Data glove-based gesture recognition using CNN-BiLSTM model with attention mechanism

PLOS ONE | https://doi.org/10.1371/journal.pone.0294174 November 17, 2023 3 / 22

https://doi.org/10.1371/journal.pone.0294174


symbols were selected for investigation. The training was conducted on 416 images, while test-

ing was performed on 224 images, resulting in a test accuracy of 83.03%. Thalange et al. [14]

introduced two novel feature extraction techniques, Combined Orientation Histogram and

Statistical (COHST) Features and Wavelet Features, to address the recognition of static sym-

bols representing numbers 0 to 9 in American Sign Language. Hand gesture data was collected

using a 5-megapixel network camera and processed with different feature extraction methods

before input into a neural network for training. The proposed approach achieved an outstand-

ing average recognition rate of 98.17%. Moreover, a novel data glove with 14 sensor units was

proposed by Wu et al. [15], who explored its performance in static hand gesture recognition.

They defined 10 static hand gestures representing digits 0–9 and collected data from 10 sub-

jects, with 50% of the data used for training and the remaining 50% for testing. By employing a

neural network for classification experiments, they achieved an impressive overall recognition

accuracy of 98.8%. Lee et al. [16] introduced a knitted glove capable of pattern recognition for

hand poses and designed a novel CNN model for hand gesture classification experiments. The

experimental results demonstrated that the proposed CNN structure effectively recognized 10

static hand gestures, with classification accuracies ranging from 79% to 97% for different ges-

tures and an average accuracy of 89.5%. However, they only recruited 10 subjects for the exper-

iments. Antillon et al. [17] developed an intelligent diving glove capable of recognizing 13

static hand gestures for underwater communication. They employed five classical machine

learning classification algorithms and conducted training on hand gesture data from 24 sub-

jects, with testing performed on an independent group of 10 subjects. The experimental results

indicated that all classification algorithms achieved satisfactory hand gesture recognition per-

formance in dry environments, with accuracies ranging from 95% to 98%. The performance

slightly declined in underwater experimental conditions, with accuracies ranging from 81% to

94%. Yuan et al. [18] developed a wearable gesture recognition system that can simultaneously

recognize ten types of numeric gestures and nine types of complex gestures. They utilized the

Multilayer Perceptron (MLP) algorithm to recognize 19 static gestures with 100% accuracy,

showcasing the strong capabilities of deep learning technology in the field of HGR. However,

it is worth noting that the sample data in their experimental section was derived solely from

four male volunteers. Moreover, a data glove based on flexible sensors was utilized by Ge et al.

[19] to accurately predict the final hand gesture before the completion of the user’s hand

movement in real time. They constructed a gesture dataset called Flex-Gesture, which con-

sisted of 16 common gestures, each comprising 3000 six-dimensional flexion data points.

Additionally, they proposed a multimodal data feature fusion approach and employed a com-

bination of neural networks and support vector machines (SVM) as classifiers. The system

achieved a remarkable prediction accuracy of 98.29% with a prediction time of only 0.2329 ms.

However, it should be noted that the data glove-based system had certain limitations as it did

not consider temporal information in the hand gestures. It is worth mentioning that the

authors believe that incorporating deep learning algorithms with temporal features analysis

could potentially yield more effective results.

Unlike static gesture recognition, dynamic gesture recognition requires considering the

spatial information of hand movements and their temporal variations. With the rapid

advancement of deep learning techniques, researchers have extensively investigated structures

such as Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) and

applied them to real-time dynamic gesture recognition problems. Nguyen et al. [20] presented

a novel approach for continuous dynamic gesture recognition using RGB video input. Their

method comprises two main components: a gesture localization module and a gesture classifi-

cation module. The former aims to separate gestures using a BiLSTM network to segment con-

tinuous gesture sequences. The latter aims to classify gestures and efficiently combine data
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from multiple channels, including RGB, optical flow, and 3D key pose positions, using two 3D

CNNs and a Long Short-Term Memory (LSTM). The method was evaluated on three publicly

available datasets, achieving an average Jaccard index of 0.5535. Furthermore, Paweł et al. [21]

developed a system capable of rapidly and effectively recognizing hand gestures in hand-body

language using a dedicated glove with ten sensors. Their experiments defined 22 hand-body

language gestures and recorded 2200 gesture data samples (10 participants, each gesture action

repeated 10 times). Three machine learning classifiers were employed for training and testing,

resulting in a high sensitivity rate of 98.32%. The pioneering work of Emmanuel et al. [22]

introduced the use of CNN for grasp classification using piezoelectric data gloves. Experimen-

tal data were collected from five participants, each performing 30 object grasps following

Schlesinger’s classification method. The results demonstrated that the CNN architecture

achieved the highest classification accuracy (88.27%). It is worth mentioning that the authors

plan to leverage the strengths of both CNN and RNN in future work to improve gesture pre-

diction accuracy. Lee et al. [23] developed a real-time dynamic gesture recognition data glove.

