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Abstract

Epigenetic researchers often evaluate DNA methylation as a potential mediator of the effect

of social/environmental exposures on a health outcome. Modern statistical methods for

jointly evaluating many mediators have not been widely adopted. We compare seven meth-

ods for high-dimensional mediation analysis with continuous outcomes through both diverse

simulations and analysis of DNAm data from a large multi-ethnic cohort in the United States,

while providing an R package for their seamless implementation and adoption. Among the

considered choices, the best-performing methods for detecting active mediators in simula-

tions are the Bayesian sparse linear mixed model (BSLMM) and high-dimensional mediation

analysis (HDMA); while the preferred methods for estimating the global mediation effect are

high-dimensional linear mediation analysis (HILMA) and principal component mediation

analysis (PCMA). We provide guidelines for epigenetic researchers on choosing the best

method in practice and offer suggestions for future methodological development.

Author summary

DNA methylation is an epigenetic mechanism that regulates the expression of genes, turn-

ing them “on” or “off” to meet the needs of the cell. Changes in methylation activity are

associated with both health conditions and socioeconomic factors like education and

access to healthcare. Recently, researchers have been interested in whether DNA methyla-

tion may act as a link between socioeconomic disadvantage and health. Standard methods

to investigate whether DNA methylation is a link, or a mediator, between disadvantage

and health do not work well when there are multiple mediators—in this case, DNA meth-

ylation sites—under consideration. Our study reviews 12 statistical methods for mediation

analysis that can be used to analyze many methylation sites simultaneously. We compare

the methods on simulated data and provide guidelines and software for their
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implementation. We then demonstrate how the methods can be applied to real methyla-

tion data by testing whether DNA methylation sites across the genome mediate the effect

of lower educational attainment on HbA1c, an important marker of type II diabetes.

Introduction

In this study, we review and evaluate several available methods for performing mediation anal-

ysis when the mediators are high-dimensional DNA methylation (DNAm) measurements.

DNAm is an epigenomic mechanism in which a methyl group binds to the DNA—a process

that most often occurs at cytosine-guanine dinucleotides, called “CpG sites.” One of the pri-

mary functions of DNAm is to regulate gene expression. For example, when CpG sites in the

promoter regions of genes become methylated, it can discourage gene expression by inhibiting

the binding of enzymes needed for transcription [1].

Advancements in modern technology have made it possible to measure DNAm on a mas-

sive scale. Indeed, microarray techniques have been used to measure more than 850,000 CpG

sites at once, producing rich, detailed data that has encouraged broad research on DNAm in

the etiology of disease [2]. Owing greatly to this technology and others, DNAm has been estab-

lished as a risk factor in obesity [3], type II diabetes [4], schizophrenia [5], preterm birth [6],

breast cancer [7], cardiovascular disease [8], and countless other conditions spanning physical

and mental health. A focus of research in genetic epidemiology has been to interrogate these

relationships for their predictive utility [9], biological mechanisms [10], and causality in rela-

tion to medical phenotypes [11].

However, in addition to its well-established connections to a disease or health outcome,

DNAm is also associated with environmental exposures which themselves are known to affect

human health. Factors such as diet [12], smoking [13], alcohol [14], air pollution [15], and

socioeconomic status (SES) [16] are only a handful of the many environmental exposures that

have been shown to be associated with differences in DNAm. As each of these traits have their

own health risks, there have been mounting hypotheses that DNAm serves as a conduit

through which assaults from the exposome are able to affect health. Effect transmission of this

nature is called mediation, and it has become popular in epigenetic research to treat DNAm as

a mediator between environmental exposures and human disease [17].

As an example of such an analysis, our previous work [18] showed associations between

low SES and glycated hemoglobin (HbA1c) in the Multi-Ethnic Study of Atherosclerosis

(MESA), a United States population-based longitudinal study [19]. Indicators of SES, such as

education level, are strong predictors of type II diabetes [20], while HbA1c is an important risk

factor of cardiovascular disease and a critical biomarker in type II diabetes diagnosis [21].

Since education level is also associated with DNAm [16,22,23], and DNAm itself with HbA1c

level [24], we hypothesized that if low education results in greater HbA1c, part of that effect

could be mediated by DNAm (Fig 1). The present study revisits this hypothesis for the purpose

of illustration. Our sample from MESA has 963 individuals and includes DNAm measure-

ments at 402,339 CpG sites, none of which we know for certain are related to education or

HbA1c in advance.

The standard statistical tool for addressing such a hypothesis is mediation analysis. For-

mally, mediation is when an exposure, say A, affects an outcome, Y, in part through its effect

on a single mediating variable M. When M is a mediator of the A to Y association, the total

effect of A on Y has two components: an indirect effect, from A affecting M and M affecting Y,

and a direct effect, from A affecting Y independently of M. In the “traditional mediation
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analysis” approach proposed by Baron and Kenny (1986), the associations from this mecha-

nism could be measured by fitting linear regression models: one for the effect of A on M (the

mediator model), one for the effects of A and M on Y (the outcome model), and sometimes a

third model for the total effect of A on Y, M ignored [25–27]. The more recently developed

“causal mediation analysis,” based on the counterfactual approach [28,29], has established con-

ditions under which the parameters of these models can be interpreted as causal effects [30].

The causal approach is more flexible when Y or M are binary and when there is A-M interac-

tion in the outcome model [31].

While standard examples of mediation consider only one exposure, one mediator, and one

outcome [18,32], there has been growing interest in methods for mediation that can handle

many potential mediators at once. Epigenetic studies have felt this need especially, as DNAm

is usually measured at several hundred thousand CpG sites with little prior knowledge of their

importance. Moreover, although a naïve strategy in such settings would be to evaluate the

potential mediators one-at-a-time, in separate models, this approach can be problematic when

the mediators are correlated conditional on the exposure variable and covariates, since the

resulting estimates may be biased due confounding from the co-mediators that were excluded

[18]. There could also be a loss in efficiency due to lack of exploiting the joint multivariable

structure. To reduce the risk of bias and to increase precision, it is better to evaluate the media-

tors jointly and fit a single, multivariable outcome model that adjusts the effect of each media-

tor for the others, rather than fitting multiple one-at-a-time models. Though several methods

for fitting such a model have been presented in the literature, they have yet to be widely

adopted by practitioners and researchers for investigating substantive questions on high-

dimensional mediation analysis with DNAm.

Our study aims to bridge this gap and guide researchers in epigenetics to use state of the art

methods for mediation analysis with high-dimensional mediators. Despite the recent method-

ological developments, there are no clear-cut standards for which methods should be applied

in which circumstances, making it difficult to select the best-suited method for an analysis in

advance. While our prior research examined methods for large scale single-mediator hypothe-

ses [18], there is no such work for methods that can simultaneously incorporate many

Fig 1. Proposed causal mechanism in which the effect of low education on HbA1c is mediated by DNAm.

https://doi.org/10.1371/journal.pgen.1011022.g001
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potential mediators at once. Our study first addresses this question with a simulation study,

directly comparing the performance of seven different methods for mediation analysis with

high-dimensional mediators across a spectrum of settings. Along with metrics related to iden-

tification of key mediators and estimation of mediation effect, we include a computation time

comparison that tests the scalability of the methods to large datasets. In addition, to assess the

utility of these methods on real, large-scale DNAm data, we apply the same seven methods

from the simulation study, plus two additional methods, on the DNAm data provided by

MESA, where we evaluate the mediating role of DNAm in the association between low educa-

tion level and HbA1c. Our study is the first to address this critical gap in the applied epigenetic

literature, both by providing clarity on the available methods and by assessing their strengths

and weaknesses under real and simulated conditions. Although the focus of our study is appli-

cations involving DNAm, the methods explored in the text are not specific to epigenetics, and

our results and guidelines should be similarly useful for researchers studying high-dimensional

mediation problems in other fields.

