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Abstract

Many problems in classification involve huge numbers of irrelevant features. Variable selection 

reveals the crucial features, reduces the dimensionality of feature space, and improves model 

interpretation. In the support vector machine literature, variable selection is achieved by ℓ1

penalties. These convex relaxations seriously bias parameter estimates toward 0 and tend to admit 

too many irrelevant features. The current paper presents an alternative that replaces penalties by 

sparse-set constraints. Penalties still appear, but serve a different purpose. The proximal distance 

principle takes a loss function L(β) and adds the penalty ρ
2dist β, Sk

2 capturing the squared 

Euclidean distance of the parameter vector β to the sparsity set Sk where at most k components 

of β are nonzero. If βρ represents the minimum of the objective fρ(β) = L(β) + ρ
2dist β, Sk

2, then βρ

tends to the constrained minimum of L(β) over Sk as ρ tends to ∞. We derive two closely related 

algorithms to carry out this strategy. Our simulated and real examples vividly demonstrate how the 

algorithms achieve better sparsity without loss of classification power.
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1 Introduction

Support vector machines (SVMs) are powerful pattern recognition tools (Cortes and Vapnik, 

1995) with a wide range of applications across machine learning and statistics. Success 

stories in supervised learning include optical character recognition (Decoste and Schölkopf, 

2002), image segmentation (Barghout, 2015), text categorization (Joachims, 1998; Pradhan 

et al., 2004), protein structure prediction (Dunbrack, 2006), and early detection and 

classification of human cancers (Sewak et al., 2007). It is possible to extend SVM to online 
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algorithms for resource-limited computing environments (Cauwenberghs and Poggio, 2000; 

Laskov et al., 2006) and beyond classification to unsupervised learning problems (Ben-Hur 

et al., 2002).

Part of the success of SVMs is due to their flexible decision boundaries. SVMs are often 

sparse in the sense that they depend on relatively few training samples. Sparsity enhances 

the ability of SVMs to label unlabeled cases. Existing research on fitting SVMs largely 

focuses on this strength by devising methods that improve prediction quality or accelerate 

the fitting process on large-scale datasets. Speed and prediction are worthy goals, but some 

application domains also require model interpretability. Indeed, in biological sciences and 

biomedical applications most variables are uninformative. One naturally desires to extract 

the informative variables because these drive further discovery and hypothesis generation. 

Thus, variable selection for SVMs is a topic of considerable interest in the literature. Lasso 

penalization is the primary tool for inducing sparsity (Zhu et al., 2003). Unfortunately, 

lasso penalization also induces shrinkage in model selection and tends to admit many 

irrelevant features. In contrast to penalization and shrinkage, screening methods originally 

developed for lasso problems eliminate variables prior to model fitting (El Ghaoui et al., 

2012; Tibshirani et al., 2012; Wang et al., 2013). Ogawa et al. (2013) implement screening 

in SVMs, and Jaggi (2014) forges further connections between SVMs and the lasso.

The aim of this work is to present a flexible framework that addresses parsimony in both 

variable selection and prediction. We focus on (a) primal problems under the squared-hinge 

loss, (b) novel proximal distance algorithms for parameter fitting and model selection (Chi et 

al., 2014; Lange, 2016, the latter is a good reference), and (c) extensions to kernel machines 

for nonlinear data. Our key strategy replaces sparsity inducing penalties with projection onto 

sparsity constraint sets. The SVM proximal distance algorithm comes in two closely related 

flavors. Both exhibit comparable, and often superior, predictive accuracy to existing SVM 

methods. Although the proximal distance algorithms are sometimes slower than competing 

methods, their output is both easier to interpret and better at revealing sparse signals hidden 

in high-dimensional data.

2 Sparse SVMs via Distance Penalization

In this section we develop the theory underpinning our sparse SVM algorithms. We begin 

with a brief overview of SVM loss models, specifically L2 SVMs, and derive a quadratic 

surrogate for squared hinge losses. We also add a squared distance penalty to the L2 SVM 

loss to guide fitting toward sparsity. By projecting model coefficients onto different sparsity 

sets, one can directly control the number of active features in a model. We explore this idea 

in linear classifiers to selecting potentially informative features and to nonlinear classifiers 

to select potentially informative support vectors. These vectors define a classifier’s decision 

boundary. Readers may consult Keys et al. (2019), for a broad overview of the proximal 

distance principle and its connection to proximal methods in convex optimization.

2.1 Background

Many variations on supervised SVMs have been proposed. For example, the class of soft-

margin Lp SVMs are based on convex programs of the form
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min
w, b, ξ

1
2w⊤w + C

np ∑
i = 1

n
ξi

p

yi w⊤xi + b ≥ 1 − ξi, for i = 1, 2, …, n
ξi ≥ 0,

where p ≥ 1, the polarities yi ∈ − 1, + 1  serve as class labels, and features (predictors) 

are denoted xi ∈ ℝd. Here the parameters (w, b) ∈ ℝd + 1 determine a hyperplane 

x:w⊤x + b = 0  separating two classes, and the slack variables ξi quantify margins in 

inactive constraints yi w⊤xi + b > 1. Typically, C > 0 is treated as a hyperparameter that 

mediates a compromise between maximizing the separating margin ( w 2
−1) and minimizing 

empirical risk. Taking C 0 recovers a hard-margin model and requires data to be linearly 

separable.

Rewriting the margin constraints as ξi ≥ 1 − yi w⊤xi + b  and multiplying the objective 

by λ = 1/C allows one to state the constrained minimization problem as an equivalent 

unconstrained problem

min
β

fλ(β ∣ y, X) = λψ(β) + 1
n ∑

i = 1

n
Ri(β ∣ y, X),

where Ri(β ∣ y, X) = p−1max 0, 1 − yi w⊤xi + b p,
(1)

with model parameters β = (w, b), penalty ψ(β) = 1
2 w 2

2, and misclassification cost Ri(β) per 

sample i = 1, 2, …, n. We adopt this version of SVM fitting and note a few connections to the 

existing literature. First, under this formulation the loss 1
n ∑i = 1

n Ri(β ∣ y, X) can be interpreted 

as a measure of empirical risk when the functional form of Ri is chosen appropriately. 