They employed neural network structures such as LSTM, fully connected layers, and novel ges-

ture localization and recognition algorithms. This allowed the successful classification of 11

dynamic finger gestures with a gesture recognition time of less than 12 ms. Yuan et al. [24]

designed a data glove equipped with 3D flexible sensors and two wristbands and proposed a

novel deep feature fusion network to capture fine-grained gesture information. They first

fused multi-sensor data using a CNN structure with residual connections and then modeled

long-range dependencies of complex gestures using LSTM. Experimental results demonstrated

the effectiveness of this approach in classifying complex hand movements, achieving a maxi-

mum precision of 99.3% on the American Sign Language dataset. Wang et al. [25] combined

attention mechanism with BiLSTM and designed a deep learning algorithm capable of effec-

tively recognizing 10 types of dynamic gestures. Their proposed method achieved an accuracy

of 98.3% on the test dataset, showing a 14.5% improvement compared to a standalone LSTM

model. This indicates that incorporating attention mechanism can effectively enhance the

model’s understanding of gesture semantics. Dong et al. [12] introduced a novel dynamic ges-

ture recognition algorithm called DGDL-GR. Built upon deep learning, this algorithm com-

bined CNN and temporal convolutional networks (TCN) to simultaneously extract temporal

and spatial features of hand movements. They defined 10 gestures according to relevant stan-

dards and recruited 20 participants for testing. The experimental results demonstrated that

DGDL-GR achieved the highest recognition accuracy (0.9869), surpassing state-of-the-art

algorithms such as CNN and LSTM. Hu et al. [26] explored deep learning-based gesture recog-

nition using surface electromyography (sEMG) signals and proposed a hybrid CNN and RNN

structure with attention mechanism. In this framework, CNN was employed for feature extrac-

tion from sEMG signals, while RNN was utilized for modeling the temporal sequence of the

signals. Experimental results on multiple publicly available datasets revealed that the perfor-

mance of the hybrid CNN-RNN structure was superior to individual CNN and RNN modules.

Despite the existence of a large body of research on HGR, research on dynamic gesture rec-

ognition using data gloves is still limited, especially in exploring the feasibility of applying deep

learning in this field. Therefore, this study focused on the intelligent recognition of handwash-

ing steps in the context of medical simulation. We utilized data gloves as the medium for

dynamic gesture data collection and selected the seven-step handwashing series of dynamic

gestures as the research target. Specifically, we considered the characteristics of dynamic ges-

tures, including local feature variations in spatial positions and temporal changes in sequences.

We systematically combined structures such as CNN, BiLSTM, and attention mechanism and

designed a deep learning algorithm for dynamic gesture recognition based on data gloves. The

next section will provide a detailed introduction to the proposed algorithm framework.
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3. Methodology

3.1. Convolutional neural network (CNN)

A classic CNN architecture was designed by LeCun et al. in 1998 [27], which achieved

remarkable performance in handwritten digit recognition tasks. Compared to traditional

neural network structures, CNN exhibits characteristics of local connectivity and weight

sharing [28]. Consequently, CNN can improve the learning efficiency of neural networks

and effectively avoid overfitting issues caused by excessive parameters. The classic CNN

architecture consists of three components: the convolutional layer, the pooling layer, and

the fully connected layer.

The convolutional layer’s core component is the convolutional kernel (or weight matrix).

Each convolutional kernel multiplies and sums the corresponding receptive field elements in

the input data. This operation is repeated by sliding the kernel with a certain stride on the

input data until the entire data has been processed for feature extraction. Finally, these feature

maps are typically generated as the output of the convolutional layer through a non-linear acti-

vation function. It is worth mentioning that multiple convolutional kernels are usually chosen

to extract more diverse features since each kernel extracts different feature information. ReLU

[29] is the most popular activation function in CNN, it has the capability to retain the segments

of input features that are greater than 0 and rectify the remaining segments to 0.

The pooling layer, also known as the down-sampling layer, extracts the minor features of

the input data using pooling kernels. Similar to the convolutional kernels, each pooling kernel

slides over the input data with a certain stride, preserving either the maximum value or the

average value of the elements within the corresponding receptive field. This process continues

until the feature extraction of the entire data is completed. The pooling layer is typically placed

after the convolutional layers to reduce the dimensionality of the feature maps, thereby reduc-

ing the computational complexity of the entire network.

In classification tasks, the input data undergoes feature extraction by passing through mul-

tiple convolutional and pooling layers, and the resulting feature maps are flattened and fed

into the fully connected layer. The fully connected layer usually consists of a few hidden layers

and a softmax classifier, which further extracts features from the data and outputs the probabil-

ity distribution of each class.

