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Abstract

Natural speech perception requires processing the ongoing acoustic input while keeping in

mind the preceding one and predicting the next. This complex computational problem could

be handled by a dynamic multi-timescale hierarchical inferential process that coordinates

the information flow up and down the language network hierarchy. Using a predictive coding

computational model (Precoss-β) that identifies online individual syllables from continuous

speech, we address the advantage of a rhythmic modulation of up and down information

flows, and whether beta oscillations could be optimal for this. In the model, and consistent

with experimental data, theta and low-gamma neural frequency scales ensure syllable-

tracking and phoneme-level speech encoding, respectively, while the beta rhythm is associ-

ated with inferential processes. We show that a rhythmic alternation of bottom-up and top-

down processing regimes improves syllable recognition, and that optimal efficacy is reached

when the alternation of bottom-up and top-down regimes, via oscillating prediction error pre-

cisions, is in the beta range (around 20–30 Hz). These results not only demonstrate the

advantage of a rhythmic alternation of up- and down-going information, but also that the

low-beta range is optimal given sensory analysis at theta and low-gamma scales. While spe-

cific to speech processing, the notion of alternating bottom-up and top-down processes with

frequency multiplexing might generalize to other cognitive architectures.

Author summary

During speech perception, our brain achieves continuous acoustic analysis of the ongoing

speech signal, its transformation into linguistic representations, and the prediction of the

most likely next words or syllables. In this computational study, we address the biological

mechanisms underpinning the coordination of these operations during natural speech

processing. Using a model that recognizes on-line syllables in natural sentences, we show

that neural activity at specific rhythms is dedicated to specific operations, and that while

the theta and low-gamma rhythms are engaged in speech features signaling and encoding,
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the more endogenous low-beta rhythm drives the rhythmic and coordinated modulation

of prediction errors across levels of hierarchy.

Introduction

A key challenge in speech processing is the ability to analyze what has just been said while pro-

cessing what is being said and predicting what will follow, the so-called “now or never bottle-

neck” [1]. This threefold challenge does not only require an appropriate neural architecture

but also an efficient temporal orchestration of the neural event sequence involved, allowing

through an inferential process for joint information intake, processing and prediction. During

this inferential process takes place in a left-hemispheric network [2–4] where information

flows up and down the hierarchy via feedforward and feedback connections and spreads at

each stage via lateral connections [5–7]. Speech recognition results from the precise interplay

between these feedforward, feedback and lateral streams during the multi-level inference

[8–10]. Whether the inferential process involves continuous or discrete/alternating operations,

and at which rate(s) they possibly occur is an essential piece of the puzzle.

Neural oscillations, as a proxy of rhythmic collective neuronal activity [11–13], are directly

involved in various aspects of speech processing [14,15], including speech chunking at differ-

ent granularity levels depending on their frequency (phrases, words, syllables, phonemic fea-

tures) and information encoding depending on their cross-frequency interactions [16–20].

Theta (4-7Hz) and low-gamma (25-35Hz) oscillations are related to bottom-up processes,

notably the hierarchical encoding of phonemic information within syllables [17,21,22]. Delta

(1-4Hz) and low-beta (14-21Hz) oscillations, which are also frequently observed in relation

with speech processing, have a more endogenous origin. While delta is argued to play a role in

syntactic parsing [23,24], beta (15-30Hz) oscillations are associated with comprehension and

top-down effects, without having been hitherto related to specific linguistic units or language

operations [10,25–28].

The notions of neural oscillations and hierarchical inference are likely intimately related to

cognitive processes, notably in speech reception [6,26,29,30]. Experimental studies and theo-

retical proposals suggest that information is generally transferred up and down the hierarchy

using different frequency channels [29,31–33]. Gamma oscillations (30-100Hz) are related to

bottom-up information and prediction errors, i.e. the discrepancy between cognitive expecta-

tions and sensory signals [33–35], whereas beta oscillations (15-30Hz) are rather associated

with top-down predictions and modulatory signals [32,33,36,37]. The exact computational

function of the latter, however, and their possible interplay with upgoing signals remains

unclear [31,38–42].

Several hypotheses have nevertheless been formulated [42–44]. Beta could work as an infor-

mation channel conveying predictions down the processing hierarchy [45,46], or, according to

the predictive routing hypothesis, it could also prepare specific pathways by inhibiting neural

populations that encode expected sensory signals, lowering the processing cost of novel infor-

mation [36,47]. Not incompatibly, it might also reflect the delay for integrating bottom-up sen-

sory signals and updating predictions [29]. In the same vein, recent work suggests that beta

oscillations could directly be related to the weighting of sensory prediction errors [48].

Following-up on this, we used computational modeling to address the possible function of

beta oscillations in the rhythmic weighting of prediction error in the context of speech process-

ing. We built on a previous model that uses theta (~5Hz) / gamma (~40Hz) oscillation cou-

pling in a predictive coding framework to achieve natural speech parsing and on-line syllable
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identification in continuous natural speech [49]. In the new model, Precoss-β, we explore how

alternating top-down and bottom-up information streams via the rhythmic weighting of pre-

diction errors affects the inference process.

Modulating prediction error precisions (PEP) within a frequency range spanning from 2

Hz to 60 Hz, for both syllable identity and timing, we found that Precoss-β outperforms its pre-

vious version with non-modulated prediction errors, and is most efficient when precisions are

modulated at the beta range (20-30Hz). These results suggest that the low-beta rhythm could

support online speech recognition by controlling the alternation of a bottom-up versus top-

down dominant mode during the inference process. The observed benefit reflects that the

model can flexibly pick up unexpected input while remaining both sensitive to bottom-up

information and reliable in terms of predictions, hence achieving the triple challenge of speech

processing.

Results

Precoss-β architecture and oscillating precisions

Precoss-β was built by including oscillating state-dependent precisions within a previously

described generative model [49] that parses and identifies syllables from continuous speech.

The model input consists of a speech reduced auditory spectrogram [50] and of its slow ampli-

tude modulations [17], both extracted from English sentences of the TIMIT database [51] (see

Hovsepyan et al. 2020 [49] for details about speech input generation). In Precoss, the activation

of the appropriate syllable unit generates the corresponding auditory spectrogram with a flexi-

ble duration determined by eight gamma units (Fig 1A). Syllable and gamma units represent

syllable identity and timing within the syllable, respectively. Together with the other model ele-

ments, they serve to deploy predictions (grey arrows) about the input acoustic spectrogram.

The ongoing mismatch (red arrows) between predicted and actual auditory spectrograms and

slow amplitude modulations drives the inference process across the model hierarchy and leads

to updating syllable and gamma units (Fig 1B), as well as all other variables in the model, such

that predictions best match the input.

As our goal is to assess how rhythmic fluctuations of internal expectation vs. bottom-up

prediction errors drive the model updates with respect to syllable identity (syllable units) and

timing (gamma units), and affect performance, we introduced specific units that control the

precision of syllable and/or gamma units (variants Precoss-β-identity, Precoss-β-timing and

Precoss-β-full). These precision units effectively modulate the relative strength of internal pre-

dictions based on previous time points and bottom-up prediction errors in the updates of syl-

lable and/or gamma units. This is qualitatively different from the previous model with fixed

precisions and affords a new degree of flexibility.

The model performance is assessed based on the output of syllable units (Fig 1B), which

summarizes the model estimate about the syllable boundaries and identity in the speech input.

Performance metrics are based on comparing the estimated syllable sequence with the one

actually present in the input (S1 Fig).

Model variants and performance

To assess the effect of modulating top-down and bottom-up information streams, we com-

pared the performance of Precoss (stationary precisions) and Precoss-β (oscillating precisions)

in their ability to parse and recognize syllables from natural spoken sentences. Whatever the

model version, the input is a full natural sentence without explicit syllable boundaries. The

model parses it into discrete units and identifies the sequence of activated syllables.
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Since predictions about the auditory spectrogram (the input) are generated in concert by

syllable units that recognize the overall spectrotemporal pattern, and gamma units that specify

the position of the acoustic segment within the overall pattern, the discrepancy between the

predicted and actual input can in principle be solved by updating both the estimate of where
we are in the pattern (gamma units) and the pattern identity (what–syllable units).

We therefore run simulations varying the frequency at which precision units modulate syl-

lable and gamma units. We compared model variants (Fig 2, left panel) where oscillating preci-

sions drive: causal syllable units alone (Precoss-β-identity), causal gamma units alone (Precoss-
β-timing), or both in anti-phase (Precoss-β-full). In the latter case, anti-phase refers to the fact

that when syllable units are in a high precision state, gamma units are in a low precision one,

and vice versa (Fig 1A). We also considered the case where both causal gamma and syllable

units are in phase (Precoss-β-full-samephase, Fig 4). The original model with stationary preci-

sions provides baseline performance. The simulations were run on the same set of 220 natural

sentences.