When p = 1 the SVM is the classic soft-margin classifier, sometimes called the L1 SVM, 

in which the ℓ2 penalty term on model coefficients enables classification even when data 

are not linearly separable. The ridge penalty can be replaced by a lasso penalty ψ(β) = w 1

to induce variable selection (Zhu et al., 2003). Other loss functions, such as quadratic and 

Huber hinge errors, have been proposed as alternatives to the hinge loss u+ = max 0, u
to promote better prediction and robustness to outliers (Groenen et al., 2008). Taking 

p = 2 leads to the L2 SVM family which achieves differentiability and strict convexity 

at the expense of overemphasizing misclassification errors in outliers. In addition, clever 

formulations of convex primal programs often lead to dual programs that are easier to solve 

and thus accelerate the fitting process. The last point is especially pertinent to the L2 family 

as the dual program reduces to maximization of a quadratic over a simplex. This brief review 

is hardly exhaustive. Nevertheless, in all their variations, the defining property of SVMs is 

their parsimonious decision boundaries driven by a small number of support vectors.
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2.2 Mathematical Formulation

Our starting point is a L2 SVM with a squared hinge-loss max 0, 1 − u 2. The SVM takes the 

form

min
β

fλ(β ∣ y, X) = λ
2 w 2

2 + 1
2n ∑

i = 1

n
max 0, 1 − yixi

⊤β 2 . (2)

Here the n labeled samples yi, xi  consist of a binary label yi ∈ − 1, 1  and a feature 

vector xi ∈ ℝp + 1 occupying a row of the matrix X ∈ ℝn × p + 1. The parameter vector 

β = (w, b) ∈ℝp + 1
 defines a hyperplane separating the two classes, with the first p 

components corresponding to weights w ∈ ℝp and the last component b representing an 

intercept. The last component xi, p + 1 of each xi is accordingly 1. Our notation β is insensitive 

to the inclusion or exclusion of an intercept term in describing the primal model (2).

Rather than directly minimize fλ(β ∣ y, X) defined by equation (2), we turn to the MM 

principle (Lange et al., 2000; Lange, 2016) and invoke the quadratic majorization

max 0, 1 − u 2 ≤
um − u 2, um ≥ 1

(1 − u)2, um < 1

at iteration m suggested by Groenen et al. (2008). Note the two sides of the majorization 

agree when u = um. Given that all yi
2 = 1, the term by term application of the majorization 

creates the overall quadratic surrogate

gλ β ∣ βm = λ
2 w 2

2 + 1
2n zm − Xβ

2
,

where zmi =
xi

⊤βm if yixi
⊤βm ≥ 1

yi if yixi
⊤βm < 1.

(3)

This maneuver reduces the original minimization problem to a sequence of easier 

minimization problems that can be solved by repeated least squares. Nguyen and McLachlan 

(2017) also apply the MM principle to support vector machines and make a connection 

to iteratively reweighted least squares (IRLS), albeit with a different majorization. The 

surrogate (3) is appealing compared to surrogate (12) of Nguyen and McLachlan (2017) 

because the former avoids changing weights. In any case, the MM principle implies that 

every iteration decreases the objective function (2) via the chain of inequalities

fλ βm + 1 ≤
majorize

gλ βm + 1 ∣ βm ≤
minimize

gλ βm ∣ βm =tangency fλ βm .
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2.3 Variable Selection

The objective (2) employs the quadratic penalty to control the size of a SVM’s separating 

margin, 1/ w , but the penalty shrinks parameters rather than selects them. Thus, we append 

an explicit sparsity constraint to (2) and consider constrained problems of the form

min
β

fλ(β ∣ y, X) such that w 0 ≤ k,

where w 0 = ∑j1 wj ≠ 0  counts the number of nonzero components in w. Note that the 

restriction w 0 ≤ k makes the sparsity set

Sk = β ∈ℝp + 1
:β = (w, b) and w 0 ≤ k ,

closed. For any dataset with p ≥ k predictors, Sk = ℝp + 1. Fortunately, Euclidean projection 

onto Sk is straightforward. The projection operator PSk(β) sets to zero all but the largest 

k entries in magnitude of β1 through βp. This goal can be achieved efficiently by a partial 

sort of these entries. Figure 1 illustrates the Euclidean projection that selects one variable 

in a two-dimensional problem. The projection may fail to be unique when some or all 

coefficients are tied, but such events occur on lower dimensional subspaces and therefore 

have measure zero.

In light of the simplicity of projections onto sparsity sets, we follow the penalty method of 

constrained optimization (Beltrami, 1970; Courant, 1943) and minimize the unconstrained 

objective

ℎρ(β) = fλ(β ∣ y, X) + ρ
2dist β, Sk

2, (4)

for a large value of the annealing parameter ρ ≥ 0. The squared distance penalty enforces 

near sparsity and is continuously differentiable wherever the underlying projection is single 

valued. In the limit as ρ tends to ∞, the solution vector βp tends to a solution of the 

constrained problem. Combining our previous majorization (3) with distance majorization

dist(u, S)2 ≤ u − PS um
2,

yields the sum of squares surrogate

gρ β ∣ βm = λ
2 w 2

2 + 1
2n zm − Xβ 2 + ρ

2 PSk βm − β 2
2 . (5)

Note that because no projection is applied to the intercept, when present, projection does not 

touch the (p + 1)-th component. Sparsity constraints permit identification of features driving 

a classifier’s decision boundary in spite of sacrificing convexity. Our previous experience 
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supports the value of the proximal distance principle in building parsimonious models with 

nonconvex set constraints (Xu et al., 2017; Keys et al., 2019; Landeros et al., 2022).