Another key feature of our study is the presentation of a versatile, user-friendly, and well-

documented R package for implementing the methods described in the text. Computer code

for the methods has been made available previously, but is found in a varyingly functioning

and de-centralized state across the many repositories, supplementary files, and R packages

assembled by the methods’ authors. Our work centralizes these resources into a single, stand-

alone R package hdmed (https://cran.r-project.org/package=hdmed), which has the flexibility

to apply multiple methods for high-dimensional mediation analysis in one place. It is our hope

that by synthesizing these methods into a confined, usable package, we will catalyze the transla-

tion of our study and findings into practical, insightful research pursuits in genetic epidemiol-

ogy and other fields.

Notations and general framework

Before proceeding, it will be useful to provide an overview of the relevant mediation model

and to summarize the types of methods which have become available. To begin, suppose we

have a dataset of n individuals: an exposure Ai, a continuous outcome Yi, and continuous

mediators Mi measured for the ith person, i varying from 1 to n. We write Mi in bold to indi-

cate its status as a vector—in this case, a set of p mediators Mi
(j), j varying from 1 to p. Let Ci be

a vector of q covariates. When p is greater than 1 (and possibly greater than n), we can use the

regression models

E½YijAi;Mi;Ci� ¼ baAi þ βT
mMi þ βT

c Ci ð1Þ

and

E½MijAi;Ci� ¼ αaAi þ αcCi ð2Þ

to estimate the mediating role of Mi in the causal pathway between the exposure and outcome

[33]. Model (1) is the outcome model and model (2) is the mediator model. In model (1), βm is

a p-vector in which the jth component, (βm)j, is the linear association of jth mediator with Yi

adjusting for the other variables; while βa is the association between Ai and Yi adjusting for

mediators and covariates. In model (2), αa is a p-vector of the associations between the expo-

sure and each mediator, (αa)j; and αc is a matrix of the mediator-covariate associations. Also

note that in model (1), we have assumed there is no interaction between Ai and Mi, which is

beyond the scope of our present study.

The parameters of these models underly the causal effects of interest. Under certain

assumptions (Section 1 in S1 Text) [28,33], the direct effect of Ai on Yi is βa, the global indirect
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effect (or global mediation effect) of Ai on Yi through Mi is αa
Tβm, and the total effect of Ai on

Yi is βa + αa
Tβm. Another quantity of interest is the proportion mediated, defined as the ratio

of the global indirect effect to the total effect, which measures the degree to which the Ai to Yi

pathway is mediated by Mi. Lastly, we may also seek to measure the product terms (αa)j(βm)j,

which we will call the mediation contributions. The mediation contribution of the jth mediator

reflects the mathematical contribution of that mediator to the global mediation effect, since

the sum of (αa)j(βm)j over all j equals αa
Tβm. These parameters are intuitive to estimate, but

difficult to interpret. Though it is tempting to refer to (αa)j(βm)j as a causal effect correspond-

ing to the jth mediator, we emphasize that this parameter cannot generally be interpreted as

the natural indirect effect through that mediator specifically. Identifying the indirect effects of

specific mediators, in settings with multiple mediators, requires strong assumptions about

whether the group of mediators are sequentially ignorable—conditions that would be violated,

for example, in situations where a subset of mediators have causal effects on some of the oth-

ers. (The exact assumptions are not described here as they would require a discursion into

counterfactual inference. See [34]). Despite the limited interpretability of the mediation contri-

butions, we will refer to a mediator as inactive if its mediation contribution is zero, and active
otherwise. This has the caveat that if a mediation contribution is zero, that mediator could still

be involved in the causal path from A to Y, since complex causal relationships among the set of

mediators might exist.

If the potential mediators are uncorrelated, conditional on the exposure and covariates, or

if p is reasonably small relative to n, then it is trivial to fit the above models using linear regres-

sion. However, if the mediators are correlated and p is large, the estimates from model (1) may

have extremely high variance; and if p is so large as to exceed n, the linear regression model

cannot even be fitted. These concerns are relevant to us because DNAm measurements tend to

be correlated, while the number of sites that we have measurements on exceeds the number of

samples. Addressing these issues has been a recent focus of the mediation literature, with

authors using penalized regression [35–40], dimension reduction [41–43], Bayesian inference

[44,45], and latent variables [46] to make the outcome model statistically tractable.

We provide a graphical depiction of 12 available methods in Fig 2. Eight of them are

assessed in the simulation study, ten of them are used in the DNAm analysis, and all of them

are described in the Methods section. To help elucidate the differences between methods, we

partition them into three distinct groups based on their approaches and objectives. In the first

group, we consider methods that explicitly fit the outcome and mediator models as we have

defined them so that one can estimate αa
Tβm, the global indirect effect, simply by summing

the estimates of the mediation contributions. The methods for doing so are high-dimensional
mediation analysis (HIMA) by Zhang et al. 2016 [35], high-dimensional mediation analysis
(HDMA) by Gao et al. 2019 [36], mediation analysis via fixed effect model (MedFix) by Zhang

2019 [37], pathway least absolute shrinkage operator (pathway LASSO) by Zhao and Luo 2022

[38], the Bayesian sparse linear mixed model (BSLMM) by Song et al. 2020 [44], and the Gauss-
ian mixture model (GMM) by Song et al. 2021 [45]. In contrast, the second group of methods

considers those that can estimate αa
Tβm “directly”—without needing to fit the mediation mod-

els we began with in their original form. These methods have the drawback of being unable to

estimate the mediation contributions of specific active mediators. They include principal com-
ponent mediation analysis (PCMA) by Huang and Pan 2016 [41], sparse principal component
mediation analysis (SPCMA) by Zhao et al. 2020 [42], high-dimensional linear mediation anal-
ysis (HILMA) by Zhou et al. 2021 [39], and a method we will call partial penalized high-dimen-
sional mediation analysis (PMED), proposed by Guo et al. 2022 [40]. Lastly, the third group of

methods are those that make no attempt to estimate the mediation effects as originally pro-

posed, but that instead reconceptualize the mediation framework with newly-defined
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Fig 2. Methods for mediation analysis with high-dimensional DNAm data. (A) Statistical methods for high-dimensional mediation

analysis require a multivariable outcome model and multivariate mediator model. (B) Group 1 methods estimate the global mediation

effect (αa
Tβm) by fitting the outcome model and estimating the mediator-specific contributions; Group 2 methods estimate αa

Tβm
directly without fitting the original model; and Group 3 methods estimate the parameters of an alternative causal structure based on

latent variables. (C) In Group 1, the methods HIMA, HDMA, and MedFix apply penalized regression to the outcome model and then

linear regression to the mediator model; the method Pathway LASSO fits the outcome and mediator model simultaneously with a jointly

penalized likelihood; and the Bayesian methods BSLMM and GMM use multivariate normal mixture models. (D) In Group 2, the

methods PCMA and SPCMA use principal component analysis to replace the observed, correlated mediators with independent

mediators that can be assessed one-at-a-time. The method HILMA uses a multi-step penalized regression procedure that estimates αa
Tβm

but not the mediation contributions. (C) In Group 3, the methods HDMM and LVMA construct latent mediators which replace the

original mediators in the mediation model, and thus, they do not yield estimates of αa
Tβm.

https://doi.org/10.1371/journal.pgen.1011022.g002
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parameters based on latent variables. The methods include high-dimensional multivariate
mediation analysis (HDMM) by Chén et al. 2018 [43] and latent variable mediation analysis
(LVMA) by Derkach et al. 2021 [46]. Within this comparative structure, we evaluate methods

from all three groups, identifying their strengths and weaknesses across a wide range of simu-

lation settings and analysis of DNAm data from MESA.