3.2. Bidirectional long short-term memory (BiLSTM)

The RNN is a recursively connected neural network with the ability of short-term memory

that has been widely applied in the analysis and prediction of time series data [30]. However,

due to memory and information storage limitations, RNN faces challenges in effectively learn-

ing long-term dependencies in time sequences, and gradient vanishing is often encountered

during training [31]. To overcome these challenges, Greff et al. proposed the LSTM network

structure that exhibits long-range memory capabilities [32]. The LSTM structure achieves this

by introducing memory cells to retain long-term historical information and employing differ-

ent gate mechanisms to regulate the flow of information. In fact, gate mechanisms can be

understood as a multi-level feature selection approach. Consequently, compared to RNN,

LSTM offer more advantages in handling time series problems.

The classical LSTM unit is equipped with three gate functions to control the state of the

memory cell, denoted as the forget gate ft, input gate it and output gate ot. The forget gate ft
determines which information should be retained from the previous cell state ct−1 to the cur-

rent cell state ct. The input gate it regulates the amount of information from the current input

xt that should be stored in the current cell state ct. The output gate ot governs the amount of
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information from the current cell state ct that should be transmitted to the current hidden

state ht. Fig 1 illustrates the internal structure of a LSTM unit.

The LSTM unit has three inputs at time t: the current input xt, the previous hidden state ht
−1, and the previous cell state ct−1. After being regulated by the gate functions, two outputs are

obtained: the current hidden state ht and the current cell state ct. Specifically, the output of ft is

obtained by linearly transforming the current input xt and the previous hidden state ht−1, fol-

lowed by the application of the sigmoid activation function. This process can be expressed by

Formula 1.

ft ¼ sðwf∗½ht� 1; xt� þ bf Þ ð1Þ

Here, the weight matrix and bias vector of ft are represented by wf and bf, respectively. The

sigmoid activation function, denoted by σ, is applied. The value of ft ranges from 0 to 1, where

a value closer to 0 indicates that information will be discarded, and a value closer to 1 implies

more information will be preserved. The computation process of the input gate it is similar to

that of ft, and the specific formula is as follows.

it ¼ sðwi∗½ht� 1; xt� þ biÞ ð2Þ

Here, the weight matrix and bias vector of it are represented by wi and bi, respectively. The

sigmoid activation function, denoted by σ, is applied. Subsequently, ĉt is introduced to repre-

sent the current input state. ĉt is obtained by linearly transforming and applying the tanh acti-

vation function to the concatenation of the current input xt and the previous hidden state ht−1.

In other words, the state information contained in xt and ht−1 is integrated to form a new state

representation. ĉt and the previous cell state ct−1 are used to calculate and update the current

cell state ct. The specific formulas for the aforementioned process are as follows.

ĉt ¼ tðwc∗½ht� 1; xt� þ bcÞ ð3Þ

ct ¼ ct� 1∗ft þ ĉt∗it ð4Þ

Fig 1. Internal structure of the LTSM unit.

https://doi.org/10.1371/journal.pone.0294174.g001
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Where the weight matrix and bias vector of ĉt are denoted by wc and bc, respectively. The sym-

bol τ represents the tanh activation function. The calculation process of ot is similar to that of ft
and it. Additionally, the current hidden state ht is determined by ct and ot, and their computa-

tion formulas are as follows.

ot ¼ sðwo∗½ht� 1; xt� þ boÞ ð5Þ

ht ¼ ot∗tðctÞ ð6Þ

Where the weight matrix and bias vector of ot are denoted by wo and bo, respectively. The sym-

bol σ represents the sigmoid activation function, and τ represents the tanh activation function.

LSTM addresses the issue of vanishing gradients during training by incorporating a series

of gate mechanisms. However, as LSTM only propagates information in one direction, it can

only learn forward features and not capture backward features. To overcome this limitation,

Graves et al. introduced BiLSTM based on LSTM [33]. BiLSTM effectively combines a pair of

forward and backward LSTM sequences, inheriting the advantages of LSTM while addressing

the unidirectional learning problem. This integration allows BiLSTM to effectively capture

contextual information in sequential data. From a temporal perspective, BiLSTM analyzes

both the "past-to-future" and "future-to-past" directions of data flow, enabling better explora-

tion of temporal features in the data and improving the utilization efficiency of the data and

the predictive accuracy of the model.

Fig 2 depicts the unfolding of the BiLSTM network along the time axis, including t−1, t,
and t+1. In the diagram, x represents the input to the model, h represents the hidden layer

states, and o represents the output. BiLSTM can handle both forward and backward temporal

information, thus having a hidden layer for each direction without mutual influence. The

sequential data are separately fed into the forward LSTM layer and the backward LSTM layer,

resulting in the computation of the hidden state ht in the forward LSTM layer and the hidden

state h0t in the backward LSTM layer. It is important to note that the forward LSTM layer per-

forms forward computation (from time 1 to time t), while the backward LSTM layer performs

backward computation (from time t to time 1). The forward hidden states ht
!