2.4 Support Vector Selection

While soft-margin classifiers are known to perform decently even on datasets that are not 

linearly separable, they do not generalize well to inherently nonlinear data. Transforming the 

feature vectors xi into an abstract feature space via an implicit mapping, ϕ xi , is sufficient 

to induce nonlinear decision boundaries. Careful design of a primal problem then allows one 

to invoke the kernel trick (Schölkopf and Smola, 2018), which reduces further calculations 

to the formation of inner products κ xi, xj = ϕ xi , ϕ xj H in a Hilbert space H. Thus, the 

functional form of the nonlinear transformation ϕ( ⋅ ) is immaterial, and one can instead 

focus on choosing a positive semidefinite kernel κ xi, xj  induced by the transformation.

The L2 SVM considered in (2) has a well-known dual program (Frieß and Harrison, 

1998a,b; Mangasarian and Musicant, 2001)

min
α

fλ(α ∣ y, X) = n
2 α 2

2 + 1
2λα⊤Y KY α − 1⊤α

such that y⊤α = 0 and α ≥ 0,
(6)

where Y = diag(y) and α ∈ ℝn. The choice K = XX⊤ corresponds to the standard linear 

kernel, but in practice one may substitute Kij = κ xi, xj  for any positive semidefinite kernel 

κ( ⋅ , ⋅ ) satisfying Mercer’s condition (Mercer, 1909; Kimeldorf and Wahba, 1971; Cortes 

and Vapnik, 1995; Schölkopf et al., 2001). One can show that the original parameters 

β = (w, b) are given by

w = λ−1∑
i

αiyiϕ xi , and b = − (nλ)−1y⊤Y KY α + y .

The relationship between w and α suggests that, in general, one cannot hope to induce 

sparsity in w using a simple distance penalty in the dual problem. Instead, we note that the 

combination of constraints y⊤α = 0 and α ≥ 0 already imply some level of sparsity in α. 

Thus, let α = (a, b) for some coefficients a ∈ ℝn. Substituting w = ∑iaiyiϕ xi  in the squared 

hinge term of (2) leads to the alternative model

min
a

λ
2 a 2

2 + 1
2n ∑

i = 1

n
max 0, 1 − yi ∑

j = 1

n
κ xi, xj yjaj + b

2
,

such that a 0 ≤ k,
(7)

which directly controls the number of support vectors in a SVM’s decision boundary. The 

set of support vectors equals xi:ai ≠ 0 . This nonlinear model, denoted by fλ
NL(α ∣ y, X), 

combines the advantages of a the squared hinge in the primal problem (2) with the kernel 

trick but, crucially, it is not anchored by any duality theory or related to the dual problem 
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(6). Nevertheless, we will see that this model successfully fits nonlinear decision boundaries 

with additional flexibility in selecting support vectors.

Adding a distance penalty to (7) leads to the objective

ℎρ(α, b) = fλ
NL(α ∣ y, X) + ρ

2dist α, Sk
2 . (8)

To recapitulate, define Y = diag(y) as a diagonal matrix and majorize the squared hinge and 

distance penalty to arrive at the quadratic surrogate

gρ α ∣ αm = λ
2 a 2

2 + 1
2n zm + KY a 2

2 + ρ
2 P αm − a 2

2 . (9)

One can verify this surrogate by identifying KY with X and α with β in the function (3) 

majorizing the squared hinge.

3 Algorithms

In this section we derive practical algorithms for minimizing the criteria (4) and (8) via 

their surrogate functions (5) and (9), respectively. We begin by outlining a general strategy, 

proximal distance iteration, that overcomes the technical requirement that ρ > 0 should 

be sufficiently large in minimizing constrained objectives functions. Convergence results 

are discussed. Next, we derive iterative maps specific to minimization of (4) and (8) that 

apply to fitting sparse linear and nonlinear classifiers, respectively. Finally, we conclude by 

discussing strategies to tune the level of sparsity via cross validation.

3.1 Proximal Distance Iteration

Let us briefly discuss proximal distance iteration in a general. Driving the distance penalty 

dist(x, S) in ℎρ(x) towards 0 requires setting ρ > 0 sufficiently large. Propositions 1 through 

4 of Keys et al. (2019) provide guidance on how large ρ should be. Unfortunately, taking ρ
arbitrarily large necessarily slows convergence. Thus, in practice one minimizes a sequence 

of penalized objectives ℎρ(x):ρ = ρ0, ρ1, ρ2, …  parameterized by an increasing sequence of 

penalty coefficients ρt. The annealing path x(ρ) is typically continuous in ρ, so that warm 

starting the current suproblem from the solution of the previous subproblem accelerates 

convergence. One can assess convergence by checking the criteria

ℎρ(x) ≤g
ϵ , and (10)

dist(x, S) ≤d
ϵ , (11)

for positive tolerances ϵg and ϵd. Note that in the initial phase of proximal distance iteration 

when condition (11) is violated, one does not need strict satisfaction of the gradient 

condition (10) before increasing ρ. On the other hand, enforcing the gradient check (10) 

compounds the benefits of warm starts. Algorithm 1 summarizes proximal distance iteration 
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applied to a generic problem. According to the MM principle, the algorithm map Mρ(x)
guarantees descent for fixed ρ. Note that the final projection step is justified when condition 

(11) is satisfied.

Algorithm 1

Proximal Distance Iteration

Require: An objective ℎρ(x), gradient ∇ℎρ(x), and algorithm map Mρ(x).

1: Set tolerances ϵd and ϵg; fix hyperparameters λ and k.

2: Set maximum number of ρ values, tmax; maximum inner iterations mmax.

3: Initialize the estimate X and define an increasing sequence ρ(t) t ≥ 0.

4: fort 0, 1, …, tmaxdo

5: Set x0 x using the current estimate and take ρ ρ(t).

6: form 1, …, mmaxdo

7: Iterate the algorithm map,xm + 1 Mρ xm .

8: if ∇ℎρ xm + 1 2 ≤ ϵgthen

9: Break.

10: end if

11: end for

12: Update x xm + 1

13: ifdist(x, S)ϵdthen

14: Break.

15: end if

16: end for

17: Project the final estimate x PSk(x).

3.2 Iteration Maps

We now derive algorithm maps for minimizing the penalized loss (4) using Algorithm 1. 