Materials and methods

Overview of methods

Let A be an exposure, Y be a continuous outcome, and M be a set of p continuous variables

that potentially mediate the causal path from A to Y. Then with Ai, Yi, Mi, and covariates Ci

measured for n subjects, i from 1 to n, we can evaluate the mediating role of M with models (1)

and (2) as presented in the Introduction section. We provide an overview of 12 methods for

mediation analysis that can accommodate this multivariate framework below. A tabular sum-

mary is given in the supplement (S1 Table).

Group 1 methods: Penalized regression to estimate mediator-specific

contributions

HIMA. High-dimensional mediation analysis (HIMA) by Zhang et al. (2016) is a penal-

ized regression approach in which the outcome model is fit with a minimax concave penalty

[47], performing feature selection on the potential mediators [35]. The mediator models are

then fit among the remaining mediators using ordinary linear regression. Finally, the “signifi-

cance” of the mediation contributions is tested by taking the maximum of the (βm)j and (αa)j

p-values, where the p-values for (βm)j are obtained by refitting the reduced outcome model

with ordinary least squares (an approach which is likely to cause the p-values to be overconfi-

dent [48]). The authors also recommend an initial screening step to reduce the number of

mediators at the start, as the outcome model will still be unstable if p is extremely large com-

pared to n. A new version of HIMA, called HIMA2, was published recently [49]. HIMA2 is

similar to HDMA, but suggests a p-value correction procedure that maintains the false discov-

ery rate for detecting active mediators. HIMA2 is excluded from our comparison due to its

similarity to HDMA.

HDMA. High-dimensional mediation analysis (HDMA) by Gao et al. (2019), is the same

as HIMA except for its penalty function, replacing the minimax concave penalty with the

recently-proposed de-sparsified LASSO [36,50]. The advantage of this penalty is that the

resulting estimates of βm are asymptotically normally distributed, so one can test their statisti-

cal significance without a subsequent application of ordinary least squares.

MedFix. Mediation analysis via fixed effect model (MedFix) is another extension of

HIMA, proposed by Zhang (2021) [37]. MedFix was originally proposed for a setting where

there are multiple exposures in addition to multiple mediators, which it handles by applying

adaptive LASSO [51] to both the outcome model and the mediator models. If there is only one

exposure, linear regression can replace adaptive LASSO in the mediator models, and applying

MedFix is analogous to applying HDMA except with adaptive LASSO instead of debiased

LASSO.

Pathway LASSO. Pathway LASSO is a penalized regression approach by Zhao and Luo

(2022) [38]. Whereas HIMA, HDMA, and MedFix handle the outcome and mediator models

separately, this method fits the models simultaneously with a jointly penalized likelihood that

directly applies shrinkage to the mediator-outcome associations, exposure-mediator associa-

tions, and their products (the mediation contributions).
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BSLMM. The Bayesian sparse linear mixed model (BSLMM) by Song et al. (2020) assumes

αa and βm are random vectors that independently follow mixtures of normal distributions

[44]. Most of the effects are assumed to be small, resulting from a normal distribution with low

variance, while a minority are assumed to be larger and follow a normal distribution with

higher variance. Active mediators are discriminated from inactive by their posterior inclusion

probability of belonging to the higher-variance distribution.

GMM. The Gaussian mixed model (GMM) by Song et al. (2021) is an extension of

BSLMM in which the (αa)j, (βm)j pairs are treated as correlated, following a mixture of multi-

variate normal distributions instead of two independent normal distributions [45]. Thus,

GMM may be more useful than BSLMM if the true size of each (βm)j is related to the size of

the corresponding (αa)j, and vice-versa.

Group 2 methods: Dimension reduction and direct estimation of global

indirect effect

PCMA. Principal component mediation analysis (PCMA) by Huan and Pan (2016) is a

mediation analysis method based on principal component analysis (PCA) [41]. The authors

perform PCA on the residual matrix of the mediator models, then use the resulting loading

matrix to transform M into a new set of mediators which are uncorrelated conditional on A
and C. The transformed mediators then replace the original mediators in the analysis and are

evaluated in a one-at-a-time fashion. In spite of the transformation, the global indirect effect

αa
Tβm can still be estimated with its original interpretation as the global mediation effect

through M. The authors set the number of transformed mediators to be p, though this is only

possible if p is less than n.

SPCMA. Zhao et al (2019) proposed sparse principal component analysis (SPCMA) to

improve the interpretability of the results from PCMA [42]. In PCMA, the transformed media-

tors are difficult to interpret because they are sums of all p original mediators; whereas in

SPCMA, the loading matrix is sparsified so that the transformed mediators are only sums of

only a subset of the original mediators. Thus, if a specific transformed mediator has a large

effect, it can potentially be traced back to the original mediators which were used to construct

it. Though the added sparsity induces bias, it can be helpful for identifying groups of mediators

which may be active.

HILMA. High-dimensional linear mediation analysis (HILMA) by Zhou (2020) estimates

αa
Tβm with a complex, de-biased penalized regression procedure that is beyond the scope of

this article [39]. The proposed estimator has asymptotic properties for testing whether αa
Tβm

is zero and can also be applied when there are multiple (but not more than n) exposures.

PMED. Partial penalized high-dimensional mediation analysis (PMED) is a two-step esti-

mation and inference procedure for the global mediation effect, proposed by Guo et al. (2022)

[40]. In the first step, the outcome model is fitted with the mediators penalized by the

smoothly-clipped absolute deviation (SCAD) penalty. In the second step, the estimated direct

effect from the outcome model is subtracted from an estimated total effect, which is obtained

by fitting an unpenalized outcome model with the mediators omitted. The method reports the

global mediation effect and a set of potentially active mediators selected in step one, but does

not provide estimates of the mediator-specific mediation contributions. PMED can also be

applied when there are multiple, but fewer than n, exposure variables.

Group 3 methods: Latent variable representation to summarize mediators

HDMM. High-dimensional multivariate mediation (HDMM) by Chén et al. (2018) uses

dimension reduction similar to PCMA, but chooses the loading vectors with a likelihood-

PLOS GENETICS Methods for mediation analysis with high-dimensional DNA methylation data

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011022 November 7, 2023 8 / 26

https://doi.org/10.1371/journal.pgen.1011022


based approach instead of PCA [43]. The loading vectors are referred to as “directions of medi-

ation,” each vector specifying a linear combination of mediators which contribute to the likeli-

hood of the mediation models. This implicitly assumes there are latent, unmeasured mediators

that can be represented as linear combinations of the observed mediators. The results of

HDMM are difficult to interpret, but it can still be useful for identifying whether there is any

mediation through M at all and for identifying large subsets of mediators that contribute to

that mediation. A limitation of HDMM is that it cannot directly be applied when p exceeds n.

LVMA. Latent variable mediation analysis (LVMA) by Derkach et al. (2019) assumes are

a small number of latent, unmeasured mediators F which transmit the effect of A to Y and

which also cause changes in M [46]. Thus, LVMA assumes explicitly what HDMM assumes

implicitly, and the results of the methods have a similar interpretation. Another feature of

LVMA is that the F!M associations are sparsified, which is useful for detecting relevant

mediators in M. Indeed, an observed mediator would be considered active if it is associated

with a latent mediator that itself is associated with A and Y.

Simulation study

Simulation settings

Primary simulation settings. We evaluated the above methods with a simulation study.