We posit that modulating the relative strength of internal expectation and bottom-up infor-

mation in a rhythmic fashion should improve performance as it alternatively sensitizes the

model to internal knowledge vs. external evidence, which, given the altogether predictive and

fluctuating nature of speech, should be an optimal processing strategy. We also expected the

Fig 1. A generative model for on-line syllable recognition with rhythmic state-dependent precisions. The diagram in subpanel a) shows the simplified

schematics and hierarchical message passing of Precoss-β. The lower panel shows the input to the model. As in the original model (Precoss), the input consists

of the speech slow amplitude modulation (on the left) and the auditory spectrogram (on the right). At the top level, the theta module tracks the slow amplitude

modulation in the input and feeds it to a theta oscillator. The instantaneous frequency of the theta oscillator and the Gaussian pulses associated with the

predefined phases signal speech rate and syllable onset information to the gamma units. Together, the gamma and syllable units produce the auditory

spectrogram in the input, based on the spectrotemporal patterns stored in the model’s memory (subpanel c). The gamma units make temporal predictions

about the spectrotemporal patterns of syllables (as many as there are syllables in the input sentence), while the syllable units accumulate evidence about each

syllable in the sentence. Depending on the phase of the oscillating PEP, the model changes the precision of the syllable and gamma units, modulating the

influence of the corresponding prediction errors on the dynamics of the hidden states. Depending on the phase of the precision units (highlighted by the grey

rectangle), either syllable or gamma units get higher precision. The arrows represent a message passing between levels of the model hierarchy (top-down

predictions in grey and bottom-up prediction errors in magenta) and lateral, within-level connections (green arrows). Subpanel b) shows an example of the

dynamics of syllable and gamma units from the model simulations. The top panel shows the accumulated evidence for different syllables (color coded) in the

input sentence (colored bars on top of syllable units represent syllables in the input sentence), while the bottom panel shows the sequential activation of gamma

units. Subpanel d) shows the simplified diagram of the model, where θ, γ and ω represent theta module, gamma and syllable units respectively. The π represents

the oscillating precision (arrows indicate the units whose precision is controlled).

https://doi.org/10.1371/journal.pcbi.1011595.g001
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model performance to depend on the prediction error precision rate, peaking at a frequency

that will depend on the two model intrinsic rhythms (~ 5 Hz for syllable units, ~ 40 Hz for

gamma units).

In Precoss-β-identity (A) PEP are only modulated in the syllable units, which act as evidence

accumulators for each syllable in the input sentence. Therefore, to benefit from the alternation

between top-down and bottom-up information flows on the inference process, there should be

at least one full PEP cycle per syllable. As the mean syllable duration in our dataset is around

200ms, we anticipate the preferred PEP modulation frequency to lie within the theta range ~ 5

Hz.

Similarly, in Precoss-β-timing (B) PEP are only modulated for the gamma units. Those

units are responsible for deploying spectrotemporal predictions at the right time and in the

correct order. They operate at gamma scale (40 Hz, at rest). With the same logic as for Precoss-
β-identity, we expect a positive effect on alternation to require a PEP modulation frequency

within the gamma range.

Finally, in Precoss-β-full (C) PEP are modulated in both syllable and gamma functional

groups. As information about syllable identity in the input fluctuates at the theta range and

information about timing fluctuates at the higher gamma range, we expect the optimal com-

mon PEP frequency to lie somewhere between 5 Hz and 40 Hz.

Fig 2 shows the performance of Precoss-β variants together with that of the original Precoss
with stationary precisions. To quantify syllable recognition performance, we compared the

model output and input with a metric that takes into account both the order and duration of

the syllables and varies between (0–100%) (for details about this metric see S1 Fig). For almost

all conditions, Precoss-β (oscillating precisions) significantly (S1–S3 Tables) outperformed

Fig 2. Model performance based on the overlap measure. We tested the online syllable recognition accuracy of the model based

on simulation results on 220 sentences (giving a total of about 3000 syllables). Accuracy was evaluated based on the overlap of the

recognized syllable sequence and durations with those of the input sentence. Data for each model variant is represented by the

color of the outlines on the left panel. The figure shows the mean performance and 95% confidence interval for each frequency

value of precision units. Diagrams on the left indicate the main functional groups of the model: θ corresponds to the theta-

module, γ and ⍵ to syllable and gamma units respectively. Arrows indicate connections between functional groups (θ! γ
represents rate and onset information from theta module to gamma units, whereas γ! ⍵ indicates the reset of accumulated

evidence by the last gamma unit). π represents precision units, and the arrows originating from it indicate which functional

groups they control.

https://doi.org/10.1371/journal.pcbi.1011595.g002
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Precoss (stationary precisions). That is, the rhythmic alternation of internal expectations and

bottom-up influence on the inference process improves online syllable recognition from natu-

ral sentences.

The orange dots and ranges represent the mean performance and 95% confidence intervals

for Precoss-β-identity obtained by bootstrapping with 10000 reps. For all tested PEP modula-

tion frequencies, Precoss-β-identity performed better (Wilcoxon signed rank test, Z = 4.89,

p = 9.7634–7, at 5 Hz) than Precoss with stationary precisions (blue line). The difference was

statistically significant (p<0.05) for all frequency values (except 2 Hz) (S1 Table). However, no

optimal frequency arose; performance reached a plateau at 5Hz and fluctuations beyond 5Hz

were not statistically significant (S2 Fig, S4 Table).

Simulation results for Precoss-β-timing are presented in green. Interestingly Precoss-β with

oscillating precisions performed lower than Precoss with stationary precisions for low modulation

frequencies (Wilcoxon signed rank test, Z = -3.382, p = 0.0007 at 2 Hz) and higher for modula-

tions>10 Hz does (Wilcoxon signed rank test, Z = 4.568, p = 4.915e-6 at 20 Hz) (S2 Table).

Although performance is higher in the gamma range (Wilcoxon signed rank test, Z = 5.4,

p = 6.283e-8 at around 40Hz), pairwise comparisons were not statistically significant for frequen-

cies equal or greater than 20 Hz, indicating a knee point at this frequency (S3 Fig, S5 Table).

Finally, Precoss-β-full, which controls precisions of both syllable and gamma units, outper-

formed Precoss for all frequency values (S3 Table). Here again, we do not see a preferred fre-

quency for the best model performance, instead, performance increases with frequency and

reaches a plateau at around 20 Hz (Wilcoxon signed rank test, Z = 8.22, p = 1.937e-16). While

for lower frequencies Precoss-β-identity (A) and Precoss-β-full (C) perform similarly, for fre-

quencies higher than 20 Hz, Precoss-β-full (C) outperforms the other model variants (N-Way

ANOVA, F = 15.92, p = 0, S8 Table). As for Precoss-β-full (C), pairwise comparisons of model

performance for different frequencies higher or equal to 20 Hz, were not statistically signifi-

cant (S4 Fig, S6 Table).

Performance based on the overlap metric (Fig 2) depicts the ability of the models to cor-

rectly identify syllable identity in a categorical way, as well as to infer the correct syllable dura-

tion (S1 Fig). However, it does not take into account the uncertainty associated with the

identified syllable (e.g., the difference in activation between the winning syllable and the sec-

ond-best candidate within the gamma sequence-defined window). We therefore considered a

modified overlap metric that was weighed by the entropy of the syllable hidden states within

each gamma sequence-defined window. Based on this entropy weighted overlap metric, Pre-

coss-β always outperforms Precoss with fixed precision (S7 Fig, S13–S15 Tables). However,

across Precoss-β variants, the performance differences become less tangible (S7 Fig, S20

Table), the best performing model being Precoss-β-identity.

Furthermore, we also compared models based on the longest common subsequence metric

(LCS) between recognized and input syllable sequences (S8 Fig and related S9 and S10 Tables).

In contrast to the overlap-based metrics, the LCS is sensitive to the order of recognized sylla-

bles and does not depend on how well the model can infer syllable durations. With this metric

Precoss-β outperforms Precoss with fixed precision only when the PEP frequency of Precoss-

β-full is at least in the beta range (20 Hz) (S27 Table).

Finally, to account for the different variable complexity of Precoss (17 variables) and Pre-

coss-β (19 variables), we calculated the Bayesian Information Criterion (BIC). S29 Table shows

the BIC values for each Precoss-β for all PEP frequencies tested. Interestingly, Precoss-β variants

have a higher BIC value when the oscillating PEP frequency is at least 10–20 Hz, except for Pre-

coss-β-identity which has a higher BIC value than Precoss only for 50–60 Hz. Overall, these

results suggest that oscillating PEP improves online syllable recognition, and that the improve-

ment depends on the frequency of the PEP: a plateau is reached around the cortical beta range.
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Integration of bottom-up information

We next consider how the frequency of the oscillating PEP affects the model’s ability to inte-

grate sensory information, specifically syllable identity information propagated up in the hier-

archy via bottom-up prediction errors. We quantified this ability by how often the

accumulated evidence about a syllable changed in the same direction as the prediction errors

signaling the presence of that syllable in the input.

The results are presented in Fig 3. Frequency significantly affected the integration efficacy

(Fig 3, Friedman test, χ2 = 269.85, p = 1.635e-54), which was statistically higher at 30 Hz than

at all other frequencies except 20 and 40 Hz (Bonferroni corrected post-hoc pairwise compari-

sons, see S12 Table for details). These results suggest the beta range as an efficient modulation

frequency for alternating the influence of top-down and bottom-up information.

Effect of PEP modulation phase

Among the three model variants, the best performance (largest number of recognized syllables

with the least uncertainty) is obtained for the one where PEP are modulated in both syllable

and gamma units. By construction, Precoss-β-full controls the precisions of syllable and

gamma units in opposite directions; whenever the precision of syllable units increases, the

Fig 3. Sensory information integration efficacy—Precoss-β-full. We quantified how the modulation frequency of the

PEP affects the model’s ability to integrate sensory information about syllable identity. The Friedman test indicated

that the modulation frequency affected the amount of informative signal propagated up in the model hierarchy.