The MM strategy repeatedly minimizes the surrogate (5) anchored at the current estimate βm. 

Updating β amounts to solving the linear system

βm + 1 = argmin gρ β ∣ βm

= n−1X⊤X + (λ + ρ)I −1 n−1X⊤zm + ρP sk βm .
(12)

Observe that the solution is non-unique if there are multiple admissible projections PSk βm

of βm onto Sk. Fortunately, the linear system can be solved efficiently using a single thin 

singular value decomposition (SVD) X = UΣV ⊤ across all iterates. This approach may be 

expensive if the number of samples n or predictors p is large, but it keeps the factorization 

independent of ρ and λ. We document our implementation of this strategy in Appendix A.
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Alternatively, differentiability of ℎρ(β) implies the first-order tangency condition 

∇gρ(β ∣ β) = ∇ℎρ(β), which in turn suggests implementing gradient descent. Minimizing the 

surrogate gρ β ∣ βm  in the direction − ∇ℎρ βm  leads to the update

βm + 1 = βm − tm ∇ℎρ βm

tm = ∇ℎρ βm
2

n−1 X ∇ℎρ βm
2 + (ρ + λ) ∇ℎρ βm

2
(13)

derived in the Appendix. A single steepest descent step cannot, in general, achieve exact 

minimization of gρ β ∣ βm , but one step always drives the surrogate ℎρ(β) downhill. In any 

event, the iterates generated by the MM update (12) are generally different from those 

generated by the steepest descent update (13). Multiple steps of steepest descent can 

achieve exact minimization of gρ β ∣ βm  and bring steepest descent into alignment with 

MM. However, exact minimization via steepest descent is costly and unlikely to offer any 

advantages in precision or computational cost over minimizing the surrogate by conjugate 

gradients. Fortunately, the algorithm maps (12) and (13) are easily adapted to the nonlinear 

setting. Simply substitute KY and α for X and β, respectively.

3.3 Convergence Theory

In this section we briefly address the convergence properties of our proximal distance 

algorithms for SVM. Convergence theory for gradient descent is more standard and is 

omitted. Readers mainly interested in applications can skip this discussion and return to it 

later as desired.

The loss fλ(β ∣ y, X) defined in (2) is convex by the standard closure properties of convex 

functions. Without loss of generality, let us assume that the intercept b = 0 and identify 

β = w. In this regard note that the scalar function u+
2 = max 0, u 2 is convex in u. To prove 

that fλ(β ∣ y, X) is coercive, one can invoke the fact that a convex function on ℝp is coercive 

if and only if it is coercive along all nontrivial rays β ∈ℝp
:β = tv, t ≥ 0  emanating from the 

origin (Lange et al., 2000). It is obvious that fλ(tv ∣ y, X) tends to ∞ as t tends to ∞ if and 

only if at least one vector −yixi satisfies −yixi
⊤v > 0. In other words, fλ(tv ∣ y, X) is coercive if 

and only if the polar cone

C = v: − yixi
⊤v ≤ 0; for all; i

consists of the trivial vector 0 alone. Under these circumstances X also has full column rank. 

In practice, the polar cone condition is difficult to check, so we rely on the ridge penalty 
λ
2 w 2 to enforce coercivity. The SVM loss fλ(β ∣ y, X) is also continuously differentiable 

because u+
2 is so with derivative 0 at u = 0. Furthermore, the gradient

∇fλ(β ∣ y, X) = λβ − 1
n ∑

i = 1

n
1 − yixi

⊤β +yixi
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is locally bounded and Lipschitz because u+ is so and the class of such functions is closed 

under the formation of sums and functional compositions. It follows that the surrogate (3) is 

continuous, strongly convex, and satisfies the Lipschitz condition

∇gρ β ∣ βn − ∇gρ α ∣ βn ≤ L β − α

for some L on the compact set β :fλ(β ∣ y, X) ≤ fλ β0 ∣ y, X  whenever fλ(β ∣ y, X) is 

coercive. Strong converge results apply in the convex settings as summarized in the survey 

Lange et al. (2021) and in Propositions 5 through 11 of (Keys et al., 2019).

Even if the SVM loss functions fλ(β ∣ y, X) and fλ
NL(α ∣ y, X) are strictly convex, the addition 

of a nonconvex set constraint Sk sacrifices convexity in the penalized losses ℎρ(β) and 

ℎρ(α). Thus, convergence is governed by nonconvex theory. One issue is the multivalent 

nature of projections onto sparsity sets. Fortunately, such pathological behavior occurs only 

on a set of Lebesgue measure 0. Furthermore, Zangwill’s Global Convergence Theorem 

also covers multivalent algorithm maps (Luenberger, 1984, see Section 7.7). To establish 

convergence to a stationary point, we rely on results from our companion papers (Keys et 

al., 2019; Landeros et al., 2022). There we define the necessary concepts of semialgebraic 

sets and functions and stationary points. Proposition 4.1 of Landeros et al. (2022) proves 

that the sparsity set Sk is semialgebraic. In the current context the fusion matrix D is just 

the identity I. Moreover, our arguments there show that our current loss and penalty are 

semialgebraic. Because our surrogates gρ β ∣ βm  are continuous, μ-strongly convex, and L-

smooth, Proposition 4.4 of Landeros et al. (2022) demonstrates a linear rate of convergence 

to a stationary point β∞ when β∞ has k unambiguous largest components in magnitude. 

The complementary set of points β with k ambiguous largest components in magnitude has 

Lebesgue measure 0.

3.4 Decision Functions and Multiclass SVM

In linear binary classification, SVMs typically use the decision rule

x sgn x⊤w =
+1, if x⊤w > 0
0, if x⊤w = 0,

−1, if x⊤w < 0

to assign an instance x a binary label using the SVM’s coefficients w. The signed decision 

rule can be extended to multiclass problems using the One-Versus-One (OVO) paradigm 

(Hsu and Lin, 2002). In OVO, one partitions a dataset with c classes into 
c
2  subsets 

such that each subset only contains samples from two classes. One then fits 
c
2  SVMs 

to discriminate between two classes within each subset. After fitting models to each 

subproblem, one constructs a decision rule through a voting system so that the assigned 

label of X is given by

Landeros and Lange Page 10

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



x argmax
j

vj:vj = ∑
ℓ

1 SVMℓ(x) = j ,

where SVMℓ(x) is the label assigned by binary SVM ℓ using, for example, the signed 

decision rule. Thus, the class receiving the most votes is used as the predicted label for X.