To contrast them under diverse conditions, we considered three different settings of media-

tion: (1) a baseline setting in which the mediation signals are sparse and the error terms of the

(potential) mediators are moderately correlated, (2) a high-correlation setting with sparse sig-

nals, and (3) a moderate correlation setting in which the signals are non-sparse. We also varied

the signal strength of the mediation by modifying three parameters: the proportion of variance

explained by A in mediators affected by A (PVEA); the proportion of variance in Y explained

by the direct effect (PVEDE); and the proportion of variance in Y explained by the global indi-

rect effect (PVEIE). For a baseline case, we let PVEA be 0.20, PVEDE be 0.1, and PVEIE be 0.10.

Then, for three additional cases, we sequentially decreased one of these parameters by half,

weakening the signal, and set the other two parameters to their values from the baseline. Each

of the four signal strengths was evaluated in each of settings (1) to (3) with a sample size of

1,000 and 2,500, with the number of mediators fixed at 2,000. This amounted to 24 simulation

settings in total. A complete list of the primary simulation settings is provided in the supple-

ment (S2 Table), as are the numerical results underlying the figures along with code for gener-

ating the simulated data (S2 and S3 Files). None of the settings adjusted for confounding

variables.

Additional simulation settings. To broaden the variety of simulation conditions, we con-

sider two additional sets of simulations that involve specifc changes to the data-generating

mechanism. In the first additional scenario, we consider cases in which the coefficients of the

outcome and mediator models are not mixed in sign, but strictly non-negative (as explained

below, the coefficients in the primary simulation settings had both positive and negative

signs). The non-negative effect simulations are analogous to simulation Setting (1) above, but

with the coefficents of the model converted to their absolute value. They include each of the

four signal strength settings explored previously.

Finally, the second additional scenario considers data-generating mechanisms in which

there is an unmeasured confounding variable, U, that directly influences the exposure, the out-

come, and a subset of the mediators. For these simulations, we begin with Setting (1) (as

described above) with the first set of signal strength parameters (PVEA = 0.2, PVEDE = 0.1,

PVEIE = 0.1), then perturb the data-generating mechanism by adding confounding effects of U
to the generation of A, M, and Y. We explore different levels of confounding by setting the
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sensitivity analysis parameter, namely the variance of U, to be 1, 2, or 3, while holding the

effects of U on the other variables constant. In both additional simulation scenarios we set n to

be 2,500. A list of the additional scenarios is provided in the supplement (S3 Table). Results for

both scenarios are reported in the supplement as well (S1 and S2 Figs).

Simulated dataset creation

Primary simulation settings. To obtain sparse mediation effects for Settings (1) and (2),

we let 1,920 of the 2,000 coefficients (αa)j and (βm)j be zero and the remaining 80 be standard

normal. Twenty of the nonzero (αa)j and (βm)j were chosen to overlap and have the product

(αa)j(βm)j not equal zero. To obtain non-sparse signals for Setting (3), we sampled the previ-

ously zero coefficients from a normal distribution with mean zero and standard deviation 0.2.

Once these parameters were fixed, we obtained a single simulated dataset by sampling Ai from

a standard normal distribution, then produce Mi from model (2) assuming there are no covari-

ates. We add noise to Mi by sampling residuals from a multivariate normal distribution with

mean 0p and variance S, where S is derived by shuffling, then tuning the variance-covariance

of the observed methylation data (Section 2 in S1 Text). In Settings (1) and (3), we tune S so

that the error correlations between mediators range from -0.37 to 0.49, and in Setting (2), so

that they range from -0.68 to 0.89. We fix PVEA by scaling S appropriately based on αa. Finally,

we define Yi based on model (1) assuming the residuals are Normal(0, s2), choosing βa and s2

to yield the desired PVEDE and PVEIE.

Additional simulation settings. For the simulations with non-negative effects, the (aa)j

and (βm)j coefficients from Setting (1) are converted to their absolute value. Since this also

changes the global indirect effect, αa
Tβm, we update the direct effect, βa, to equal

αT
aβm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PVEDE=PVEIE

p
, so that the ratio of the variance of Y explained by the direct effect to the

variance of Y explained by the indirect effect is the same as previously. No other parameters

used to generate the data are modified; for example, the residual variance of the outcome

model (s2) is the same as before.

For the unmeasured confounding simulations, the modified data-generating mechanism is

described in models (3), (4), and (5), which are shown below:

Ai ¼ gUi þ di ð3Þ

Mi ¼ αaAi þ αuUi þ εi ð4Þ

Yi ¼ baAi þ buUi þ βT
mMi þ zi ð5Þ

Here, δi and zi are independent normal random variables with mean zero, and their vari-

ances are chosen to be equal to their values from the baseline setting (1 and s2, respectively). In

model (4), εi is a multivariate normal random vector, independent of δi and zi, with variance-

covariance matrix set to be S from the baseline setting. The confounder-exposure effect γ is set

to be 1/3, and the confounder-outcome effect βu is set to βa/2. For the vector of confounder-

mediator effects, αu, we set the jth entry to be (αa)j/2 if (αa)j is not zero, and set it to be 1/2 if

(αa)j is zero but (βm)j is not zero. (That is, only the mediators that are affected by A, affect Y, or

both, are directly affected by U.) The choice of these fractions (e.g., βa/2) is somewhat arbitrary,

but it ensures the confounding effects are on a similar scale to the coefficients of interest, only

slightly weaker. The remaining parameters are held at their values from Setting (1). The con-

founding variable U is sampled from a normal distribution with mean zero and variance τ, the

sensitivity analysis parameter, which is set to be 1, 2, or 3. This varies the intensity of the

confounding.
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Simulation analysis

We performed mediation analysis on 100 simulated datasets in each setting. We omitted the

methods SPCMA, GMM, and LVMA because were too computationally costly, and omitted

HDMM because its estimand is not comparable to the others. We also included a one-at-a-

time approach in which the mediators are assessed one-at-a-time using traditional mediation

analysis and the joint significance test [52]. When running HIMA, HDMA, MedFix, and path-

way LASSO, we pre-screened the mediators to only include the n/log(n) mediators most-asso-

ciated with Y adjusting for A, which is recommended by the HIMA and HDMA authors

[35,36]. For comparison metrics, we used the true positive rate for detecting active mediators,

TPR ¼ number of true mediators identified
number of true mediators ; the mean squared error in estimating the mediation contribu-

tions of inactive mediators, MSEInactive ¼ meanj:InactiveððcαaÞjð
cβmÞj � ðαaÞjðβmÞjÞ

2
; the mean

squared error in estimating the mediation contributions of active mediators,

MSEActive ¼ meanj:ActiveððcαaÞjð
cβmÞj � ðαaÞjðβmÞjÞ

2
; and the percent relative bias in estimating

the global indirect effect,
d
jαT

a βm � αT
a βmj

αT
a βm

� 100. In the non-sparse setting, “active” mediators were

considered those with both effects sampled from the high-variance distribution. We provide

additional details on how the methods were applied in the supplement (Section 3 in S1 Text).

Data application with MESA

Study design

Data were provided by the Multi-Ethnic Study of Atherosclerosis (MESA), a United States

population-based longitudinal study on the progression of subclinical cardiovascular disease

[19]. Briefly, MESA recruitment ran from July 2000 to August 2002 and comprised 6,814 par-

ticipants ages 45 to 84. From 2010 to 2012, a subsample of 1,264 random patients had their

DNAm measured at 484,882 CpG sites. Standard quality control filters reduced the number of

CpGs considered to 402,339 [53]. To demonstrate an application of high-dimensional media-

tion analysis methods, we evaluated whether DNAm mediates the association between SES

and HbA1c in MESA. For the exposure, we used a binary variable that indicates low educa-

tional attainment (less than a 4-year college degree). For the outcome, we used HbA1c, a con-

tinuous variable that reflects average three-month blood glucose level. We limit our analysis to

the 963 participants who (1) had methylation data, (2) had no missing data for the required

variables, (3) consented to genetic and phenotypic use through the database of Genotypes and

Phenotypes (dbGaP) (phs000209.v13.p3), and (4) were not on diabetes medication, which can

cause changes in HbA1c. See supplement for more details (Section 4 in S1 Text). DNAm was

measured using M-values, defined as the log-2 ratio of the methylated to unmethylated probe

intensities [54].