and backward

hidden states ht
 

for each time step are computed and stored accordingly. These two sets of

Fig 2. Schematic diagram of the BiLTSM.

https://doi.org/10.1371/journal.pone.0294174.g002
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hidden state information are further processed to generate the output of the BiLSTM. The pro-

cess described above can be expressed using the following formulas.

ht
!
¼ LSTMðxt; ht� 1

��!
Þ ð7Þ

ht
 
¼ LSTMðxt; htþ1

 ��
Þ ð8Þ

ot ¼W
h
!∗ht
!
þW

h
 ∗ht
 

ð9Þ

Here, ot represents the output of the BiLSTM. LSTM denotes the LSTM unit, ht
!

represents

the output of the forward LSTM layer, and ht
 

represents the output of the backward LSTM

layer. W
h
! and W

h
 are the weight matrix for ht

!
and ht
 

, respectively.

3.3. Attention mechanism (AM)

It is now understood that human vision has the ability to rapidly locate key areas in images or

text and focus attention on those regions to extract essential information. Inspired by human

visual attention, a structure called the attention mechanism has been proposed and widely

applied in fields such as machine translation [34] and gesture prediction [35]. The attention

mechanism enhances important information in the input sequence while disregarding irrele-

vant details, thus optimizing the performance of the basic network. Specifically, the calculation

of attention weights involves three steps. First, the score of the input vector ht is computed, as

shown in Formula 10.

st ¼ tðwh∗ht þ bhÞ ð10Þ

Where st represents the attention score, ht represents the input vector. wh and bh represent the

weight matrix and bias matrix of the attention mechanism, respectively, and τ represents the

tanh activation function. Next, st is normalized and the attention weights at can be obtained

using the softmax function, which can be expressed as follows:

at ¼
expðstÞP
texpðstÞ

ð11Þ

Finally, the weighted sum of at and ht is computed to obtain the final output enhanced by

the attention mechanism.

s ¼
X

t

atht ð12Þ

3.4. Attention-based CNN-BiLSTM network (A-CBLN)

This study aims to recognize the meaning conveyed by dynamic gesture data over time, which

can be understood as a classification task for time series data. Building upon the previous dis-

cussions, it is highly conceivable that CNN can effectively extract local features from time

series data, but may not capture long-range dependencies present in the data. The advantages

of BiLSTM can overcome this limitation by learning from the forward and backward processes

of dynamic gesture data, allowing the model to effectively capture the underlying long-term

dependencies. Furthermore, the incorporation of attention mechanism can enhance the mod-

el’s semantic understanding of various gestures, thereby boosting the accuracy of gesture
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recognition. Therefore, in this paper, we proposed to combine CNN, BiLSTM, and the atten-

tion mechanism, presenting a novel framework for dynamic gesture recognition called Atten-

tion-based CNN-BiLSTM Network (A-CBLN). A-CBLN effectively integrates the advantages

of different types of neural networks, thereby improving the predictive accuracy of dynamic

gesture recognition. Fig 3 illustrates the pipeline of dynamic gesture recognition based on

A-CBLN.

Specifically, as shown in Fig 3, the A-CBLN consists of five main components. The input

layer transforms the data collected by the data glove into the model’s input format: T×L×1,

where T represents the number of samples of gesture data collected within a specified time

range, L represents the feature dimension of the gesture data returned by the data glove, and 1

represents the number of channels. The CNN layer performs feature extraction and

dimensionality reduction using two convolutional operations and one max-pooling operation.

It is worth noting that we did not directly employ 1D or 2D convolutional methods for feature

extraction, but instead utilized a 2D convolutional method with a kernel size of 1×3, enabling

the extraction of spatial features from gesture data without being influenced by the temporal

dimension. The BiLSTM layer provides additional modeling of the long-term dependencies of

gesture features. Both the CNN layer and the BiLSTM layer use the ReLU activation function.

The AM layer helps the network better understand the specific meaning of gesture features.

The FC layer utilizes fully connected layers to flatten the features and further reduce the

dimensionality. Finally, it outputs the probability prediction of the current dynamic gesture

through the softmax function. Table 1 presents the specific parameter settings for each net-

work layer in A-CBLN.

Fig 3. Dynamic gesture recognition pipeline based on A-CBLN.

https://doi.org/10.1371/journal.pone.0294174.g003

Table 1. Specific parameter settings for each layer in A-CBLN.