Alternatively, one may interpret x⊤w as a confidence value indicating the strength of a 

SVM’s prediction. This is useful in the One-Versus-Rest (OVR) paradigm which constructs 

c SVMs to distinguish one class from the rest (Hsu and Lin, 2002). In this setting, one 

assigns a label by aggregating confidence values from each SVM

x argmax
j

vj:vj = ∑
ℓ

x⊤wℓ ⋅ 1 SVMℓ(x) = j .

In this case, OVR assigns a class based on the highest confidence value. OVR reduces 

the number of SVMs required to fit a multiclass classifier and, therefore also reduces the 

number of model parameters, but is known to suffer from worse ambiguity issues when ties 

occur compared to OVO (van den Burg and Groenen, 2016, see Figure 1).

In our classifiers we favor the OVO paradigm using a weighted voting system based on 

confidence values. We prefer to avoid the potentially ambiguous decision boundaries of 

OVR, although it often yields similar results to OVO (Hsu and Lin, 2002).

3.5 Tuning Sparsity with Cross Validation

Without prior knowledge of the true number of causal features, one must tune the sparsity 

level of the solutions. This amounts to selecting k ∈ 0, 1, 2, …, p  to restrict the number of 

active variables through sparsity constraints w ∈ Sk or a ∈ Sk in fitting linear or nonlinear 

SVM, respectively. Note that decreasing k increases the number of structural zeros as 

measured by the sparsity level s = 1 − k/p.

We examine the viability of composing K-fold cross validation (CV) with our algorithms. In 

each fold we initialize model parameters and then minimize the criterion (4) or the criterion 

(8) on a training set with fixed λ but no sparsity penalty (k = p). We then gradually increase 

sparsity s = 1 − k/n to construct a solution path from the fully dense models (s = 0) to fully 

sparse models (s = 1). Fitted classifiers in cross validation are parameterized by an ordered 

pair (s, λ). Order is important here because each λ is associated with a solution path over s. 

We do not consider ρ as a hyperparameter in cross validation because it is already tuned by 

proximal distance iteration.

In principle there are various performance metrics that may be used to evaluate a classifier. 

A natural criterion is the minimum value of the regularized empirical risk, but this has 

two issues. First, it becomes difficult to compare across different loss models such as (2) 

versus (4) or even (8). Second, it is well-known that penalty methods reach a compromise 

in minimizing of f(x) or g(x) in a penalized objective ℎ(x) = f(x) + ρg(x) (Lange, 2016). 
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In fact, we expect that minimization of (4) or (8) will inflate the original loss model (2) 

or (7), respectively. This may even be desirable since our estimators for model parameters 

are necessarily biased compared to the standard L2 SVM. Thus, we focus on maximizing 

prediction accuracy. The following describes how we fit and evaluate classifiers for each pair 

of hyperparameters (s, λ).

i. Any feature standardization or normalization is based on the training set and 

applied to the training, validation, and test subsets. For example, if one wishes 

to standardize the data, then we estimate (μ, σ) from the training subset Xtrain and 

apply the transformation x (x − μ)/σ to all instances of feature X in each of the 

three data subsets. This is essential to ensure both the validity of cross validation 

results and the fitting of SVMs because the latter is not invariant under affine 

transformations.

ii. In each fold, a training set is used to fit model parameters. The fitted classifier 

is evaluated on a validation set and a test set. The training and validation sets 

are shuffled between folds, whereas the test set is fixed and never participates in 

fitting.

iii. In a linear SVM the size of a separating margin is given by 1/ w . Thus, smaller 

values of λ induce smaller margins and may lead to overfitting. Moderate values 

of λ are desirable and tend to avoid overfitting. Average predication accuracy on 

validation sets is measured by

SCV = 1
K ∑

j = 1

K 1
nj

∑
i = 1

nj
1 Lij = Lij .

Here Lij is the label of a validation sample i in fold j and Lij is its predicted label.

iv. To select an optimal pair (s, λ), we maximize SCV as a function of s and λ. This 

choice prioritizes maximizing prediction accuracy SCV  over parsimony (s) and 

generalizability (λ).

In addition, repeated K-fold cross validation can be used to assess stability of variable 

selection. This involves shuffling samples between the training and validation sets and 

repeating the K-fold cross validation procedure. Ideally, each replicate should select a 

similar pair (s, λ) with similar prediction accuracies on validation and test subsets. Algorithm 

2 summarizes the flow of our cross validation procedure.

Algorithm 2

Repeated Cross Validation

1: Split dataset into test and cross validation subsets T and D, respectively.

2: for each replicate r 1, Rdo

3: Shuffle subset D.

4: for each fold 1, Kdo
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5: Split D into training and validation subsets, D1 and D2.

6: Estimate transformation parameters from the training set D1.

7: Apply the transformation to D1, D2 and T to standardize/normalize data.

8: for each λdo

9: Initialize model parameters β or α by fitting a L2 SVM using (2) or (7).

10: for each sdo

11: Fit a sparse classifier with k = p(1 − s)  active features.

12: Evaluate prediction accuracy on subsets D1, D2 and T.

13: end for

14: end for

15: end for

16: Evaluate average scores SCV D1 , SCV D2  and SCV(T) for each subset.

17: Rank models by their augmented scores (SCV D2 , s, λ).

18: Identify and record the optimal hyperparameters s, k, and λ.