Statistical analysis

We performed mediation analysis with the methods HIMA, HDMA, HILMA, MedFix, path-

way LASSO, PMED, BSLMM, PCMA, SPCMA, and HDMM, based on the models

E½HbA1cijEducationi;DNAmi;Covariatesi�

¼ baEducationi þ βT
mDNAmi þ βT

c Covariatesi ð6Þ

and

E½DNAmijEducationi;Covariatesi� ¼ αaEducationi þ αcCovariatesi; ð7Þ
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with the same parameters as models (1) and (2). The covariates included age, sex, race, methyl-

ation chip, methylation position, and the estimated proportions of residual non-monocytes

(i.e., neutrophils, B cells, T cells, and natural killer cells). Since it is not statistically feasible to

include 402,339 mediators at once, we used model (7) to select the 2,000 CpG sites most

strongly associated with education based on the (αa)j p-value from a linear mixed-model in

which methylation chip and position were treated as random effects. These 2,000 formed the

baseline set of CpGs for our analysis. Although it is reasonable for some of the methods to

include all 2,000 CpG sites directly in the multivariable model, HIMA and HDMA require

sure independence screening [55] to reduce the number of mediators in advance to n/log(n),

where n is the sample size. For the sake of consistency across the penalized regression methods,

we also do this extra screening with MedFix and pathway LASSO, including only the 141 (963/

log(963)) CpG sites most associated with low education (a direct extension of the initial

screening). We also use this twice-screened subset for HDMM, which requires that p is less

than n. For the sake of comparison with multivariate methods, we include a one-at-a-time

mediation method based on linear mixed models and the joint significance test. For the meth-

ods PCMA, SPCMA, BSLMM, PMED, and Pathway LASSO, which produce estimates of the

direct effect, the total effect is estimated by summing the direct effect and global indirect effect.

For the methods HIMA, HDMA, and MedFix, which do not estimate the direct effect, we esti-

mate the total effect by fitting model (5) with the mediators excluded, then subtract the esti-

mated global indirect effect from this value to estimate the direct effect. Since none of the

high-dimensional methods can handle random effects as covariates, we regress methylation

chip and position out of Y and M in advance with a linear mixed model, while fixed-effect

covariates are either regressed out as well (in PCMA, SPCMA, HILMA, HDMM, and pathway

LASSO) or included directly in the method (in HIMA, HDMA, MedFix, PMED, and

BSLMM). Continuous variables (including HbA1c and the mediators) were standardized for

all methods. The methods LVMA and GMM were too computationally costly to implement.

All analysis was conducted using R version 4.2.1.

Results

Simulation results

We begin by comparing the performance of the methods using simulations. On simulated data

with 2,000 potential mediators, we consider (1) a baseline setting, where the error terms of the

mediators are moderately correlated and the signals of the mediators are sparse; (2) a high-cor-

relation setting, where the error correlations between mediators are enhanced compared to (1);

and (3) a non-sparse setting, where every mediator has at least some mediation signal but some

of the signals are systematically larger. In Settings (1) and (2), 60 random mediators have (αa)j

only sampled from a Normal(0,1), 60 have (βm)j only sampled from a Normal(0,1), and 20 have

both, with the remaining entries of αa and βm fixed at zero. In Setting (3), we use a similar

scheme but sample the previously zero (αa)j and (βm)j from a Normal(0,0.22). Our simulations

also vary the strength of the signals within each of these settings by changing the proportion of

variance that is explained by the associations. We do so by changing PVEA, the proportion of

variance in each mediator that can be explained by A, among those mediators that are affected

by A; PVEIE, the proportion of variance of Y that is explained by the total mediation effect; and

PVEDE, the proportion of variance of Y that is explained by the direct effect of A on Y. Results

for varying PVEIE are presented here while results for varying PVEDE and PVEA are included in

the supplement (S3–S6 Figs). In addition to the high-dimensional mediation methods, we

include a one-at-a-time method [52] in which the mediators are assessed individually using lin-

ear regression. We evaluate the methods by their true positive rate (TPR) for detecting active
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mediators, their mean squared error (MSE) for estimating the contributions of active mediators,

and their percent relative bias for estimating the global indirect effect.

Detection of active mediators

Our first evaluation metric is TPR, which is the proportion of the true active mediators the

method successfully detected on simulated data. In Fig 3, we show the mean TPR over 100

simulated datasets, with an empirical 95% confidence interval (CI), for both the Group 1 meth-

ods and the one-at-a-time approach. To choose signifiance cutoffs for discriminating active

mediators from inactive, we used a thresholding procedure within each dataset and each

method that fixed the false discovery rate (FDR) below 10% (see Methods). For the non-sparse

setting, in which every mediator is active, we show the mean TPR for detecting mediators

whose (αa)j and (βm)j were both sampled from Normal(0,1) rather than Normal(0,0.22). We

focus on TPR but not false positive rate (FPR) because the FDR correction was highly conser-

vative, and the mean FPR ranged only from 0 to 5.0x10-4 across all settings and methods.

For a sample size of 2,500 and a PVEIE of 0.10, the most powerful method in the baseline

setting was BSLMM (mean TPR: 0.45; CI: 0.25–0.63), whose average TPR was 40% higher than

that of HDMA, the second-best method. BLSMM also performed best when PVEIE was 0.05

(mean TPR: 0.25; CI: 0.02–0.48), but to a lesser degree, outperforming HDMA by only 13%.

BSLMM remained the best method, and HDMA the second best, no matter the signal strength

or the degree of correlations, but performed poorly when the signals were non-sparse. In the

setting with 1,000 observations, PVEIE set to 0.05, and non-sparse signals, the best-performing

method was HIMA (mean TPR: 0.09; CI: 0.05–0.10), its average TPR 3.3 times higher than

that of BSLMM, which performed worst.

Estimation of contributions of active mediators

We now assess the MSE of the methods for estimating mediation contributions of active medi-

ators relative to the one-at-a-time approach. In Fig 4, we show the relative MSE (rMSE) for

estimating mediation contributions among the mediators that were either active (in the base-

line and high-correlation settings) or had (αa)j or (βm)j sampled from the larger-variance dis-

tribution (in the non-sparse setting). In the baseline setting with 2,500 observations, the best-

performing method when the mediation signal was strong was BSLMM, whose mean rMSE of

0.59 (CI: 0.13–1.51) was 24% lower than that of HDMA, the second-best method. However,

when the PVEIE was reduced to 0.05 or the sample size reduced to 1,000, the best-performing

method was either HDMA or MedFix, with MedFix (mean rMSE: 0.79; CI: 0.31–1.53) per-

forming 61% better than BSLMM after reducing both. Similar trends were observed for the

high-correlation and non-sparse settings. Relative MSE for inactive mediators is provided in

the supplement (S5 Fig).

Estimation of global indirect effect

Lastly, Fig 5 shows the percent relative bias for estimating the global mediation effect, αa
Tβm.