Pairwise comparisons were made for each frequency pair (S12 Table). The Bonferroni procedure was used to control

for multiple comparisons. The measure of the integration of sensory information peaked at 30 Hz, with statistically

significant (p<0.05 corrected) differences from all other frequencies except 20 and 40 Hz. Each point on the scatter

plot represents the measured value for each sentence at the corresponding PEP frequency. The scatter plots are

overlayed with boxplots; the central red marker corresponds to the median, the lower and upper edges represent the

25th and 75th percentiles, and red crosses indicate outliers, while whiskers extend to the highest and lowest

performance values that are not considered outliers. Arrows at the top indicate (following the convection described in

[97]) a significant difference and direction of effect (left or right arrow) between the frequencies compared.

https://doi.org/10.1371/journal.pcbi.1011595.g003
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precision of gamma units decreases and vice versa. This choice was based on the idea that sylla-

ble units and gamma units can take turns in absorbing prediction errors, making it easier for

the model to find the right estimates.

To address how this a priori choice affected performance, we also run the model with preci-

sions of gamma and syllable units oscillating in-phase (same-phase condition, Fig 4A red). On

the one hand, the model with anti-phase condition outperformed the model with same-phase

conditions in statistically significant manner at most PEP frequencies for our first overlap met-

ric (Fig 4A, S9 Table). This finding shows that the model performs better when bottom-up pre-

diction errors are preferentially minimized in alternation by syllable and gamma units, when

syllable identity and timing features are analyzed via concurrent streams. Interestingly, when

the PEP frequency was in the beta range (20–30 Hz), the difference in performance was not

statistically significant. On the other hand, when considering the entropy-weighted overlap

metric, the difference between same-phase and anti-phase vanishes (Fig 4B, S9 Table), except

for the beta range, where same-phase outperforms anti-phase. Thus, except in the beta region

where the preference for same-phase condition leads to slightly better performance, the mod-

el’s performance benefits from the rhythmic, sequential alternation of the PEP of both syllable

and gamma units.

Discussion

The goal of this study was to explore the possible role of cortical beta oscillations in speech pro-

cessing from a theoretical perspective, where the brain deploys predictions through top-down

and lateral connections and refines them based on bottom-up prediction errors [5,52,53].

Here, we conjectured that beta oscillations might set the alternation of bottom-up versus top-

down control in the brain’s inference process. We tested this hypothesis by introducing preci-

sions that oscillated in time within specific functional groups (syllable recognition and timing

units) and comparing performance across frequencies with a baseline/control model with sta-

tionary precisions. We found oscillating PEP improved performance relative to stationary

PEP; the alternation allowed the model to react to changes in the input without compromising

Fig 4. Effect of the oscillating PEP phase on model performance. Precoss-β-antiphase controls the precision of both syllable and gamma units so that the high

precision state for syllable units coincides with the low precision state for gamma units (anti-phase condition, indigo). Here we tested whether the performance

depends on the phase lag for the precisions of the syllable or gamma units. Therefore, we also tested Precoss-β-samephase when syllable and gamma units reach

a high precision state simultaneously (same-phase condition, magenta). The left panel (a) evaluates the models based on the overlap metric, while the right

panel (b) shows the performance of the models based on the entropy weighted overlap metric. In both plots, the means and corresponding 95% confidence

intervals are shown.

https://doi.org/10.1371/journal.pcbi.1011595.g004
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the strength of top-down predictions, which lead to both more accurate and more precise

inference. This contrasts with stationary PEP, which renders the model either too reactive to

input when precisions are low, or too inflexible when precisions are high.

The added value of rhythmic prediction error precisions (PEP)

The model encompasses two distinct functional groups operating in two distinct regimes:

when the causal states of one group (syllable and/or gamma units) are in the low precision

phase of the oscillation, they are both less strongly receptive to the internal expectations

encoded by the hidden states and more strongly influenced by the bottom-up input carrying

prediction errors from the periphery (Figs 5 and S6). As a result, each functional group is

Fig 5. Effect of oscillating PEP on evidence accumulation. The left column represents accumulated evidence (softmax of syllable hidden states, colour coded,

coloured dashes under each panel represent syllable sequence in the input sentence) and the right column represents bottom-up prediction errors about

syllables (which carry the information from the input, colour coded). The rows indicate different conditions. Top: Precoss with fixed, very low, precisions;

middle: Precoss-beta with oscillating precisions (20 Hz case); bottom: original Precoss (high precisions). The comparison between these variants illustrates that

the oscillating PEP allows the model to integrate sensory information into the internal states more efficiently as evidenced by higher accumulated evidence.

https://doi.org/10.1371/journal.pcbi.1011595.g005
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periodically in an optimal position to respond to bottom-up information without being con-

strained by internal expectations. And vice versa in the high-precision phase, where causal

states are preferentially coupled to hidden states encoding internal expectations and more

loosely to bottom-up input. The high-precision phase is therefore ideal to incorporate updates

from the preceding low-precision phase into the internal hidden states. Thanks to oscillating

PEPs, the model is rhythmically alternating between an information gathering and an infor-

mation consolidation regime. The newly consolidated information leads to updated predic-

tions, which in the next cycle are again compared with the input leading to updates in causal

states, and to a new round of consolidation. That Precoss-β outperformed Precoss for almost all

PEP frequencies indicates that rhythmic alternation of top-down and bottom-up streams dur-

ing the inference process improves online syllable recognition. An important issue is therefore

whether there is an optimal oscillating PEP rate in speech processing.

Beta as an optimal range for rhythmic PEP

The different variants of Precoss-β were assessed based on three different metrics. One that

assesses syllable accuracy and duration (Figs 2, 4A), one that quantifies the efficiency of the

integration of bottom-up information about syllable identity (Fig 3) and another that addition-

ally takes into account the uncertainty about syllable identity (Figs 4B and S7).

When judged on a metric assessing accuracy and duration (Fig 2), performance for all

model variants (as assessed by syllable accuracy and duration) reaches a plateau rather than

showing a peak frequency. The knee point of the plateau differed from variant to variant: 5 Hz

for Precoss-β-identity, which roughly corresponds to the natural syllabic rhythm, and 20 Hz for

Precoss-β-timing, a relatively sensible result given that gamma units are designed as a stable

heteroclinic channel where activity within neighboring units can overlap in time.

For Precoss-β-full, with the knee point at 20 Hz, the performance attained was higher than

for Precoss-β-identity and Precoss-β-timing, indicating an additive benefit of controlling PEP in

both syllable and gamma units. This additive effect is larger when the modulation of syllable

and gamma units is in anti-phase (Fig 4A), i.e. when one functional group is in a high preci-

sion state while the other is in a low one. In the anti-phase condition, only one functional

group at a time (the one in the low-precision phase) can incorporate changes in the input,

while the other incorporates information from the causal states into the dynamics. This alter-

nation regime reduces the search space compared to the variant where the model tries to opti-

mize syllable and gamma units simultaneously. However, this comes at a cost; if in addition to

performance in terms of accuracy and duration, we also consider how clearly the syllables

were detected, the advantage of the anti-phase alternation variant disappears for most modula-

tion frequencies (S7 Fig). This could be due to the fact that although anti-phase alternation can

reduce the search space by optimizing syllable and gamma units in a sequential/alternating

way, there are always large unexplained bottom-up prediction errors in either syllable or

gamma units, depending on which is in the low-precision state. In contrast, in other model

variants, the low-precision phase occurs only for half of the sentence duration (Precoss-β-iden-
tity—PEP of syllable units only, Precoss-β-timing—PEP of gamma units only, and Precoss-β-
full-samephase—simultaneously in both functional groups), suggesting that during the other

half, when prediction errors are integrated into the hidden states, syllable and/or gamma are

less perturbed by prediction errors. That is why, the entropy-weighted overlap metric would

be less penalized in these model variants (S7 Fig and S20 Table).

Interestingly, for the full model (Fig 4), the beta range behaves differently from the other

frequencies for both metrics. For the overlap metric (Fig 4A), which is based on a categorical

decision about syllable identity, the difference between same-phase and antiphase is not
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significant in the beta region. For the entropy-weighted overlap metric, which takes into

account how uncertain the syllable recognition was (S1 and S7 Figs) and corresponds to a

probabilistic decision about the syllable identity in the input, the same-phase alternation vari-

ant is better than the anti-phase variant in the beta range. The latter is arguably the more

neurophysiologically plausible scenario, as the probabilities of candidate syllables are passed

up the speech hierarchy to form words based on the available context and grammar rules.

Theoretically, the appropriate rhythm to control precisions within early speech processing

stages should be both slow enough to span across processing stages (and modules) and fast

enough to achieve an optimal balance between input sensitivity and prediction updating. The

beta range, intermediate between theta and gamma, is ideally suited for both purposes.

Although higher PEP frequencies might result in better syllable identification performance

within a reduced hierarchy considered in our model (Figs 2 and S8), the beta range might be

preferable within a larger hierarchy, as beta oscillations are considered to be a channel for

long-range communication [42,43,54,55]. Beta oscillations that originate in higher levels of the

cortical hierarchy could modulate precisions via a cascade running down from higher cogni-

tive levels (semantics, syntax) to the lower cognitive levels (e.g. syllables) and sensory areas.

Rhythmic PEP and precision theories

The beta rhythm has been linked to sensorimotor precisions before [56,57]. Sensorimotor beta

activity reflects the integration of the sensory signal uncertainty with the uncertainty of the

internal model about prediction errors in an adaptation task [48]. Here, we confirm the impli-

cation of the beta rhythm during inference and go further in showing 1) that the rhythmic

modulation of precisions changes the relative weight of bottom-up vs. top-down information

online, during the inference process, and 2) that this is beneficial in an eminently dynamic

task such as online speech recognition. In other words, while precision (via e.g. synaptic gain)

is important to assign uncertainty about the input throughout the hierarchy, there is an added

benefit when it oscillates. Given bottom-up processes in the gamma and theta ranges, beta

oscillations provide an optimal timescale to update precisions.