19: end for

4 Numerical Experiments

We assess the proposed SVM algorithms by testing them on both our own simulated 

examples (see Appendix B) and datasets from the UCI Machine Learning Repository 

(Dua and Graff, 2019). The chosen datasets, which address both overdetermined and 

underdetermined problems, are listed in Table 1. We use the DataDeps.jl package (White et 

al., 2019) to process datasets and make them reproducible in our experiments. We begin by 

demonstrating that our sparse SVMs can recover sparse models in various high-dimensional 

settings. Next, we report repeated cross validation results on selected datasets and compare 

against SVMs fitted using all or a reduced subset of variables. Finally, we conclude with a 

comparison to classical SVMs implemented in LIBSVM and LIBLINEAR.

4.1 Sparse Recovery in High-Dimensional Scenarios

Let us first characterize the behavior of our sparse SVMs in two regimes, overdetermined 

and underdetermined, by a simulation study. Given target sample and variable sizes n 
and p, respectively, we generate X by sampling row vectors from a standard multivariate 

distribution, xi ∼ N 0p × 1, Ip × p , and set

w0j ∼ Uniform (2, 10), j is causal
0, otherwise,

for k randomized components in the support of w0 ∈ ℝp; that is supp w0 = k. Binary 

labels are then assigned via the linear SVM decision rule yi = xi
⊤w0. Overdetermined and 

underdetermined scenarios are generated by fixing n = 500 or p = 500 and then varying 

the remaining problem dimension. We also fix λ = 1 and control parameters ϵd = 10−3 and 

ϵg = 10−4. For each simulation, we fit multiple classifiers by varying the target number of 
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active features k, using both MM and SD, and measure iterations to convergence, wall time, 

and prediction accuracy on a separate test set. Fitted solutions w are compared against the 

ground truth w0 in terms of accuracy, positive predictive value (PPV), and negative predictive 

value (NPV). In this context we have the following definitions of true and false positives/

negatives (TP/FP/TN/FN)

wj ≠ 0 wj = 0
w0j ≠ 0 TP FN

w0j = 0 FP TN

from which we derive PPV and NPV. Prevalence adjustment is important for our simulation 

study because we fix k = 50 and expect the proportion of causal variables to shrink.

Figure 2 summarizes our results. In the two cases (n, p) = 104, 500  and (n, p) = 500, 104 , it 

is clear that our classifiers achieve acceptable performance on test sets, regardless of which 

algorithm is used to fit models. Moreover in the former case, maximal prediction accuracy is 

achieved near k = 50, which also aligns with high PPV and NPV in identifying the correct 

subset of causal variables. These positive results are more difficult to achieve when p ≫ n, 

but the outlook is not so pessimistic. The fact that PPV increases monotonically as the 

number of causal variables shrinks suggests that failure to recover all the causal variables 

may be due to their exchangeability. In terms of scaling behavior, it is somewhat remarkable 

that the number of required iterations decreases as one increases n. However, the wall time 

does increase consistently. It should be noted that we do not include the cost of extracting 

the SVD of X in Algorithm MM, which would shift its time curve upwards.

4.2 Cross Validation Results

We our report results of using Algorithm 2 in combination with Algorithm 1 to select 

sparse SVMs across selected datasets. Table 2 illustrates the performance of Algorithm 

MM on the synthetic example in detail, and Table 3 reports the highlights across all 10 

examples. Results for Algorithm SD are similar. Appendix D records distributions of the 

hyperparameters s, k, and λ along with validation prediction accuracy over 10 replicates of 

K-fold cross validation.

In Table 2 it is clear that, for fixed λ, including extraneous variables may lead to overfitting 

training data in binary classification. The summary in Table 3 compares results for (i) our 

sparse classifiers that target a specific number of active variables k, (ii) a reduced model 

using the same active variables as the optimal sparse model, and (iii) the full L2 SVM 

using all available variables. Rows corresponding to the synthetic, synthetic-hard, and bcw 

examples cover binary classification with a linear model. In these examples all 3 models 

deliver model coefficients of similar magnitude based on the size of the margin 1/ w , but 

our sparse classifiers better generalize to classifying novel instances when a sparse signal is 

present.
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In multiclass classification, one must partition data into subsets to fit binary SVMs 

discriminating between two classes. This increases the total number of model parameters 

and makes it possible for the number of active variables to exceed the target model size 

k. With this in mind, our examples of multiclass problems with linear classifiers (iris, 

splice, optdigits, leters, and TCGA-HiSeq) echo the results for linear binary classification. 

However, it is now more challenging to successfully recover a sparse model because each 

nested binary SVM targets the same number of variables k. Comparing total number of 

active variables across all SVMs against average active variables per SVM illustrates this 

point in the iris, splice, optdigits, and TCGA-HiSeq examples. The splice junction data, in 

which variables are binary indicators for nucleotides T, C, G, and A within DNA sequences 

of 60 base pairs, shows that a uniform sparsity constraint only modestly reduces the number 

of selected variables from 240 to 209 because there is only some overlap between SVMs 

(145 variables per SVM). In image data such as the optdigits example, dropped variables 

correspond mainly to pixels at the boundary of images that are more likely to be black 

pixels. This is somewhat disappointing behavior because in the gene expression example, 

TCGA-HiSeq, repeated CV selects the model size k = 5066 per SVM resulting in 15778 

genes discriminating between 5 cancer types. This is still a large number of genes to 

consider compared to the original set of 20264 genes. To our credit, Figure 3 illustrates 

that it may be possible to select significantly smaller values for k, thereby decreasing the 

total number of model parameters, in exchange for small decreases in prediction accuracy. 

Finally, it is interesting to note that our nonlinear SVM model successfully controls the 

number of support vectors while maintaining good classification accuracy in the spiral 

examples despite suffering from the same sparsity deficiency in multiclass problems.

4.3 Comparison to Existing Models

We compare our sparsity-based models to well-known classics using LIBLINEAR (Fan et 

al., 2008) through the Julia wrapper package LIBSVM.jl. Specifically, we compare to

a. L2R, an option from LIBLINEAR for the standard L2 (2), and

b. L1R, an option from LIBLINEAR for the L1-regularized version of (2).

The models used in LIBLINEAR impose regularization on the hinge term, rather than the 

penalty term, through a tuning constant C = (nλ)−1.