We use the same methods as in Figs 3 and 4 along with the Group 2 methods PCMA and

HILMA, which obtain an estimate of the global indirect effect without directly fitting the origi-

nal mediation model. In the baseline setting with 2,500 samples, the best performer when

PVEIE was 0.10 was HILMA, whose mean relative bias of 9% (CI: 0.6% - 20.8%) was 40% lower

than that of HDMA, the second-best. When the PVE was reduced to 0.05, the best-performing

method was MedFix (mean relative bias: 20.5%; CI: 1.0% - 43.8%), which outperformed

HILMA by only 7%. We observed similar results for a sample size of 1,000 and high-
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correlations. In the non-sparse settings, where the biases tended to be much higher, the best

performing methods were either PCMA or HDMA.

DNAm data analysis results from MESA

On an epigenetic dataset with 402,339 CpG sites, we applied SPCMA, HDMM, and every

method from our simulation study to infer whether the association between SES and HbA1c is

mediated by changes DNAm. For SES, we used a binary variable representing low education

level (i.e., education below a 4-year degree), and for DNAm we used M-values [54]. All vari-

ables (including methylation values and CpGs) were standardized before analysis. Since the

methods are incapable of handling so many CpG sites at once, we reduced our scope to include

only the 2,000 sites with the strongest association with low SES based on linear mixed model

p-values (see Materials and Methods). Our final dataset contained these 2,000 CpG sites and

963 samples.

Fig 3. True positive rate for detecting mediation signals at a false discovery rate of 10%. Value shown is the mean TPR across 100 simulated data replicates, with

intervals representing the inner 95% range. False discovery proportion was capped below 10% by a proper choice of the p-value threshold (one-at-a-time, HIMA, HDMA,

MedFix), posterior inclusion probability threshold (BSLMM), or tuning parameter (pathway LASSO).

https://doi.org/10.1371/journal.pgen.1011022.g003
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Identification of noteworthy CpG sites

We identified CpG sites that potentially mediated the relationship between low SES and

HbA1c using methods from Group 1. In HIMA, HDMA, MedFix, and pathway LASSO, which

involve feature selection, we describe a CpG site to be “active” if its estimated mediation con-

tribution is not zero; whereas in BSLMM, we do so if the estimated posterior inclusion proba-

bility is not zero (see Materials and Methods). We also included a one-at-a-time method in

which the CpG sites were assessed individually with linear mixed models, identifying active

mediators with the joint significance test [52]. Out of 2,000 CpG sites, HIMA found 3 sites to

be noteworthy, HDMA found 11, MedFix found 3, pathway LASSO found 141, and BSLMM

found 3, amounting to 144 unique CpG sites in total. The one-at-a-time method identified

zero CpG sites as noteworthy at an FDR threshold of 10%. Eleven CpG sites were identified as

noteworthy by at least two of the methods (Table 1). Among these 11, the estimated mediation

contributions were similar across methods in direction and size except for BSLMM, for which

the estimates were an order of magnitude smaller than the others but in the same direction.

Some of these CpG sites are on or nearby genes that are potentially related HbA1c. Site

cg10508317 is in the body of the SOCS3 gene, for which a rich body of literature has established

Fig 4. MSE in estimating mediation contributions of active mediators, relative to one-at-a-time method. Y-axis is on a log10 scale. Value shown is the mean of the

relative mean-squared error for estimating mediation contributions among active mediators (relative to the one-at-a-time approach) across 100 simulated data replicates,

with intervals representing the inner 95% range.

https://doi.org/10.1371/journal.pgen.1011022.g004
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links between overexpression and insulin resistance [56], and has previously been been identi-

fied in MESA as a mediator between adult SES and BMI [11] and adult SES and HbA1c [18]

based on single-mediator analysis. Site cg01288337, which is in the body of the RIN3 gene, has

been identified in MESA as a potential mediator between adult SES and HbA1c based on one-

at-a-time analysis as well [18]. The RIN3 gene itself is proximal to the SLC24A4 gene, both of

Fig 5. Percent relative bias in estimated global indirect effect. Value shown is the mean of the percentage relative bias in estimating the global

mediation effect across 100 simulated data replicates, with intervals representing the inner 95% range.

https://doi.org/10.1371/journal.pgen.1011022.g005
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which have been linked to brain glucose metabolism in human population studies [57]. In

addition, site cg27527503 is in the promoter region of the HADH gene, which is differentially

expressed with respect to diabetes status [58] and is a primary driver of hyperinsulinism [59]

and hyperinsulinaemic hypoglycemia [60]. A Venn diagram of genes identified by the meth-

ods is included in the supplement (S5 Fig), and results for every noteworthy CpG site are pro-

vided in the supplement (S1 File).

Global mediation through DNAm

Next, we estimated the direct effect of low education on HbA1c, the global indirect effect of

low education on HbA1c through DNAm, and the total effect of low education on HbA1c

using the Group 1 methods HIMA, HDMA, MedFix, pathway LASSO, and BSLMM, as well as

the Group 2 methods PCMA, SPCMA, and HILMA (Table 2). Results across methods varied

considerably, with the estimated global indirect effect ranging from 0 in PMED to 0.17 in

SPCMA. The estimated total effect ranged from 0.03 (HILMA) to 0.198 (HIMA, HDMA, and

MedFix). Despite the variability in the estimated global indirect effect, some of the other meth-

ods were consistent, with HDMA, BSLMM, pathway LASSO, PCMA, and SPCMA all estimat-

ing the global indirect effect to be close to 0.15. The variability in the estimated indirect effect

and estimated total effect led to variability in the proportion mediated as well, from 17.1% in

HIMA to 100% in HILMA.

Additional findings

In addition to estimating the global indirect effect, the method SPCMA is also able to identify

potentially-mediating CpG sites in groups. It does so by linearly combining the mediators using

sparse principal component-defined weights, then evaluating the resulting principal

Table 1. Estimated contributions of noteworthy CpG sites on the mediation pathway between low education and HbA1c.

CpG Name Chromosome Nearby Gene

(s)

USCS

RefGene

Group

Univariate (0

sites identified)

HIMA (3 sites

identified)

HDMA (11

sites identified)

MedFix (3 sites

identified)

Pathway LASSO

(141 sites

identified)

BSLMM (3

sites

identified)

cg10508317 17 SOCS3 Body 3.48x10-2 1.59 x10-2* 3.56x10-2* 2.90x10-2* 2.35x10-2* 0.25x10-2

cg01288337 14 RIN3 Body 3.35x10-2 1.47 x10-2* 2.82x10-2* 2.70x10-2* 4.43x10-2* 0.21x10-2

cg10244976 16 LMF1 Body 3.00x10-2 0 2.78x10-2* 0 2.23x10-2* 0.19x10-2

cg07516252 14 REC8 TSS200 2.72x10-2 0 2.24x10-2* 0 2.26x10-2* 0.26x10-2

cg07571519 10 C10orf105;

CDH23
3’UTR; Body 2.53x10-2 0.33 x10-2* 3.67x10-2* 1.47x10-2* 2.81x10-2* 0.21x10-2

cg23079012 2 LINC00299 Body 2.27x10-2 0 1.99x10-2* 0 1.98x10-2* 0.29x10-2

cg01587454 8 DCAF4L2 1stExon 1.77x10-2 0 2.10x10-2* 0 1.99x10-2* 0.38x10-2

cg27527503 4 HADH TSS1500 1.75x10-2 0 1.86x10-2* 0 1.27x10-2* 0.23x10-2

cg25891647 11 GRAMD1B Body -1.27x10-2 0 -3.42x10-2* 0 -3.02x10-2* -0.33x10-2

cg08473752 17 NLK Body -0.70x10-2 0 -2.34x10-2* 0 -2.32x10-2* -0.22x10-2

cg12644059 15 BLM N/A1 -0.03x10-2 0 -2.31x10-2* 0 -1.84x10-2* -0.22x10-2

*Selected as noteworthy by given method
1CpG site cg12644059 is 3.240kb from the final base pair of the BLM gene

Includes all CpG sites that were selected as having a noteworthy mediation contribution by at least two of the implemented methods out of 2,000 CpG sites in total. All

estimates are adjusted for age, sex, race, and the estimated proportions of residual non-monocytes as fixed effects, along with methylation chip and position as random

effects to address potential batch effects. Note that for HIMA, HDMA, MedFix, and pathway LASSO, which fit high-dimensional regression models, we used additional

pre-screening to reduce the number of mediators in advance to only n/log(n)� 141 CpG sites, which is the approach recommended by the HIMA and HDMA authors

and helps with statistical and computational efficiency (see Materials and Methods). Pathway LASSO selected all of these.

https://doi.org/10.1371/journal.pgen.1011022.t001
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components as mediators themselves [42]. However, out of 100 computed principal compo-

nents, only three of them had significant mediation contributions after 10% FDR correction,

the first representing a linear combination of 762 CpG sites, the second a combination of 782

sites, and the third a combination of 797 sites. Since the transformed mediators are functions of

so many CpG sites at once, one cannot make claims about which particular CpG sites are active

mediators, but the method still provides insight to whether there is statistical mediation at all.