Although Precoss-β’s architecture is geared towards speech perception/syllable recognition,

the neural timescales used are not specific to speech [44,45,58]. Oscillating precisions in the

beta range may be beneficial for a wider range of cognitive operations than just syllable recog-

nition, by facilitating top-down and bottom-up communication across processing steps and

cortical regions.

In sum, the role of beta oscillations (or more generally the notion of oscillating precisions)

is to rhythmically modulate the relative influence of top-down and bottom-up information

flows on the fly during a multi-level inference process, here hierarchical speech processing. In

this view, beta oscillations do not only act as an information channel [45,46], but as a gating

mechanism of the top-down information flow.

Rhythmic PEP and Predictive Routing

The rhythmic precision hypothesis is in line with studies suggesting rhythmic attentional sam-

pling [59–62]. The good and bad phases associated with attentional sampling are conceptually

similar to high and low precision states in the model. When bottom-up prediction errors have

low precision, their contribution to the model dynamics decreases. This is similar to forming

internal expectations while periodically scanning the sensory signal for something new or

unexpected. Low precision phases provide windows of opportunity to detect new syllables in

the input. In the absence of a new syllable, there is no substantial prediction error and the cur-

rent syllable unit remains the most active one. Conversely, a new syllable triggers prediction
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errors which will, at the next increased precision phase, switch the corresponding syllable unit

to its active form. The alternation of low and high precision states also fits with recent propos-

als linking cortical oscillations to the ability of neural networks to switch between attractors

and therefore being able to efficiently sample from the space of available hypotheses [63].

This scenario works when there are already internal expectations formed about the sensory

signal. For example, when subjects listened to short stories, beta activity built up as more con-

text became available [25]. As the current model does not include higher hierarchical stages

(word, phrase levels) it implicitly assumes that expectations are already formed and that there

is ongoing beta activity. This assumption is sufficient to demonstrate that oscillating precisions

can help online syllable recognition. However, in the brain, beta activity appears as bursts of

transient activity when top-down predictions are possible. Bastos and colleagues (2020) intro-

duced predictive routing as an implementation of hierarchical processing during visual percep-

tion [36]. Predictive routing assumes that alpha/beta bands prepare the pathways to process

the predicted input by inhibiting bottom-up sensory information communicated at the

gamma scale. Electrophysiological recordings showed enhanced alpha (8-14Hz) and beta (15-

30Hz) activity for predictable stimuli, and gamma activity (40-90Hz) for unpredictable ones,

especially in the lower layers of the hierarchy [36]. These results may also be explained by beta

activity controlling precisions; when the stimulus is predictable and internal expectations are

formed, beta activity originating from higher cortical areas modulates precisions throughout

the whole hierarchy, explaining more alpha/beta power across the hierarchy for predictable

signals. For unpredictable stimuli, there are no internal expectations and no need for an alter-

nated contribution of top-down and bottom-up streams. In this case, the system takes in sen-

sory information with more bottom-up activity communicated by gamma oscillations. The

predictive routing framework can in our opinion comfortably accommodate the notion that

beta oscillations control state precisions, and mediate the contribution of top-down and bot-

tom-up information during the hierarchical (inferential) perception process.

By reflecting oscillating PEPs, beta activity may actually represent the top-down informa-

tion rhythm. How such a functional theory could be implemented at the biophysical level

remains to be established, but it is not incompatible with models of beta rhythm generation

[54,64,65].

Neurophysiological plausibility and comparison with other speech

perception models

As in our original Precoss paper [49], we used a well-established model of the auditory periph-

ery [50] as a basis for constructing the inputs to the model: a reduced auditory spectrogram, as

well as its slow amplitude modulation. The model [50] captures some of the basic transforma-

tions that take place in the subcortical auditory system; including the transformation into an

“auditory spectrogram”; a time-frequency representation of the sound, that takes into account

the loss of temporal precision that happens in the brainstem. Although the auditory spectro-

gram in [50] uses 128 logarithmically spaced frequency bands, we reduced it to a 6-channel

auditory spectrogram. This is sufficient to compare different neural architectures rather than

recognition performance per se. Yildiz and colleagues (2013) used a similar approach in their

speech recognition model [66]. Such a reduction is not unrealistic as it is known from the

cochlear implant literature [67,68] that a 6-channel spectrogram contains enough information

to decipher speech. The other input component, the slow amplitude modulation, is computed

by convolving the auditory spectrogram with a spectrotemporal filter optimized for syllable

boundary detection [17]. These inputs are then processed by two main modules: a theta mod-

ule, and a spectro-temporal module that includes syllable and gamma units. This choice is
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based on the crucial role that theta and gamma oscillations play in speech perception

[16,21,22], and their presence in auditory cortex [22,69,70]. Hyafil and colleagues [17] showed

that coupled theta-gamma oscillations can successfully segment (theta oscillations) and decode

(gamma activity) a continuous speech signal into syllable-like chunks. In the current study,

instead of implementing theta and gamma with spiking neural networks as in Hyafil et al.

(2015), we used a canonical theta neuron [71] to model the theta rhythm and a stable heterocli-

nic channel [72,73] operating at the gamma rate. The latter is particularly suitable for model-

ling sequential dynamics (such as the spectrotemporal pattern of a syllable) and can be

obtained from neural mass models of membrane and action potentials (for details see [66,72–

74]. This implementation of the neural oscillations captures the essential timescales and

intended functions of these neural rhythms: segmentation and decoding/processing.

While Precoss-β, in contrast to most speech perception models [75–77], only covers the

lower levels of the speech perception hierarchy and is simpler than contemporary ASR models

[78,79], its main added feature is that it works on-line and potentially with low resources. Cou-

pled with existing language models (e.g., GPT [80,81]), it could presumably reach high perfor-

mance in on-line speech recognition.

Compared to existing speech perception models such as TRACE [75], Shortlist [76] and

Shortlist B [77] its originality lies in that it combines hierarchical predictive processing

[7,33,82] and neural oscillations [13,16,83], two theoretical frameworks playing a key role in

speech perception. Although TRACE also implements a hierarchy of linguistic features (pho-

netic features, phonemes, words), where each level receives feedback from higher levels [75],

this hierarchy is not based on the predictive coding/free energy principle [5,84].

Further, continuous signal segmentation [1,16] is also fundamentally different in Precoss

and Precoss-β. Our point is that segmentation can be handled by coupled theta and gamma

neural networks in a purely bottom-up fashion [17], but is further improved when top-down

onset predictions are based on internal expectations about duration of speech segments based

on higher level context [85]. Precoss implements a simpler version of theta oscillation-based

syllable onset tracking and endogenous syllable duration estimation to decompose continuous

speech into discrete syllable sequences [49]. This contrasts with the models mentioned above

which use either discretized phonemes (Shortlist–[76]) or continuous phonemic features

(TRACE–[75]).

Finally, our model is distinct from TEMPO, another model that uses nested neural oscilla-

tions. TEMPO uses a hierarchy of nested neural oscillations in the theta, beta and gamma

range for syllable recognition [86]. Precoss-β, however, is a hierarchically structured generative

model with both feedforward and feedback connections. While syllable recognition in

TEMPO is organized by template matching at different timescales determined by the corre-

sponding neural oscillation rhythm (theta tracks syllables, beta and gamma track dyads and

phonemes, respectively), Precoss-β assigns different functions to different rhythms (theta for

syllable tracking, beta controlling precisions and gamma providing processing windows), mak-

ing it more neurophysiological plausible.

Although the current model is not intended to compare to automatic speech recognition

models, Precoss-β could be used to improve them (e.g. [78,79]). The comparison is applicable

to ASR models that use long-short-term memory (LSTM) [87,88] units with recurrent neural

networks (RNN) [89], such as Deep Speech 2 [78], Listen Attend and Spell [79], to name a few.

Comparison with these types of models is relevant because models using RNN generally ana-

lyze speech sounds in an incremental way (like Precoss/Precoss-β). LSTMs use forget gates to

control the flow of information in and out of the memory units/cells, allowing the network to

selectively retain or discard useful/required information. This mechanism allows LSTMs to

process long-term relationships in the input signal (e.g., speech). Forget gates in LSTM are
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somewhat comparable to the oscillating PEP in Precoss-β, which change the influence of top-

down vs. bottom-up information on the inference process. The main difference, however, is

that forget gates selectively retain/discard information (e.g., based on input current, activity at

previous time steps, weights, etc.), whereas oscillating PEP alternate the influence of top-down

(bottom-up) information in a non-selective way whenever internal information is available,

which is both more computationally advantageous and biologically plausible. Furthermore,

while LSTMs are designed to process long-range dependencies in sequential data, oscillating

PEP in the beta range coordinates information across a hierarchy of cortical levels. Our results

suggest that LSTMs (and perhaps other ASR systems) may also benefit from the introduction

of active, explicit oscillatory activity.

Conclusion

This computational study suggests a new functional role of cortical oscillations in the specific

context of hierarchical syllable recognition from natural sentences. First, we show that online

syllable recognition benefits from oscillating precisions that alternate the contribution of top-

down and bottom-up streams during the perceptual inference process. The performance gain

is most tangible when functional groups responsible for different speech features alternatingly

integrate bottom-up information and maintain internal expectations. The best performance

(% recognized syllables, confidence and efficiency) is attained when the model controls preci-

sions across functional groups in the 20–30 Hz range. Oscillating PEPs allow the model to

reactively detect changes in the input, while maintaining internal expectations. These results

entail a new mechanistic role for the beta range in speech processing, which might generalize

to other cognitive functions relying on temporal information integration (e.g., spatial naviga-

tion). Oscillating precisions might represent a powerful strategy for the brain to swiftly transi-

tion from one high confidence hypothesis to another, and quickly sample its internal models.