Table 4 reports our results in repeated cross validation. Our SVM training algorithms are 

comparable to existing approaches, albeit slower across all examples. To our credit the 

synthetic example underscores the superiority of sparsity constraints over shrinkage-based 

penalties. Namely, algorithms MM and SD successfully fit sparse classifiers with fewer 

variables and achieve superior prediction capability as reflected in validation and test 

accuracies. Specifically, our sparse approach compares favorably against the L2-regularized 

SVM in our synthetic datasets, designed to have only two informative variables, even when 

the data are not linearly separable. Moreover, it is clear that our approach gives similar 

classification predictions to the L1-regularized SVM on the synthetic examples. Similarities 

in performance scores disappear on multiclass problems, indicating that our algorithms 

converge to distinct solutions. It is not immediately clear whether our L0 approach recovers 

sparser solutions, controls false positives, or mitigates shrinkage compared to the lasso. 
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The L1-regularized SVM is arguably too aggressive in selecting variables on the splice 

and letters examples but it achieves superior selection on the TCGA-HiSeq example. This 

suggests that, while the L1 classifier also imposes a uniform penalty on each nested binary 

SVM, the continuous penalty can be more flexible on some problems. Thus, our sparse 

classifiers are conservative compared to shrinkage-based methods.

5 Discussion

We have demonstrated the benefits of conceptually simple proximal distance algorithms for 

binary and multiclass classification problems on both linear SVMs and nonlinear kernel 

SVMs. The proximal distance principle makes it possible to attack parsimony directly 

through squared distance penalties. This direct approach (a) restores differentiability via 

quadratic surrogate functions, (b) potentially avoids the shrinkage inherent in lasso-based 

algorithms, (c) identifies sparser models with good predictive power, and (d) substitutes 

a discrete interpretable sparsity level for the continuous hyperparameters of competing 

methods. To our surprise, the more expensive Algorithm MM scales better on high-

dimensional data due to its ability to quickly drive solutions close to a desired sparsity 

set.

Algorithm acceleration is essential in overcoming the unfortunate cost of (repeated) cross 

validation. We found experimentally that inclusion of ridge regularization is essential in 

preventing coefficients from diverging to ±∞. Fortunately, addition of the ridge penalty 

convexifies our distance penalized objectives and accelerates convergence overall. We 

noticed a few other tactics that lower computational costs.

In multiclass classification, Algorithm MM greatly benefits from the OVO paradigm 

because it reduces the dimensions of each required singular value decomposition. The OVR 

paradigm only requires a single, albeit large decomposition, provided the classifier is linear. 

It also noteworthy that our implementation uses dense linear algebra operations, so it may 

be possible to speed up model fitting by tracking the active parameter set. In contrast, it 

is not clear whether the SD variant is truly a viable alternative to MM unless the required 

SVD is prohibitively expensive to compute. We observe that SD benefits from Nesterov 

acceleration in cutting down the number of iterations, but further work is needed to make it 

useful in cross validation. Other computational tricks may further lower computational costs 

(Schölkopf and Smola, 2018); these warrant further experimentation.

While we are pleased with our results, particularly for binary classification tasks, much 

is left to be desired for multiclass problems. Relying on multiple SVMs to handle 

multiclass problems introduces 
c
2  subproblems for c classes. Furthermore, different 

decision boundaries in the OVO paradigm may be driven by different features, obscuring 

the universal features that discriminate between classes. Hence, it is natural to investigate 

multiclass methods beyond hyperplane separation. Our previous research on multivertex 

discriminant analysis (MVDA) (Lange and Wu, 2008) explored a multiclass model that 

represents classes geometrically as vertices of a regular simplex embedded in Euclidean 

space rather than binary choices from − 1, 1 . MVDA takes advantage of ϵ-insensitive 
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norms and generalizes to nonlinear classification via the kernel trick (Wu and Lange, 2010). 

We plan to revisit MVDA and incorporate sparsity based on the proximal distance principle 

and possibly Huber hinge errors (van den Burg and Groenen, 2016). Given the length of the 

current paper and the many unresolved challenges ahead, this goal is best left to a future 

paper.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 

Euclidean projections of points in ℝ2 onto S1. Red points have a unique projection whereas 

blue points may have multiple valid projections.
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Fig. 2. 
Performance characteristics of sparse SVM classifiers fitted using algorithms MM (blue 

circles) and SD (orange triangles) across various simulated high-dimensional scenarios (row 

labels). Black vertical lines highlight the number of causal variables used to simulate data. In 

the bottom two rows, results correspond to the ideal case with k = 50.
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Fig. 3. 
Convergence metrics (top) and performance metrics (bottom) for MM and SD on the 

TCGA-HiSeq example. Control parameters were set to and δg = 2 × 10−4 and δd = 10−3 for 

gradient norms and distances, respectively.
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Table 1

Summary of datasets, classifier choices, and cross validation settings used in numerical experiments.

Dataset Classes Samples Features Model Replicates Folds Train Test

synthetic 2 1000 500 Linear 10 5 800 200

synthetic-hard 2 1000 500 10 5 800 200

iris 3 150 4 10 3 120 30

bcw 2 683 9 10 3 546 137

splice 3 3176 180 10 5 2541 635

optdigits 10 5620 64 10 5 4496 1124

letters 26 20000 16 1 5 16000 4000

TCGA-HiSeq 5 801 20531 1 3 641 160

spiral 3 1000 2 Nonlinear 10 5 800 200

spiral-hard 3 1000 2 10 5 800 200
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Table 2

Partial solution path in 5-fold cross validation on the synthetic example with various active variables k. 

Reported metrics are averages over 5 folds with standard errors in parentheses. The highlighted row 

corresponds to results for the true sparsity level s = 0.996, or equivalently k = 2. Here λ = 1 is fixed.