Layer Operation Parameter Description

Input Input --

Conv2D kernel size = 1×3, filters = 16, strides = 1, activation = relu

CNN Conv2D kernel size = 1×3, filters = 32, strides = 1, activation = relu

MaxPooling2D kernel size = 1×2, strides = 2

BiLSTM BiLSTM neurons = 8

BiLSTM neurons = 8

AM Attention --

FC Dense neurons = 16, activation = relu

Dense neurons = 7, activation = softmax

https://doi.org/10.1371/journal.pone.0294174.t001
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We summarized the training and validation process of the A-CBLN algorithm in Algorithm

1. The two inputs of the algorithm include gesture data X and gesture label y, and the output is

the trained model weight w*. The predefined main parameters include epoch, batch size, and

best validation accuracy. In line 1, The gesture dataset is divided into a training dataset and a

validation dataset according to a certain proportion. In line 2, A-CBLN model randomly ini-

tializes parameters according to the default method. In line 3, the model begins the training

and validation process. For each epoch, we first feed the training dataset into the model in

sequence according to a certain batch (training data is Xtrain, training label is ytrain). Next, we

follow the feature extraction process of A-CBLN to extract features from Xtrain and finally gen-

erate the corresponding prediction probability ŷ train (lines 6 to 9). In line 10, the cross-entropy

loss function is used to calculate the loss value between ytrain and ŷ train and the Adam optimizer

is used to update the parameters. After the training process is completed, we start the valida-

tion process, calculate the accuracy of the current model on the validation dataset and record

it as Vacc (line 11). Then we determine the value of the current Vacc and the best validation

accuracy. If Vacc is larger, then save the currently trained model parameters w* and update the

value of the best validation accuracy to Vacc (Lines 12–14). After completing all training

epochs, the entire training and validation process of A-CBLN ends (line 15).

Algorithm 1. The pseudocode of A-CBLN.
Input: Gesture Dataset X, Gesture Labels y
Output: Trained model weights: w*
Parameter:
Epoch: 50
Batch size: 64
Best validation accuracy: 0
1. Load training dataset and validation dataset from X and y;
2. Randomly initialize weight w;
3. Start Training and Valid;
4. For each epoch do:
5. For each batch (Xtrain, ytrain) in training dataset do:
6. F1 is obtained by using two convolution layers on Xtrain;
7. F2 is obtained by using a max-pooling layer on F1;
8. F3 is obtained by using two BiLSTM layers on F2;
9. Using two FC layers on F3 to generate ŷ train;
10. Update weights of the model using the categorical cross-entropy
loss function with the Adam optimizer;
11. Calculate the accuracy of the model on the validation dataset
denoted as Vacc;
12. If Vacc > Best Validation accuracy:
13. Save Trained model weights w*
14. Update the value of Best Validation accuracy to the value of Vacc
15.End Training and Valid

4. Experiments

4.1. Data glove

The wearable sensor gesture data extraction device used in this study is provided by the

VRTRIXTM Data Glove(http://www.vrtrix.com.cn/). The core component of this glove is a

9-axis MEMS (Micro Electro Mechanical System) inertial sensor, which can capture real-time

motion data related to finger joints and enable the reproduction of the hand postures assumed

by the operator during motion execution. The transmission of data from the glove employs

wireless transmission technology, where the data captured by the sensors on both hands can
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be wirelessly transmitted to a personal computer (PC) through the wireless transmission mod-

ule on the back of the hand for real-time rendering. In addition, the VRTRIXTM Data Glove

provides a low-level Python API interface, allowing users to access joint pose data of the data

glove, facilitating secondary development. It has been widely used in fields such as industrial

simulation, mechanical control, and scientific research data acquisition.

Once the data glove is properly worn, the left hand has a total of 11 inertial sensors for cap-

turing finger gestures. Specifically, each finger is assigned 2 sensors, while 1 sensor is allocated

to the back of the hand. The number and distribution of sensors on the right hand are identical

to those on the left hand. Table 2 presents the key parameters information of the data glove

used in this study.

4.2. Gesture definition

This study sought to explore the applications of dynamic gesture recognition in the field of

medical virtual simulation based on wearable devices (data gloves). We first comprehensively

reviewed the existing literature on dynamic gesture recognition. As mentioned in Section 2,

most publicly available dynamic gesture datasets are based on visual systems, with only a few

studies utilizing wearable devices. Therefore, we created a new dynamic gesture dataset based

on the common seven-step handwashing in medical virtual simulation systems in conjunction

with the data gloves. We followed the handwashing method recommended by the World

Health Organization (WHO) [36] and established a complete handwashing procedure com-

prising seven steps. More details on these steps are presented in Table 3.

Table 2. Key parameters of the data glove used in this paper.

Parameter Name Parameter details

Operating system Win7 and above Windows operating system

Sensor module A single hand is equipped with 11 high-precision, zero-drift nine-axis inertial sensor

modules.

Product size 23cm × 12cm × 6cm

Maximum

acceleration

±16g

Degrees of freedom Three degrees of freedom (heading, traverse, pitch)

Angle range 360˚ for heading, traverse and pitch

Angle resolution 0.01˚

https://doi.org/10.1371/journal.pone.0294174.t002

Table 3. Detailed description of the seven dynamic gestures.

Steps Action details description

Step

1

The palms of the left and right hands face each other, with fingers closed together and rubbing against each

other.

Step

2

The palm of the left hand is placed on the back of the right hand, with interlocked fingers, rubbing against

each other. The motion is performed alternately with both hands.