This is especially relevant for real world stimuli, which are never stationary, speech being a

prime example. Although here we only considered the transition from continuous spectrotem-

poral patterns to discrete syllables, we propose that the same benefits would be obtained at all

levels of the language network, up to the semantics and syntax levels, perhaps at other pre-

ferred frequencies. We also believe that our proposed implementation could be advantageous

to produce low-resource artificial ASR and language models working on-line by allowing an

incremental way of flexibly and dynamically combine internal expectations with the continu-

ous and changing input that characterizes speech.

Methods

Speech input and syllabification

We have used the same set of 220 sentences from the TIMIT dataset [51] that we used in [49]

for the simulations of the new model—Precoss-β. Briefly, for each sentence, a 6-channel

reduced auditory spectrogram was calculated with a biologically plausible model of the audi-

tory periphery [50]. Additionally, slow amplitude modulation of the sentence waveform was

calculated following procedures described in Hyafil and colleagues [17,90].

Syllable boundaries in the input sentences were defined with the Tsylb2 [91] program based

on the phonemic transcriptions provided in the TIMIT database [51]. The program estimates

syllable boundaries based on English grammar rules, using phoneme annotations from

TIMIT. Finally, syllable spectrotemporal patterns are calculated and stored in 6x8 matrices (6

frequency channels x 8 gamma units), where each row corresponds to the average value of the

corresponding frequency bands within 8 binned temporal windows (assigned to specific
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gamma unit). For a detailed description of input construction and syllabification, please see

the Methods section in [49].

Generative model and Precoss-β
We use predictive coding to construct a model for parsing and recognizing syllables from nat-

ural English sentences. Inference is achieved by inverting a generative model. The generative

model has two hierarchical levels, with the top level containing syllable and gamma units and

the theta module. The latter signals syllable onset and rate information (S1 Text, Eqs 1–4) to

the gamma units (S1 Text, Eqs 5–7). Finally, syllable units, which accumulate information

about associated syllables, are modelled as perfect integrators (S1 Text, Eq 10). The bottom

level features a Hopfield attractor that models the amplitude fluctuations of the frequency

channels (S1 Text, Eqs 14–15). Finally, the causal states link the model levels and the model’s

prediction about the input (S1 Text, Equs 11–13 and 17).

Precoss-β has the same hidden and causal states as in the original Precoss [49], but is defined

with two additional hidden states at the top-level (full model equations are provided in the

S1 Text). These represent the harmonic oscillator that controls the precision of syllable and/or

gamma units:

dp1

dt
¼ k1p2 þ εð2Þp1

ð1Þ

dp2

dt
¼ � k1p1 þ εð2Þp2

ð2Þ

k1 ¼
2pc

1000
ð3Þ

Eqs 1 and 2 correspond to the oscillating precisions, C in Eq 3 corresponds to the modula-

tion frequency of prediction error precisions in Hz and 1000 is the sampling rate. We have

tested each Precoss-β variant for different values of the modulation frequency C ranging from

2 Hz up to 60 Hz. Table 1 contains precisions for new hidden states and oscillating causal states

for each model variant.

The core difference between Precoss and Precoss-β is the inversion scheme used for infer-

ence: Dynamic Expectation Maximisation [92] for Precoss, and Generalized filtering [93] for

Precoss-β. The latter features state-dependent precisions [94], which we use to actively modu-

late the precision of bottom-up prediction errors of syllable and/or gamma units.

For details about common aspects for Precoss and Precoss-β, we refer to [49].

Overlap metric

The overlap metric was designed in order to assess model’s ability to accurately determine syl-

lable identity and duration of the input sentence (S1 Fig). It measures the consistency between

the recognized sequence of syllables and the sequence of syllables in the input sentence. This

metric penalizes any discrepancies in either syllable identity or duration between the recog-

nized and input syllables.

sðiÞj ðtÞ ¼
1; TðiÞðstartÞj � t � TðiÞðendÞj

0; otherwise
ð4Þ

(

GðiÞ ¼ ½0 . . .Tg . . .TðiÞðendÞ� ð5Þ
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rðiÞj ðGk � t � Gkþ1Þ ¼
1; if argmaxðMðiÞÞ ¼ j

0; otherwise

(

MðiÞ
j ¼

1

Gkþ1 � Gk

XGkþ1

t¼Gk
c
ðiÞ
j ðtÞ ð6Þ

In the equations above sðiÞj ðtÞ represents the syllable sequence in the input sentence

iðj ¼ ½1;NðiÞsyl �), that contains NðiÞsyl syllables. TðiÞðstartÞj and TðiÞðendÞj represent the start and end time-

points of syllable j in the sentence i. G(i) represents syllable boundaries based the internal,

gamma-based time markers (Tγ, all time points where that last gamma unit (Eq 8 in S1 Text)

y8(Tγ) is a local maximum with the amplitude of at least 0.6). TðiÞðendÞ ¼ TðiÞðendÞ
NðiÞsyl

is the endpoint/

duration of sentence i. It is important to note, that in principle it could happen that there are

more/less gamma-based syllable segments (K(i)) than the number of syllables in the sentence

NðiÞsyl . For each gamma-based segment, we look at which syllable has the highest average activa-

tion (Eq 6, where r(i)(t) is the recognized syllable sequence and c
ðiÞ
j is the j -th component of

SoftMax of syllable hidden states (Eq 12 without the noise term in S1 Text)). Overlap metric

for sentence i is defined as a ratio of dot product between recognized (r(i)(t)) and input syllable

sequences s(i)(t) divided to the duration of the sentence T(i)(end), Eq 7.

Poverlap
ðiÞ ¼

1

TðiÞðendÞ
XTðiÞðendÞ

t¼0

XNðiÞsyl
j¼1

sðiÞj ðtÞr
ðiÞ
j ðtÞ ð7Þ

Entropy-weighted overlap metric

The overlap-metric described above makes a categorical decision about the identity of a sylla-

ble (Eq 4), however it does not take into account the uncertainty associated with the activated

syllable. Entropy-weighted overlap metric is designed to address this issue. First, for each

Table 1. Precisions of syllable, gamma units and hidden states of the oscillating precisions. The left column repre-

sents stationary precisions for syllable and gamma units W⍵ and Wγ respectively, and for the new hidden states that

generate oscillating precisions—Wp. The right column represents the precision of causal states for each variant.

Depending on the Precoss-β variant either syllable (Precoss-β-identity) or gamma (Precoss-β-timing) units have oscillat-

ing precision. Meanwhile, for variants Precoss-β-full (same/anti-phase), both syllable and gamma units have oscillating

precisions, with the difference that for variant Precoss-β-full-antiphase they oscillate in opposite phases, while for Pre-
coss-β-full-samephase in the same phase.

hidden states causal states

Precoss-β-identity W⍵ = exp(3)

Wγ = exp(5)

Wp = exp(5)

V⍵ = exp(2.5+2p2)

Vγ = exp(1.5)

Precoss-β-timing W⍵ = exp(3)

Wγ = exp(5)

Wp = exp(5)

V⍵ = exp(5)

Vγ = exp(1.5+4p2)

Precoss-β-full-antiphase W⍵ = exp(3)

Wγ = exp(5)

Wp = exp(5)

V⍵ = exp(2.5+2p2)

Vγ = exp(1.5-4p2)

Precoss-β-full-samephase W⍵ = exp(3)

Wγ = exp(5)

Wp = exp(5)

V⍵ = exp(2.5+2p2)

Vγ = exp(1.5+4p2)

https://doi.org/10.1371/journal.pcbi.1011595.t001

PLOS COMPUTATIONAL BIOLOGY Top-down gating role for the beta oscillations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011595 November 7, 2023 16 / 29

https://doi.org/10.1371/journal.pcbi.1011595.t001
https://doi.org/10.1371/journal.pcbi.1011595


sentence, i we calculate the entropy associated with the SoftMax of syllable hidden states ψ(i)

EðiÞ tð Þ ¼
1

lgðNðiÞsyllÞ

XNðiÞsyll
j¼1

c
ðiÞ
j ðtÞlgc

ðiÞ
j ðtÞ ð8Þ

Were we also normalized with the maximum possible entropy of sentence i that has NðiÞsyll syl-

lables. The E(i)(t) is low when the model selected only one(few) candidate(s) for the input sylla-

ble (this what we want to award in this new metric), and high when there are many candidates

(this we want to penalize). Therefore, the entropy-weighted overlap metric for each sentence i
was defined as follows:

Pent� overlap
ðiÞ ¼

1

TðiÞðendÞ
XTðiÞðendÞ

t¼0
ð1 � EðiÞðtÞÞ

XNðiÞsyl
j¼1

sðiÞj ðtÞr
ðiÞ
j ðtÞ ð9Þ

Longest common-subsequence

The longest common-subsequence (lcs) metric for each sentence is based on the longest subse-

quence that is present in both sequences, where the subsequence is obtained by deleting items

without any additions or changes in order [95]. For example, if we compare the sequence a =

[8, 1, 3, 2, 4, 5, 5, 7] with the sequence b = [1, 2, 3, 4, 5, 6, 7, 8], we will find that the LCS between

a and b is c = [1, 2, 4, 5, 7]. In our case we calculate lcs between the syllable sequence in the

input sðiÞinputðjÞ ¼ j (where j ¼ 1 . . .NðiÞsyl ) and sðiÞrecðkÞ ¼ rðiÞð� 1ÞðGkÞ (where k ¼ 1 . . .KðiÞ; rðiÞð� 1ÞðtÞ

is the inverse of the function in Eq 6 and returns the index (j ¼ 1 . . .NðiÞsyl ) of the recognized syl-

lable). Model performance based on the lcs metric for sentence i is, therefore, defined as:

PðiÞlcs ¼
LðsðiÞinput; sðiÞrecÞ

NðiÞsyl
ð10Þ

Where LðsðiÞinput; sðiÞrecÞ donates to the length of the longest common subsequence between sðiÞinput
and sðiÞrec. Importantly, contrary to the overlap and entropy-weighted overlap metric, the lcs met-

ric depends only on the identity (index) of the recognized syllables and is not sensitive to how

well the model was able to infer syllable durations.