Accuracy (%)

k Iterations Loss Support Vectors Train Validation Test

500 7 0.300 623 98 77 72

(0) (0.004) (1) (0) (2) (1)

375 210 0.301 622 98 77 73

(4) (0.004) (2) (0) (2) (1)

250 421 0.313 622 98 77 74

(7) (0.004) (1) (0) (2) (1)

125 599 0.351 619 97 79 76

(9) (0.004) (2) (0) (1) (1)

73 696 0.388 622 97 82 79

(11) (0.004) (1) (0) (2) (1)

43 747 0.421 625 96 85 82

(4) (0.005) (1) (0) (2) (1)

25 813 0.450 627 95 86 85

(4) (0.004) (1) (0) (2) (1)

15 820 0.471 626 95 87 88

(6) (0.003) (1) (0) (2) (1)

9 866 0.488 627 95 91 91

(9) (0.002) (1) (0) (2) (1)

5 885 0.503 628 96 94 93

(3) (0.002) (1) (0) (2) (0)

3 891 0.513 628 97 96 95

(2) (0.002) (1) (0) (1) (0)

Accuracy (%)

2 896 0.519 627 99 100 100

(3) (0.002) (1) (0) (0) (0)

1 946 0.747 640 76 73 76

(3) (0.002) (0) (0) (0) (1)
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Table 3

Summary of repeated cross validation results across our selected examples. We select an optimal pair (λ, k) by 

averaging CV scores over folds and replicates and fit (i) a sparse SVM based on our framework, (ii) a reduced 

SVM using only the active variables, and (iii) the full L2-regularized SVM. In multiclass problems, the total 

and average number of active variables is taken across each binary SVM to account for overlaps.

Active Variables Accuracy (%)

Example Model λ k Total Average SVs Margin Train Test

synthetic (i) 0.10 2 2 2 518 0.95 100 100

(ii) 0.10 2 2 2 518 0.94 100 100

(iii) 0.10 500 500 500 527 0.96 100 76

synthetic-hard (i) 10.00 2 2 2 800 15.30 94 96

(ii) 10.00 2 2 2 800 15.28 94 96

(iii) 10.00 500 500 500 800 10.69 90 70

bcw (i) 1.00 9 9 9 215 6.09 97 98

(ii) 1.00 9 9 9 215 6.09 97 98

(iii) 1.00 9 9 9 215 6.09 97 98

iris (i) 0.10 1 2 1 117 0.98 98 90

(ii) 0.10 1 2 2 109 1.14 98 93

(iii) 0.10 4 4 4 98 1.24 98 93

splice (i) 0.10 145 209 145 2027 1.04 97 96

(ii) 0.10 145 209 209 2031 1.04 98 95

(iii) 0.10 240 240 240 2025 1.04 98 95

optdigits (i) 1.00 48 56 48 1544 8.71 99 96

(ii) 1.00 48 56 56 1544 8.71 99 96

(iii) 1.00 64 64 64 1544 8.71 99 96

letters (i) 0.10 16 16 16 13945 1.80 84 82

(ii) 0.10 16 16 16 13945 1.80 84 82

(iii) 0.10 16 16 16 13945 1.80 84 82

TCGA-HiSeq (i) 10.00 5066 15778 5066 320 38.58 100 100

(ii) 10.00 5066 15778 15778 271 41.85 100 100

(iii) 10.00 20264 20258 20258 273 42.90 100 100

spiral (i) 1.00 400 561 267 561 2.97 97 98

(ii) 1.00 400 561 374 561 2.99 97 98

(iii) 1.00 800 800 533 800 3.32 97 98

spiral-hard (i) 1.00 669 771 446 771 3.82 89 90

(ii) 1.00 669 771 514 771 3.85 90 89

(iii) 1.00 800 800 533 800 3.84 89 90
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Table 4

Comparison of our algorithms (MM and SD) against existing approaches implemented in LIBLINEAR (L2 

and L1) in cross validation. In multiclass problems, the total and average number of active variables is taken 

across each binary SVM to account for overlaps. Results are based on repeated K-fold cross validation with 10 

replicates in all examples except the letters and TCGA-HiSeq examples which only use 1 replicate.

Active Variables Accuracy (%)

Example Algorithm λ k Total Time [s] Total Average SVs Train Validation Test

synthetic MM 10 2 3.98 2 2 573 99 99 100

SD 0.1 2 4.05 2 2 506 99 99 100

L2 0.55 500 0.05 500 500 529 99 78 74

L1 0.1 500 0.025 271 271 471 99 99 100

synthetic-hard MM 10 2 4.13 2 2 640 94 94 96

SD 10 2 4.16 2 2 640 94 94 96

L2 1 500 0.055 500 500 627 97 74 70

L1 0.1 500 0.021 271 271 567 94 94 96

bcw MM 0.56 6 0.64 6 6 156 97 97 96

SD 0.32 8 2.35 8 8 129 98 98 95

L2 0.78 9 0.007 9 9 387 87 87 87

L1 0.04 9 0.02 9 9 369 87 86 87

iris MM 0.02 4 0.254 4 3 45 99 98 94

SD 0.03 3 0.282 4 3 47 98 98 95

L2 0.02 4 0.002 4 4 80 86 85 85

L1 0.01 4 0.006 4 3 80 85 85 84

Active Variables Accuracy (%)

splice MM 0.1 144 9.51 208 150 1628 98 96 95

SD 0.1 102 12.5 178 104 1661 97 96 97

L2 0.1 240 0.125 240 240 1779 97 96 95

L1 0.1 240 0.056 30 11 2032 85 84 85

optdigits MM 0.1 36 17.1 55 36 901 100 98 96

SD 1 34 192 54 36 1082 100 98 96

L2 0.1 64 0.216 62 62 1693 98 96 95

L1 0.1 64 0.534 43 17 3022 95 94 92

letters MM 0.1 16 362 16 16 11157 84 83 82

SD 0.1 14 3000 16 14 11174 84 83 82

L2 0.1 16 2.38 16 16 12800 67 67 65

L1 0.1 16 8.81 14 6 12800 46 46 45

TCGA-HiSeq MM 10 5066 9980 15878 5066 249 100 100 100

SD 0.1 1964 7710 8727 1964 240 100 100 100

L2 10 20264 72 20237 20237 427 100 100 100

L1 0.1 20264 2.78 79 16 427 100 100 100
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