Step

3

The palms of the left and right hands face each other, with fingers of both hands interlaced, rubbing against

each other.

Step

4

The left hand grips the thumb of the right hand and rotates, rubbing and kneading. The motion is

performed alternately with both hands.

Step

5

Bend the fingers of the left hand, rotating the joints, and rub them against the palm of the right hand.

Perform this motion alternately with both hands.

Step

6

Bring the fingertips of the left hand together, pressing them against the palm of the right hand, and rotate

while rubbing. Repeat this motion alternately with both hands.

Step

7

Place the palm of the left hand against the wrist of the right hand and rotate while rubbing, moving across

the arm towards the elbow. Repeat this motion alternately with both hands.

https://doi.org/10.1371/journal.pone.0294174.t003
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4.3. Data acquisition and preprocessing

According to the approval of the Medical Ethics Committee of Affiliated Hospital of Xuzhou

Medical University, 32 healthy subjects were recruited for this study. We organized and con-

ducted data acquisition for this study between January 5, 2023 and March 25, 2023. Prior to

gesture data collection, each subject was required to sign a consent form granting permission

for their data to be used in the study and was informed of the specific steps involved in data

collection. In order to ensure the precise expression of gesture actions while wearing the data

gloves, participants who were initially unacquainted with the seven-step handwashing received

training sessions conducted by healthcare professionals until all subjects could correctly per-

form the hand gestures while wearing the gloves. Additionally, a timekeeper was assigned to

prompt the start and end of each gesture action and record the corresponding time

information.

Once the subject correctly wore the data gloves as instructed, the gesture data collection

process followed the following detailed steps:

1. Subjects kept their hands in the initial position, with both hands on the same horizontal

plane, palms facing upward, and not more than 20cm apart.

2. The timekeeper issued the instruction to start the action, recorded the current time, and

subjects began repeatedly performing the current gesture action within a 15-second inter-

val. After 15 seconds, the timekeeper instructed to end the action and recorded the end

time.

3. Subjects returned their hands to the initial position and prepared to collect data for the next

gesture action following the same procedure as in step 2.

Fig 4 illustrates the specific flow of gesture data acquisition. The data gloves used in this

study provided a Python API interface, facilitating the recording of gesture data using Python

scripts. The data for each subject were stored in individual folders named after their respective

names. Additionally, subjects were requested to repeat the gesture collection process five times

to increase the dataset size. Once data collection from all subjects was completed, the data

were exported for further processing and analysis.

Specifically, the archival structure for each subject encompassed a set of five folders, and

each folder consisted of seven dynamic gesture data files in text format. The data sampling fre-

quency was set at 60Hz. We used a 3s time window to slide and segment the 15s data of each

sample without overlapping, since the actions within 3s already contained the specific seman-

tics of the current gesture. In summary, the sample size used for dynamic gesture modeling

analysis in this study was 5,600, with each sample having a data dimension of (180×128×1).

Here, 180 represents the number of gesture samples within 3 seconds, 128 represents the joint

data returned by the data glove sensors, and 1 denotes the number of channels. Finally, to

enhance the training of the gesture recognition model, a min-max scaling technique was

applied to rescale the data intensity of all samples to the range [0, 1] using Formula 13.

fnorm ¼
f � fmin

fmax � fmin
ð13Þ

Here, f represents the input data, fnorm refers to the normalized data, fmin and fmax represent

the minimum and maximum values of the input data, respectively.

To evaluate the performance of the proposed gesture recognition model, we divided the

data into training, validation, and test dataset in a ratio of 8:1:1. Therefore, the data from 26
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Fig 4. Flow chart of the gesture data acquisition.

https://doi.org/10.1371/journal.pone.0294174.g004

PLOS ONE Data glove-based gesture recognition using CNN-BiLSTM model with attention mechanism

PLOS ONE | https://doi.org/10.1371/journal.pone.0294174 November 17, 2023 14 / 22

https://doi.org/10.1371/journal.pone.0294174.g004
https://doi.org/10.1371/journal.pone.0294174


subjects were used for training, while the remaining 6 were evenly split between the validation

and test dataset.

4.4. Implementation details

To validate the effectiveness of the proposed dynamic gesture recognition algorithm, we

selected three deep learning algorithms related to gesture recognition research for

comparison:

1. LSTM [37]: The model consists of 1 LSTM structure with 3 fully connected layers.

2. Attention-BiLSTM [25]: The model consists of two BiLSTM layers, an attention mechanism

layer and a softmax classifier.

3. CNN-LSTM [38]: The model consists of a mixture of 2D convolutional layers, LSTM layers

and fully connected layers.