Sensory information integration efficacy

As mentioned above, the oscillating PEP also affects how well the model is able to integrate the

sensory information (bottom-up prediction error). To quantify this effect, we tracked when

each syllable’s hidden state changed in the same direction as the corresponding component of

the bottom-up prediction error. In other words, a positive bottom-up prediction error means

that there is information about the corresponding syllable in the input, and the model should

integrate this information into the corresponding syllable hidden state. If the model is success-

ful, the value of the corresponding syllable hidden state would change positively (the derivative

would be positive). Similarly, a negative prediction error means that the corresponding syllable

hidden state does not represent the syllable in the input, so its activity should decrease (nega-

tive derivative) if the model is successful in interpreting this information. Mathematically, this

can be described by calculating the dot product (component wise) between the positive (nega-

tive) derivative of the hidden syllable states and the corresponding positive (negative) predic-

tion error over the sentence duration (Eq 4).

rij ¼
1

T

XT

t¼1
hðtÞ zþi ðtÞ

doiðtÞ
dt

� �þ

þ z�i ðtÞ
doiðtÞ
dt

� ��� �

ð11Þ
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Rj ¼
1

Nsyl

XNsyl

i¼1
rij ð12Þ

First, for each syllable i in sentence j we calculate the mean the product of positive evidence

in favor of syllable i zþð� Þi ðtÞ and derivative of its syllable hidden state
doiðtÞ
dt

� �þð� Þ
, where the

summation is across time but excluding periods of active resetting of syllable units that hap-

pens when the gamma network signals the end of a syllable (for details see [49]). This is

achieved by defining h(t), which is one outside active resetting periods and 0 during active

resetting periods.

We also average root sum square (Rj) across all syllables Nsyl of sentence j (Eq 5). Each dot

in Fig 3 indicates the value Rj for each sentence (j) for corresponding PEP frequency.

Bayesian information criterion

Compared to the original Precoss model, the new Precoss-β model is more complex as it

includes two additional variables responsible for the generation of PEP oscillations. To account

for the additional complexity of the model (19 parameters (Precoss-β) vs. 17 parameters (Pre-

coss)), we calculated the BIC values based on the probabilities assigned by the model to the syl-

lables in the input. The syllable hidden states correspond to the evidence accumulated about

each syllable during the inference process, while the SoftMax of the syllable hidden states rep-

resents the probabilities assigned by the model about each syllable in the input sentence.

Therefore, the log-likelihood for a categorical distribution with N possible outcomes (N is the

number of syllables in the input sentence s(i) for model m) would be:

log pðsjðiÞjmÞ ¼
XT

t¼1

logðsðiÞj ðtÞc
ðiÞ
j ðtÞÞ

log p sðiÞjmð Þ ¼
PNðiÞsyl

j¼1

1

dðiÞj
log pðsj

ðiÞjmÞ

ð13Þ

Where, in the first equation, for each sentence i, the sðiÞj ðtÞ and c
ðiÞ
j ðtÞ correspond to the syl-

lable in the input (Eq 4) and model assigned probability to that syllable (the corresponding

component of the SoftMax of syllable hidden states) at time t, respectively. Finally, to control

for syllables with different durations, we divide the log likelihood of each syllable by its dura-

tion dðiÞj before summing them to get a single value for a sentence.

The BIC value for each model variant was calculated by:

BICðmÞ ¼
XNsent

i¼1
log pðsðiÞðtÞjmÞ � 0:5NsentlogNpðmÞ ð14Þ

Where Nsent and Np(m) Np(m) stand for the number of sentences used in simulations and

number of parameters in model m, respectively.

The BIC values for all Precoss-β variants for all PEP frequencies are shown in the S29 Table.

Statistical analysis

The model performance was evaluated based on the overlap metric (S1 Fig) that provides a sin-

gle value for each sentence assessing the model’s ability to infer syllable identity and duration

for each sentence. Simulations were performed on the same set of 220 sentences for each

model variant and each frequency of modulation of prediction error precisions.
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To compare the performance of Precoss vs Precoss-β we performed a Wilcoxon signed-rank

test for each PEP frequency. To control for multiple comparisons the alpha = 0.05 was adjusted

with the Bonferroni procedure. Each test was considered statistically significant if the p-value

was less than 0.05/8 (dominator corresponds to the number of comparisons—the number of

tested frequencies). The same method was used for the same-phase vs. anti-phase conditions

(presented in Fig 4). Results are presented in S1–S3, S13–S15, S25–S27 Tables (for compari-

sons based on the overlap, entropy-weighted overlap and lcs metrics, respectively) for Precoss-
β variants, and S9 Table for anti-phase vs same-phase comparisons. In all tables the first col-

umn indicates which frequency is tested, the second column the associated signed-rank, and

the third column the corresponding z-statistics. The last column represents the corresponding

p-value.

We have also compared Precoss-β variants with N-way ANOVA (anovan function in RMa-

tlab2020b). We have looked at interaction between two factors (model type–PEP of which

units is controlled) and frequency of PEP set as continuous predictor.

For each Precoss-β variant, the effect of the modulation frequency was evaluated with a

Friedman test, followed by multiple comparisons controlled by Bonferroni correction. S4-7

(for overlap metric), S10-S12 (integration efficiency), S16-S19 (for entropy-weighted overlap

metric) and S21–S24 Tables (lcs) report results of pairwise comparisons, where the first two

columns indicate which modulation frequencies of precisions are being compared. The fourth

column indicates the difference in the mean signed-rank for the corresponding pair, whereas

the third and fifth columns indicate lower and upper bound of 95% confidence interval, corre-

spondingly. Lastly, the sixth column represents Bonferroni corrected p-values. Pairwise com-

parisons are considered statistically significant if the corrected p-value < 0.05.

All statistical tests were performed using built-in Matlab functions. Sentences (32, 64, 70,

77, 131) did not converge for Precoss-β-full-samephase, thus were excluded from same-phase

vs anti-phase comparisons (Fig 4).

Supporting information

S1 Text. Includes the detailed mathematical description of the original Precoss model [49].

(DOCX)

S1 Fig. Performance metric overlap based on the dynamics of syllable and gamma units.

The top two panels represent the dynamics of the gamma and syllable hidden states during

inference for an example sentence. For each subplot, colored lines were used to represent dif-

ferent gamma and syllable units. The gamma unit with a thick blue line corresponds to the

first gamma unit, whose peak (amplitude more than 0.6) is used as a marker to indicate win-

dows for identifying the “winner” syllable unit. For the latter, we look for the syllable unit with

the highest average activation within a gamma window (time interval between two consecutive

gamma 1 peaks). The sequence of the recognized syllables is shown in the 3rd panel (colored

solid lines), whereas the dashed line indicates the entropy associated with the softmax of sylla-

ble hidden states (top panel). The sequence and duration of the syllables in the input are

shown in the 4th subpanel. The model performance (the overlap metric) is evaluated with the

sum of the dot-product (bottom subpanel) of recognized and input syllable sequences (sub-

panels 3 and 4) divided by the duration of the input sentence. The higher/closer to 1, the better

the model is able to infer identity and duration of syllables in the input sentence. The overlap

metric that also incorporates (Fig 4B) the entropy is calculated based on the sum of the dot

product of recognized syllable sequence (solid lines on the 3rd panel), 1-entropy (the dashed

line on the 3rd panel) and syllable sequence in the input (4th panel).

(TIF)
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S2 Fig. Precoss-β-identity performance based on the overlap metric. Simulation results on

220 sentences. Performance is evaluated based on the overlap between the recognized syllable

sequence and the sequence of syllables in the input sentence (for details, see S1 Fig). We com-

pare the performance of Precoss-β for different frequency values of PEP. For all frequencies,

performance is better than that of Precoss with stationary precisions (S1 Table). Friedman test

(χ2 = 24.77, p = 0.0008) indicated an effect of PEP frequency on model performance. Post-hoc

pairwise comparisons (Bonferroni-corrected, S4 Table), indicated that performance of Pre-
coss-β increased with frequency up to 5 Hz and reached a plateau (there is no statistically sig-

nificant difference in the model’s performance for frequencies higher or equal to 5 Hz). Each

point on the scatter plot represents the model performance in each sentence for the corre-

sponding PEP frequency. The central-red mark of the box plots indicates the median, whereas

bottom and top edges represent 25th and 75th percentiles. Red crosses indicate outliers,

whereas whiskers extend to the highest and lowest overlap values that are not considered outli-

ers. The blue line at the top represents comparisons of Precoss-β with Precoss, while triangular

grey lines indicate comparisons within Precoss-β for different PEP frequencies. Arrows on

these lines indicate significant differences, while the direction of the arrows indicates the sign

of the effect.