We conclude our analysis by applying HDMM, a method from Group 3. Unlike the meth-

ods in Groups 1 and 2, HDMM cannot be used to estimate the global indirect effect from the

proposed mediation structure, nor to estimate the mediation contributions of specific CpG

sites. Rather, HDMM uses a likelihood-based approach to compute “directions of mediation”,

which are weights that can be used to linearly combine the observed mediators into unob-

served, latent mediators that replace the observed mediators in the mediation models. The esti-

mated effect of the first latent mediator on average HbA1c was 0.13, the estimated total effect

0.71, and the proportion mediated 0.715. The three CpG sites with the largest directions of

mediation were cg01288337 (0.36) on the RIN3 gene, cg16162970 (-0.22) near the PACS2
gene, and cg25891647 (-0.21) on the GRAMD1B gene; the first and last of which were among

the 11 CpG sites identified by other methods in Table 1. Although the size and direction of

these estimates are not interpretable, they offer evidence that these CpG sites are potentially

involved in mediation.

Discussion

In this study, we reviewed and evaluated eight statistical methods for performing mediation

analysis with high-dimensional DNAm data, so that researchers in epigenetics have the infor-

mation they need to choose the most appropriate method for their data sample, subject matter,

and research objectives. In extensive simulations, we found that the most powerful method for

identifying active mediators was generally BSLMM, with HDMA as a close comparator. How-

ever, BSLMM performed poorly in settings where the mediation signals were non-sparse. No

method was uniformly better than the others at estimating the mediation contributions though

Pathway LASSO appeared to be a sub-optimal choice. For estimating the global indirect effect,

the best-performing method was HILMA in sparse mediation settings and PCMA or HDMA

Table 2. Estimated effects in the mediation mechanism from low education to DNAm to HbA1c.

Method Estimated Global Indirect Effect Estimated Direct Effect Estimated Total Effect Estimated Proportion Mediated

HIMA 0.03 0.16 0.20 0.17

HDMA 0.13 0.07 0.20 0.65

MedFix 0.07 0.13 0.20 0.36

BSLMM 0.14 0.05 0.18 1.00

Pathway LASSO 0.13 0.05 0.18 0.74

PCMA 0.15 0.02 0.17 0.91

SPCMA 0.17 0.00 0.17 1.00

HILMA 0.03 0.00 0.03 1.00

PMED 0.00 0.20 0.20 0.00

All estimates are adjusted for age, sex, race, and the estimated proportions of residual non-monocytes as fixed effects, along with methylation chip and position as

random effects to address potential batch effects. We provide only point estimates, not interval estimates, because some of the methods are either not capable of

producing interval estimates or do not provide the code for producing them in their software. Note also that for HIMA, HDMA, MedFix, and pathway LASSO, we used

additional screening to reduce the number of mediators in advance for the sake of statistical and computational efficiency, so only n/log(n)� 141 CpG sites were seen

by the multivariable outcome model rather than 2,000.

https://doi.org/10.1371/journal.pgen.1011022.t002

PLOS GENETICS Methods for mediation analysis with high-dimensional DNA methylation data

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011022 November 7, 2023 18 / 26

https://doi.org/10.1371/journal.pgen.1011022.t002
https://doi.org/10.1371/journal.pgen.1011022


in non-sparse mediation settings. In simulation settings where the effects are strictly non-nega-

tive, BSLMM tended to perform best for detecting active mediators and estimating their medi-

ation contributions, while HILMA was again the strongest method for estimating the global

mediation effect (S1 Fig). In simulation scenarios with an unmeasured confounder, the perfor-

mance of the multiple-mediator methods became worse as the severity of the confounding

effects increased, in terms of estimating the global mediation effect or inferring the mediation

contributions (S2 Fig). However, the relative performance of these methods compared to the

one-at-a-time approach improved substantially with more confounding, which emphasizes

the importance of evaluating the mediators simultaneously rather than one-by-one. Our com-

parison of the scalability of the methods revealed that HIMA, HDMA, MedFix, PMED, and

PCMA were easily scalable to large datasets (e.g., n = 1,000 and p = 2,000), whereas SPCMA

and pathway LASSO were computationally expensive (Section 5 in S1 Text).

On DNAm data from MESA, 11 CpG sites were selected by at least two of the methods as

mediators between low SES and HbA1c level. Of the many genes related to these sites, SOCS3,

RIN3, and HADH have the strongest potential biological connections to HbA1c [56–58,60–

62], which contributes to the already rich literature on DNAm as a mediator between the expo-

some and health outcomes. Moreover, the methods generally produced similar estimates of

the mediation contributions, with the exception of BSLMM. It is possible that since estimated

from BSLMM is non-sparse, the estimated mediation contributions end up severely shrunken

compared to the methods that directly select features.

Estimates of the global indirect effect were highly variable. Part of this can be explained by

the fact that HDMA, MedFix, HIMA, and pathway LASSO are sparse models that can set

mediation contributions to be exactly zero, resulting in a rigid and unstable estimation of the

global indirect effect. The method HILMA, which is built specifically for estimating the global

indirect effect and direct effect, produced estimates that were sharply different than the other

methods, possibly because our simulations indicated that it struggled in non-sparse mediation

settings.

In practice, the optimal method for mediation analysis with high-dimensional mediators

will depend both on the data and the objective. If the goal is to identify specific CpG sites that

are involved in mediation, one preferred method may be HDMA, which performed well at

detecting active mediators in our simulations and was not overly conservative when applied to

the observed DNAm data. If one’s focus is the global indirect effect, our simulations suggested

that the optimal method is HILMA; but considering the variability we observed in our DNAm

analysis, it may be worthwhile to apply BSLMM and HDMA as well to ensure the results are

robust. If the results of multiple methods disagree substantially, it may be difficult to say with

confidence which is closest to the truth, and the estimates should be interpreted with caution.

Next, if there is interest in latent, unmeasured mediators, either HDMM or LVMA is worth

attempting, although HDMM is simpler computationally. A detailed decision tree to aid the

user for selecting the optimal method is included in Fig 6.