All the experimental code in this study was written using Python (version 3.8). The deep

learning algorithms were implemented using the TensorFlow framework (version 2.9.0). To

ensure a fair comparison of the performance of each deep learning algorithm, we used the fol-

lowing training parameters consistently during the model training process: an initial training

epoch of 50 and a batch size of 64. Since the research in this paper involved a typical multi-

class classification task, we employed the cross-entropy loss to measure the error between the

predicted values of the model and the true labels. We used the ADAM optimizer [37] to update

the model parameters, and the initial learning rate was set to 0.001, the beta1 was set to 0.9, the

beta2 was set to 0.999. After each training epoch, validation was performed, and the model

with the lowest validation loss was saved for subsequent algorithm testing.

4.5. Evaluation metrics

This study employed four commonly used evaluation metrics in classification tasks to evaluate

the gesture recognition performance of each model: accuracy (ACC), precision (Pr), recall

(Re), and F1-score (F1). ACC represents the ratio of the number of correctly predicted gestures

to the total number of evaluated samples. Pr is used to calculate the ratio between the number

of correctly recognized positive samples and the total number of samples recognized as posi-

tive. Re measures the ratio between the number of correctly recognized positive samples and

the total number of positive samples in all evaluated samples. F1 is computed based on Pr and

Re, taking into account the balance between them. The formulas for the above metrics are

shown below:

ACC ¼
TP þ TN

TP þ FP þ TN þ FN
ð14Þ

Pr ¼
TP

TP þ FP
ð15Þ

Re ¼
TP

TP þ FN
ð16Þ

F1 ¼
2� Pr � Re
Pr þ Re

ð17Þ
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Here, TP represents the number of true positive samples, which are the samples that are

correctly predicted as positive. TN represents the number of true negative samples, which are

the samples that are correctly predicted as negative. FP represents the number of false positive

samples, which are the samples that are actually negative but predicted as positive. FN repre-

sents the number of false negative samples, which are the samples that are actually positive but

predicted as negative.

5. Results and analysis

This section presents and analyzes the effectiveness of all models for dynamic gesture recogni-

tion from multiple perspectives. It includes a comparative analysis of the learning capabilities

of different models and their predictive performance on the test dataset. Additionally, we con-

ducted relevant experiments to discuss the impact of key parameters in A-CBLN, including

the kernel size in the convolutional layer and the number of neurons in the BiLSTM layer, the

findings from these experiments provide valuable insights into the optimal configuration of

A-CBLN for enhanced gesture recognition performance. Finally, we further analyzed and dis-

cussed the confusion matrix predicted by A-CBLN on the test dataset.

5.1. Comparative analysis between different models

We first analyzed the learning progress of the models during the training process. Fig 5 shows

that as the number of training epochs increases, the validation accuracy gradually improves

and stabilizes for all models. This finding indicates that all models possess certain learning

capabilities, and overfitting phenomena does not occur during training. Further analysis

revealed that the single LSTM structure exhibits the lowest learning capability, reaching its

Fig 5. Variation process of validation accuracy of different models.

https://doi.org/10.1371/journal.pone.0294174.g005
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highest validation accuracy of 88.95% at 50 epochs. This may be due to the fact that the pure

LSTM structure fails to focus on the local features within the dynamic handwashing steps. For

instance, actions like rubbing or rotating are of utmost importance in understanding the

semantic meaning conveyed by the gestures. In contrast, the best validation accuracy of the

Attention-BiLSTM structure has been improved and peaked at 45 epochs (92.77%). Neverthe-

less, the entire training progress displays instability. This limitation is also attributed to the

structure’s limited ability in capturing local features. By combining CNN and LSTM, the

model can not only perceive the local features of dynamic gestures in spatial changes but also

capture their temporal variations. As a result, the recognition ability has been significantly

improved, the model achieves an accuracy of 93.71% at 48 epochs. Finally, our proposed

A-CBLN combines attention mechanisms, further enhancing the model’s understanding of

different gesture semantics. Consequently, it exhibits the most powerful learning capability

during the training process. Its validation accuracy stabilizes and consistently outperforms

other models after 18 epochs, peaked at 32 epochs (93.62%).

The model with the best performance on the validation dataset was preserved for further

analysis of their performance on the test dataset. As shown in Table 4, all models perform well

on the test dataset, with prediction accuracy exceeding 87%. Further observation reveals that

the pure LSTM and Attention-BiLSTM models have relatively lower prediction accuracy

(87.43% and 91.43% respectively), while the hybrid CNN-LSTM structure significantly

improves the prediction accuracy to 93.38%. This is consistent with our previous analysis, indi-

cating that the hybrid CNN-LSTM structure possesses stronger feature extraction capability

for dynamic gesture data. Finally, our proposed A-CBLN model demonstrates the best predic-

tive performance for dynamic gestures, achieving optimal values in all evaluation metrics, with

an accuracy of 95.05%, precision of 95.43%, recall of 95.25%, and F1-score of 95.22%. Com-

pared to the pure LSTM structure, it improves by 7.62%, 5.84%, 7.32%, and 7.78% in accuracy,

precision, recall, and F1-score, respectively.