(TIF)

S3 Fig. Precoss-β-timing performance based on the overlap metric. Simulation results on

220 sentences are presented in the figure. Performance is evaluated based on the overlap

between the recognized and input syllable sequences (for details, see S1 Fig). Precoss-β outper-

forms Precoss for PEP frequencies higher or equal to 10 Hz, whereas for smaller frequencies

the performance is worse (S2 Table). Friedman test (χ2 = 125.4, p = 5.727e-24) indicated an

effect of PEP frequency on model performance. Post-hoc, multiple comparisons tests (cor-

rected with Bonferroni procedure, S5 Table) indicated that Precoss-β performance increases

with frequency and reaches a plateau at around 20 Hz. Each point on the scatter plot represents

the value for each sentence for the corresponding PEP frequency. The central-red mark of the

box plots corresponds to the median, whereas bottom and top edges represent 25th and 75th

percentiles, respectively. Red crosses indicate outliers, whereas whiskers extend to the highest

and lowest performance values that are not considered outliers. The blue line at the top repre-

sents comparisons of Precoss-β with Precoss, while triangular grey lines indicate comparisons

between different PEP frequencies within Precoss-β. Arrows on these lines indicate significant

differences, while the direction of the arrows indicates the sign of the effect.

(TIF)

S4 Fig. Precoss-β-full-antiphase performance based on overlap metric. Simulation results

on 220 sentences are presented in the figure. Performance is evaluated based on the overlap

duration between the recognized syllable sequence and the sequence of syllables in the input

sentence (for details, see S1 Fig). For this condition performance of Precoss-β is better than the

performance of Precoss, with stationary precisions for all frequency values of the precision

units (S3 Table). Friedman test (χ2 = 128.41.86, p = 1.351e-24) confirmed that the frequency

of PEP affects model performance. Post-hoc, Bonferroni corrected pairwise comparisons indi-

cated that the model performance increases with the frequency and reaches a plateau at 20 Hz

(there are no statistically significant differences in performance for higher PEP frequencies,

S6 Table). The central-red mark of the box plots corresponds to the median, whereas bottom

and top edges represent 25th and 75th percentiles, respectively. Red crosses indicate outliers,

whereas whiskers extend to the highest and lowest model performance values that are not con-

sidered outliers. The blue line at the top represents comparisons of Precoss-β with Precoss,
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while triangular grey lines indicate comparisons within Precoss-β for different PEP frequen-

cies. Arrows on these lines indicate significant differences, while the direction of the arrows

indicates the sign of the effect.

(TIF)

S5 Fig. Precoss-β-full-samephase performance based on overlap metric. Simulation results

on 220 sentences are presented in the figure. Performance is evaluated based on the overlap

duration between the recognized syllable sequence and the sequence of syllables in the input

sentence (for details, see S1 Fig). For this condition performance of Precoss-β is better than the

performance of Precoss, with stationary precisions for all frequency values of the precision

units (S3 Table). Friedman test (χ2 = 94.94.86, p = 1.192e-17) confirmed that the frequency of

PEP affects model performance. Post-hoc, Bonferroni corrected pairwise comparisons indi-

cated that the model performance increases with the frequency and reaches a plateau at 20 Hz

(there are no statistically significant differences in performance for higher PEP frequencies,

S6 Table). The central-red mark of the box plots corresponds to the median, whereas bottom

and top edges represent 25th and 75th percentiles, respectively. Red crosses indicate outliers,

whereas whiskers extend to the highest and lowest model performance values that are not con-

sidered outliers. The blue line at the top represents comparisons of Precoss-β with Precoss,
while triangular grey lines indicate comparisons within Precoss-β for different PEP frequen-

cies. Arrows on these lines indicate significant differences, while the direction of the arrows

indicates the sign of the effect.

(TIF)

S6 Fig. Precoss-β dynamics of syllable units for different PEP frequencies. Each panel in the

figure represents the effect of PEP on the dynamics of syllable recognition for different PEP

frequencies. Each panel contains 3 plots. The top one represents the softmax of syllable hidden

states (colour coded for different syllables in the input sentence), with the dashed line repre-

senting the entropy associated with the accumulated evidence. The middle plot shows the syl-

lable hidden states, with the horizontal the bars representing the syllable sequence (identity

and duration) in the input sentence. The bottom plot represents the bottom-up prediction

errors for the syllable units, with the dashed line corresponding to the oscillation controlling

the precision of the prediction errors. This comparison illustrates that during low PEP fre-

quencies low/high precision phase spans often extend over several syllables in the input. This

means that for many syllables the model is not able to integrate and accumulate sensory infor-

mation. In case of higher PEP frequencies there is "always" unexplained prediction errors, that

results in more noisy dynamics of syllable causal states.

(TIF)

S7 Fig. Model performance based on the entropy weighted overlap metric. The figure illus-

trates the model performance based on the entropy weighted overlap metric (S1 Fig). The

graph shows the mean performance and 95% confidence interval after bootstrapping for dif-

ferent Precoss-beta variants (color coded) and Precoss with fixed precision (the blue band).

Arrows at the top indicate significant differences within model comparisons for different PEP

frequencies. The direction of an arrow indicates the direction of the effect. Similarly, the blue

line and the arrows on it show the comparisons for each Precoss-beta variant versus Precoss,

with the direction of the arrows indicating that Precoss-beta with oscillating precisions outper-

forms Precoss for all variants and PEP frequencies.

(TIF)

S8 Fig. The longest common subsequence between recognized and input syllable

sequences. The figure illustrates the evaluation of the model variants based on the longest-
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common-sub-sequence (lcs). For each sentence, the lcs between the recognized syllable

sequence and the syllable sequence in the input sentence is retrieved. The length of the lcs is

divided by the number of syllables in the input sentence, giving the percentage on which this

figure is based. Thus, for each model variant (color coded) and for each PEP frequency, we

show the mean lcs (in %) and the 95% confidence interval. The arrows (color coded) represent

the statistically significant differences for within-model comparisons for different PEP fre-

quency values. The direction of the arrows represents the direction of the effect (pointing to

the left would mean that the frequency on the left has a statistically lower lcs value than the fre-

quency on the right). Similarly, the blue line and the arrows on it represent the comparison

between Precoss and Precoss-beta variants, where the arrows pointing downwards indicate

that the corresponding Precoss-beta variant (color coded) and frequency has significantly bet-

ter performance.

(TIF)

S1 Table. Precoss vs. Precoss-β-identity.

(XLSX)

S2 Table. Precoss vs. Precoss-β-timing.

(XLSX)

S3 Table. Precoss vs. Precoss-β-full-antiphase.

(XLSX)

S4 Table. Multiple comparison table for Precoss-β-identity, overlap metric.

(XLSX)

S5 Table. Multiple comparison table for Precoss-β-timing, overlap metric.

(XLSX)

S6 Table. Multiple comparison table for Precoss-β-full-antiphase, overlap metric.

(XLSX)

S7 Table. Multiple comparison table for Precoss-β-identity-samephase, overlap metric.

(XLSX)

S8 Table. Comparison between model variants–overlap metric. 2-way ANOVA (model var-

iant (discrete factor) and PEP frequency (continuous factor)) was performed to analyze

Precoss-β variant on performance based on the overlap metric. Simple main effect analysis

showed that model variant has statistically significant effect on the model performance

(F = 15.92, p = 0).

(XLSX)

S9 Table. Effect of the oscillating PEP phase on model performance. Related to Fig 5. The

performance difference (same-phase minus anti-phase) is considered statistically significant if

the p< 0.05/8 (corrected for multiple comparisons with Bonferroni procedure). Sentences 32,

64, 70, 77, 131 were removed from analysis, as the model fell into singularities, which resulted

in NAN values for the entropy calculations. The first line for each comparison corresponds to

the overlap metric, where the significant differences are highlighted with the light gray shade.

The second raw corresponds to the overlap metric that also incorporates entropy, here the sig-

nificant differences are highlighted with the light blue shade.

(XLSX)

S10 Table. Multiple comparison table for Precoss-β-identity—(integration efficiency).

Results of Friedman test (χ2 = 28.55, p = 0.0002) and followed within PEP-frequency multiple
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comparisons (Bonferroni corrected) are presented.

(XLSX)

S11 Table. Multiple comparison table for Precoss-β-timing—(integration efficiency).

Results of Friedman test (χ2 = 605.71, p = 1.434e-126) and followed within PEP-frequency

multiple comparisons (Bonferroni corrected) are presented. Sentence N182 was removed for

this result, as model did not converge.

(XLSX)

S12 Table. Multiple comparison table for Precoss-β-full—(integration efficiency). Results

of Friedman test (χ2 = 269.85, p = 1.635e-54) and followed within PEP-frequency multiple

comparisons (Bonferroni corrected) are presented.

(XLSX)

S13 Table. Precoss vs. Precoss-β-identity, entropy-weighted overlap metric.

(XLSX)

S14 Table. Precoss vs. Precoss-β-timing, entropy-weighted overlap metric.

(XLSX)

S15 Table. Precoss vs. Precoss-β-full, entropy-weighted overlap metric.

(XLSX)

S16 Table. Multiple comparison table for Precoss-β-identity—(entropy weighted overlap

metric). Results of Friedman test (χ2 = 53.04, p = 3.64e-9) and followed within PEP-frequency

multiple comparisons (Bonferroni corrected) are presented.