Some strengths of our study include its broad coverage of the available methods, the breadth

of its simulation settings, and the comprehensive set of evaluation criteria. Our analysis of real

DNAm data is especially essential because it elucidates the potential limitations of using these

methods in practice, as it is impossible to incorporate the full complexity of real data sources

into contrived simulation settings. Another strength of our study is the presentation of an R

package, as the lack of readily available, centralized software for implementing methods for

high-dimensional mediation analysis is a potential reason for their so far limited permeation

into epigenetic research. We are hopeful that our package, hdmed, will facilitate and encourage

the application and adoption of these methods to epigenetic datasets in future studies.
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However, our study also has weaknesses. First, since DNAm measurements and HbA1c

data were collected concurrently, and represent only single time points, we cannot interpret

the parameters we have estimated as causal effects. Although it would be optimal to address

our research question longitudinally—with measurements at multiple time points—there is a

dearth of mediation analysis methods which can handle that type of data, and longitudinal

mediation analysis with high-dimensional mediators should be a focus of future methodologi-

cal development. Second, the validity of the mediation analysis depends on the strong assump-

tion that the causal mechanism is correctly specified—that is, that the exposure affects the

mediators, that the mediators affect the outcome, and that confounding of this relationship is

accounted for by the model. If there is unmeasured confounding of the causal pathway, or if

some of the variables treated as mediators are, in fact colliders, the parameters of the high-

dimensional mediation model become difficult to interpret, and the estimate of the global indi-

rect effect may be highly biased. Though recent work by [63] has directly considered the issue

of unmeasured confounding in a high-dimensional mediation model, the issue of collider bias

is an important area for future research.

Third, we limited our analysis to the situation that Y and M are continuous, that M and A
do not interact, and that only one A is of interest. However, we note that the methods HIMA

and HDMA can also be applied to identify active mediators when Y is binary, while PCMA

can be applied to infer the global indirect effect when there is A-M interaction in the outcome

model. MedFix, along with the simultaneously-proposed MedMix (mediation analysis with

mixed effect model by Zhang (2021)) can be applied when both the exposures and mediators

are high-dimensional, while Huang and Vanderweele (2014) proposed a variance component

Fig 6. Decision tree for selecting a high-dimensional mediation analysis.

https://doi.org/10.1371/journal.pgen.1011022.g006
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test of the global indirect effect when only A is high-dimensional [64]. If one has prior knowl-

edge that the signs of the outcome model coefficients are in the same direction, a reasonable

approach might be to use sign-constrained optmization rather than standard penalties such as

the LASSO [65]. In terms of data type, methods that can accommodate non-continuous Y and

M are in general scarce, and represent an important direction for future methodological devel-

opment. As the landscape of methods for high-dimensional mediation analysis continues to

expand, future review studies should consider exploring additional mediation settings (in pres-

ence of non-linearity, interaction) for which statistical methods are continuing to become

available.

Supporting information

S1 Text. Methods for Mediation Analysis with High-Dimensional DNA Methylation Data:

Possible Choices and Comparison.

(PDF)

S1 File. Estimated mediation contributions of CpG sites identified as mediators by any

method.

(XLSX)

S2 File. Numerical results underlying the figures from the simulation study.

(XLSX)

S3 File. Zip file of computer code for performing the simulation study.

(ZIP)

S1 Fig. Results for simulations with strictly non-negative effects. (A) True positive rate for

detecting active mediators. (B) Relative mean squared error for estimating the mediation con-

tributions of active mediators, relative to the one-at-a-time method. (C) Relative mean squared

error for estimating the mediation contributions of inactive mediators, relative to the one-at-

a-time method. (D) Percent relative bias for inferring the global mediation effect. The simula-

tion settings for were created by taking the absolute values of the exposure-mediator and medi-

ator-outcome effects in the original baseline simulation settings, which had four different

proportion-of-variance-explained (PVE) settings: (1) PVEA = 0.2, PVEDE = 0.1, PVEIE = 0.1;

(2) PVEA = 0.1, PVEDE = 0.1, PVEIE = 0.1; (2) PVEA = 0.2, PVEDE = 0.05, PVEIE = 0.1. (4)

PVEA = 0.2, PVEDE = 0.1, PVEIE = 0.05.

(PNG)

S2 Fig. Results for simulations with an unmeasured confounder U. (A) True positive rate

for detecting active mediators. (B) Mean squared error for inferring the mediation contribu-

tions of active mediators. (C) Relative mean squared error for inferring the mediation contri-

butions of active mediators, relative to the one-at-a-time method. (D) Percent relative bias for

inferring the global mediation effect.

(PNG)

S3 Fig. True positive rate for detecting mediation signals at a false discover rate of 10%.

Mean true positive (TPR) rate and 95% empirical confidence interval for detecting active

mediators in 100 simulated datasets. In the baseline and high-correlation-among-mediators

settings, TPR is for distinguishing mediators which contribute to the global mediation effect

from those which do not, whereas in the non-sparse setting, where all mediators contribute,

TPR is for distinguishing mediators whose contributions were sampled from a high-variance

distribution from those whose contributions were sampled from a low-variance distribution.
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False discovery rate was capped below 10% by a proper choice of the p-value threshold (one-

at-a-time, HIMA, HDMA, MedFix), posterior inclusion probability threshold (BSLMM), or

method tuning parameter (P-LASSO). PVE(A): Percent of variance in Y explained by the

exposure. PVE(IE): Percent of variance in Y explained by the indirect effect. PVE(DE): Percent

of variance in Y explained by the direct effect.

(PNG)

S4 Fig. MSE in estimating mediation contributions of active mediators, relative to one-at-

a-time method. Mean relative mean squared error (rMSE) and 95% empirical confidence

interval for estimating mediation contributions among active mediators in 100 simulated data-

sets, relative to the one mediator at a time method. Y-axis is on a log10 scale. For the baseline

and high-correlation-between-mediators settings, active mediators are those which contribute

to the global mediation effect, whereas in the non-sparse setting, where all mediators have

some contribution, active mediators are those whose contributions were sampled from a dis-

tribution with large variance instead of small. PVE(A): Percent of variance in Y explained by

the exposure. PVE(IE): Percent of variance in Y explained by the indirect effect. PVE(DE): Per-

cent of variance in Y explained by the direct effect.

(PNG)

S5 Fig. MSE in estimating mediation contributions of inactive mediators, relative to one-

at-a-time method. Mean relative mean squared error (rMSE) and 95% empirical confidence

interval for estimating mediation contributions among inactive mediators in 100 simulated

datasets, relative to the one mediator at a time method. Y-axis is on a log10 scale. For the base-

line and high-correlation-between-mediators settings, inactive mediators are those which have

no mediation contribution, whereas in the non-sparse setting, where all mediators have some

contribution, inactive mediators are those whose contributions were sampled from a distribu-

tion with small variance instead of large. The method pathway LASSO is excluded from this

figure because for multiple settings it had rMSEs of exactly zero. This happened because path-

way LASSO tended to be highly conservative and successfully assigned inactive mediators to

have no effect. PVE(A): Percent of variance in Y explained by the exposure. PVE(IE): Percent

of variance in Y explained by the indirect effect. PVE(DE): Percent of variance in Y explained

by the direct effect.

(PNG)

S6 Fig. Percent relative bias in estimated global indirect effect. Mean percentage relative

bias in estimating the global mediation effect across 100 simulated data replicates, with inter-

vals representing the inner 95% range. PVE(A): Percent of variance in Y explained by the

exposure. PVE(IE): Percent of variance in Y explained by the indirect effect. PVE(DE): Percent

of variance in Y explained by the direct effect.

(PNG)

S7 Fig. Genes containing or near CpG sites selected as active mediators between low educa-

tion and HbA1c by methods for high-dimensional mediation analysis. CpG sites were

linked to genes using R Bioconductor package “IlluminaHumanMethylation450kanno.

ilmn12.hg19”. Additional genes detected by Pathway LASSO listed in supplementary S1 File.

(JPG)

S1 Table. Summary of methods for high-dimensional mediation analysis.

(PDF)

S2 Table. Complete list of primary simulation settings.

(PDF)
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S3 Table. Complete list of additional simulation settings.

(PDF)
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