5.2. Different size of convolution kernels of the A-CBLN

The choice of different kernel size in convolutional layers implies variations in the receptive

field for extracting local features. Therefore, selecting an appropriate kernel size is crucial for

improving model performance. We conducted a comparative analysis to investigate the impact

of four different kernel sizes (1×2, 1×3, 1×5, and 1×7) on the recognition performance of the

A-CBLN algorithm. Fig 6 reveals that the recognition performance of the A-CBLN algorithm

initially improves and then declines as the kernel size increases. Through further observation,

it can be noted that the utilization of large convolutional kernels can lead to a decrease in the

overall recognition performance of the model. This is because, while enlarging the receptive

field, they also extract redundant features. When the kernel size is set to 1×3, the A-CBLN

algorithm achieves the optimal performance in terms of accuracy, precision, recall, and F1-

score. The corresponding performance metrics reach their peak values of 93.94%, 94.60%,

94.02%, and 93.98%, respectively.

Table 4. Prediction results of different models on the test dataset.

Model ACC (%) Pr (%) Re (%) F1 (%)

LSTM 87.43 89.59 87.93 87.44

Attention-BiLSTM 91.43 93.00 91.98 91.40

CNN-LSTM 93.33 93.70 93.58 93.52

A-CBLN 95.05 95.43 95.25 95.22

https://doi.org/10.1371/journal.pone.0294174.t004
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5.3. Number of neurons in BiLSTM of the A-CBLN

The number of neurons in the BiLSTM layer also influences the recognition performance of

the A-CBLN algorithm. In this section, we discussed four different neuron quantities: 2, 4, 8,

and 16. As shown in Fig 7, the recognition performance of the A-CBLN algorithm initially

improves and then declines with an increase in the number of neurons in the BiLSTM layer.

When the neuron quantity is set to 8, the A-CBLN algorithm achieves the optimal perfor-

mance in terms of accuracy, precision, recall, and F1-score. The corresponding performance

metrics reach their peak values of 92.56%, 93.63%, 92.64%, and 92.54%, respectively.

5.4. Confusion matrix of the A-CBLN on the test dataset

Finally, we conducted a separate discussion and analysis of the prediction results of the

A-CBLN algorithm on the test dataset. As shown in Fig 8, the values on the main diagonal of

the confusion matrix represent the percentage of correctly predicted samples in each gesture

category, while the remaining positions indicate cases where the model incorrectly predicts a

given gesture as another category. Upon further observation, it can be determined that

A-CBLN achieves recognition accuracy higher than 85% for all seven handwashing steps. Spe-

cifically, the model achieves perfect recognition for gestures in steps 1, 5, and 7, as these ges-

tures exhibit distinct spatial features. However, the recognition performance for handwashing

step 3 actions is poor, with approximately 15% of the samples incorrectly classified as step 2.

This may be attributed to the similarity between the hand gestures in these two steps, involving

actions such as "finger crossing" and "mutual friction," which the two convolutional layers in

A-CBLN may struggle to differentiate between them. Additionally, there are also some recog-

nition errors for handwashing actions in steps 4 and 6, likely due to the presence of similar

Fig 6. Effect of different convolutional kernel size on the A-CBLN algorithm.

https://doi.org/10.1371/journal.pone.0294174.g006
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Fig 7. Effect of different number of neurons in BiLSTM on A-CBLN algorithm.

https://doi.org/10.1371/journal.pone.0294174.g007

Fig 8. Confusion matrix of A-CBLN on the test dataset.

https://doi.org/10.1371/journal.pone.0294174.g008
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actions such as "finger bending" and "rotational friction," leading to misjudgment by the

model. Overall, A-CBLN demonstrates good overall recognition performance for the seven

dynamic gestures, with an average accuracy exceeding 95%.

6. Conclusion

This paper aims to investigate the problem of dynamic gesture recognition based on data

gloves. Based on deep learning techniques, we proposed a dynamic gesture recognition algo-

rithm called A-CBLN, which combines structures such as CNN, BiLSTM, and attention mech-

anism to capture the spatiotemporal features of dynamic gestures to the maximum extent. We

selected the commonly used seven-step handwashing method in the medical simulation

domain as the research subject and validated the performance of the proposed model in recog-

nizing the seven dynamic gestures. The experimental results demonstrated that our proposed

approach effectively addresses the task of dynamic gesture recognition and achieved superior

prediction results compared to similar models, with the accuracy of 95.05%, precision of

95.43%, recall of 95.25%, and F1-score of 95.22% on the test dataset. In the future, we plan to

further improve our approach in the following aspects: (1) design more efficient feature extrac-

tion modules to enhance the discriminability of gestures with similar action sequences; (2)

recruit more subjects to increase the dataset size and improve the model’s generalization abil-

ity; (3) explore the fusion of multimodal data captured by infrared cameras to enhance the rec-

ognition performance of the model.
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