(XLSX)

S17 Table. Multiple comparison table for Precoss-β-timing—(entropy weighted overlap

metric). Results of Friedman test (χ2 = 114.53, p = 1.05288e-21) and followed within PEP-fre-

quency multiple comparisons (Bonferroni corrected) are presented.

(XLSX)

S18 Table. Multiple comparison table for Precoss-β-full-antiphase—(entropy weighted

overlap metric). Results of Friedman test (χ2 = 152.91, p = 9.918e-30) and followed within

PEP-frequency multiple comparisons (Bonferroni corrected) are presented.

(XLSX)

S19 Table. Multiple comparison table for Precoss-β-full-samephase—(entropy weighted

overlap metric). Results of Friedman test (χ2 = 123.8, p = 1.236e-23) and followed within

PEP-frequency multiple comparisons (Bonferroni corrected) are presented.

(XLSX)

S20 Table. Comparison between model variants–entropy weighted overlap metric. 2-way

ANOVA (model variant (discrete factor) and PEP frequency (continuous factor)) was per-

formed to analyze Precoss-β variant on performance based on the entropy weighted overlap

metric. Simple main effect analysis showed that model variant has statistically significant effect

on model performance (F = 5.4, p = 0.001)

(XLSX)

S21 Table. Multiple comparison table for Precoss-β-identity—(lcs metric). Results of Fried-

man test (χ2 = 47.42, p = 4.627e-8) and followed within PEP-frequency multiple comparisons

(Bonferroni corrected) are presented.

(XLSX)
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S22 Table. Multiple comparison table for Precoss-β-timing, lcs metric. Results of Friedman

test (χ2 = 125.85, p = 4.62e-24) and followed within PEP-frequency multiple comparisons

(Bonferroni corrected) are presented.

(XLSX)

S23 Table. Multiple comparison table for Precoss-β-full-antiphase, lcs metric. Results of

Friedman test (χ2 = 159.29, p = 4.51e-31) and followed within PEP-frequency multiple com-

parisons (Bonferroni corrected) are presented.

(XLSX)

S24 Table. Multiple comparison table for Precoss-β-full-samephase, lcs metric. Results of

Friedman test (χ2 = 109.56, p = 1.13e-20) and followed within PEP-frequency multiple com-

parisons (Bonferroni corrected) are presented.

(XLSX)

S25 Table. Precoss vs. Precoss-β-identity, lcs metric.

(XLSX)

S26 Table. Precoss vs. Precoss-β-timing, lcs metric.

(XLSX)

S27 Table. Precoss vs. Precoss-β-full, lcs-metric.

(XLSX)

S28 Table. Comparison between model variants–lcs metric. 2-way ANOVA (model variant

(discrete factor) and PEP frequency (continuous factor)) was performed to analyze Precoss-β
variant on performance based on the lcs metric. Simple main effect analysis showed that

model variant has statistically significant effect on the model performance (F = 20.87, p = 0).

(XLSX)

S29 Table. Bayesian Information Criterion. The highlighted cells correspond to the Precoss-

β variants and PEP frequencies where the BIC values were higher than the BIC value of Precoss

(-10057).

(XLSX)
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69. Morillon B, Liégeois-Chauvel C, Arnal LH, Bénar CG, Giraud AL. Asymmetric function of theta and

gamma activity in syllable processing: An intra-cortical study. Front Psychol. 2012 Jul; 3(JUL):1–9–9.

https://doi.org/10.3389/fpsyg.2012.00248 PMID: 22833730

70. Teng (滕相斌) X, Meng孟庆林) Q, Poeppel D. Modulation Spectra Capture EEG Responses to Speech

Signals and Drive Distinct Temporal Response Functions. eNeuro [Internet]. 2020 Dec 3 [cited 2020

Dec 4]; Available from: https://www.eneuro.org/content/early/2020/12/03/ENEURO.0399-20.2020

71. Ermentrout GB, Kopell N. Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation.

SIAM J Appl Math. 1986; 46(2):233–53.

72. Rabinovich M, Volkovskii A, Lecanda P, Huerta R, Abarbanel HDI, Laurent G. Dynamical encoding by

networks of competing neuron groups: Winnerless competition. Phys Rev Lett. 2001 Jul; 87

(6):681021–4. https://doi.org/10.1103/PhysRevLett.87.068102 PMID: 11497865

73. Rabinovich MI, Varona P, Tristan I, Afraimovich VS. Chunking dynamics: heteroclinics in mind. Front

Comput Neurosci [Internet]. 2014;8. Available from: http://journal.frontiersin.org/article/https://doi.org/

10.3389/fncom.2014.00022/abstract

74. Yildiz IB, Kiebel SJ. A hierarchical neuronal model for generation and online recognition of birdsongs.

PLoS Comput Biol. 2011; 7(12). https://doi.org/10.1371/journal.pcbi.1002303 PMID: 22194676

75. McClelland JL, Elman JL. The TRACE model of speech perception. Cognit Psychol. 1986 Jan; 18(1):1–

86. https://doi.org/10.1016/0010-0285(86)90015-0 PMID: 3753912

76. Norris D. Shortlist: a connectionist model of continuous speech recognition. Cognition. 1994 Sep; 52

(3):189–234.

77. Norris D, McQueen JM. Shortlist B: A Bayesian Model of Continuous Speech Recognition. Psychol

Rev. 2008 Apr; 115(2):357–95. https://doi.org/10.1037/0033-295X.115.2.357 PMID: 18426294

78. Amodei D, Ananthanarayanan S, Anubhai R, Bai J, Battenberg E, Case C, et al. Deep Speech 2: End-

to-End Speech Recognition in English and Mandarin. In: Proceedings of The 33rd International Confer-

ence on Machine Learning [Internet]. PMLR; 2016 [cited 2023 Feb 12]. p. 173–82. Available from:

https://proceedings.mlr.press/v48/amodei16.html

79. Chan W, Jaitly N, Le QV, Vinyals O. Listen, Attend and Spell [Internet]. arXiv; 2015 [cited 2023 Feb 13].

Available from: http://arxiv.org/abs/1508.01211

80. Floridi L, Chiriatti M. GPT-3: Its Nature, Scope, Limits, and Consequences [Internet]. Rochester, NY;

2020 [cited 2023 Jun 23]. Available from: https://papers.ssrn.com/abstract=3827044

81. Su Y, Olasagasti I, Giraud AL. A deep hierarchy of predictions enables assignment of semantic roles in

real-time speech comprehension [Internet]. bioRxiv; 2022 [cited 2022 Apr 5]. p. 2022.04.01.486694.

Available from: https://www.biorxiv.org/content/10.1101/2022.04.01.486694v1

82. Friston K. Hierarchical models in the brain. Sporns O, editor. PLoS Comput Biol. 2008 Nov; 4(11):

e1000211–e1000211. https://doi.org/10.1371/journal.pcbi.1000211 PMID: 18989391

83. Kösem A, van Wassenhove V. Distinct contributions of low- and high-frequency neural oscillations to

speech comprehension. Lang Cogn Neurosci. 2017 May; 32(5):536–44.

84. Egner T, Summerfield C. Grounding predictive coding models in empirical neuroscience research.

Behav Brain Sci. 2013 Jun; 36(3):210–1. https://doi.org/10.1017/S0140525X1200218X PMID:

23663509

PLOS COMPUTATIONAL BIOLOGY Top-down gating role for the beta oscillations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011595 November 7, 2023 28 / 29

https://doi.org/10.1371/journal.pcbi.1009753
http://www.ncbi.nlm.nih.gov/pubmed/35324886
https://doi.org/10.3389/neuro.03.001.2008
http://www.ncbi.nlm.nih.gov/pubmed/18946516
https://doi.org/10.1371/journal.pcbi.1007300
http://www.ncbi.nlm.nih.gov/pubmed/32097404
https://doi.org/10.1371/journal.pcbi.1003219
http://www.ncbi.nlm.nih.gov/pubmed/24068902
https://doi.org/10.1121/1.1381538
http://www.ncbi.nlm.nih.gov/pubmed/11519582
https://doi.org/10.1121/1.428215
https://doi.org/10.1121/1.428215
http://www.ncbi.nlm.nih.gov/pubmed/10615701
https://doi.org/10.3389/fpsyg.2012.00248
http://www.ncbi.nlm.nih.gov/pubmed/22833730
https://www.eneuro.org/content/early/2020/12/03/ENEURO.0399-20.2020
https://doi.org/10.1103/PhysRevLett.87.068102
http://www.ncbi.nlm.nih.gov/pubmed/11497865
http://journal.frontiersin.org/article/
https://doi.org/10.3389/fncom.2014.00022/abstract
https://doi.org/10.3389/fncom.2014.00022/abstract
https://doi.org/10.1371/journal.pcbi.1002303
http://www.ncbi.nlm.nih.gov/pubmed/22194676
https://doi.org/10.1016/0010-0285%2886%2990015-0
http://www.ncbi.nlm.nih.gov/pubmed/3753912
https://doi.org/10.1037/0033-295X.115.2.357
http://www.ncbi.nlm.nih.gov/pubmed/18426294
https://proceedings.mlr.press/v48/amodei16.html
http://arxiv.org/abs/1508.01211
https://papers.ssrn.com/abstract=3827044
https://www.biorxiv.org/content/10.1101/2022.04.01.486694v1
https://doi.org/10.1371/journal.pcbi.1000211
http://www.ncbi.nlm.nih.gov/pubmed/18989391
https://doi.org/10.1017/S0140525X1200218X
http://www.ncbi.nlm.nih.gov/pubmed/23663509
https://doi.org/10.1371/journal.pcbi.1011595
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