
Algorithms for Sparse Support Vector Machines

Alfonso Landeros1,*, Kenneth Lange1,2,3

1Departments of Computational Medicine, University of California, Los Angeles

2Departments of Human Genetics, University of California, Los Angeles

3Departments of Statistics, University of California, Los Angeles

Abstract

Many problems in classification involve huge numbers of irrelevant features. Variable selection

reveals the crucial features, reduces the dimensionality of feature space, and improves model

interpretation. In the support vector machine literature, variable selection is achieved by ℓ1

penalties. These convex relaxations seriously bias parameter estimates toward 0 and tend to admit

too many irrelevant features. The current paper presents an alternative that replaces penalties by

sparse-set constraints. Penalties still appear, but serve a different purpose. The proximal distance

principle takes a loss function L(β) and adds the penalty ρ
2dist β, Sk

2 capturing the squared

Euclidean distance of the parameter vector β to the sparsity set Sk where at most k components

of β are nonzero. If βρ represents the minimum of the objective fρ(β) = L(β) + ρ
2dist β, Sk

2, then βρ

tends to the constrained minimum of L(β) over Sk as ρ tends to ∞. We derive two closely related

algorithms to carry out this strategy. Our simulated and real examples vividly demonstrate how the

algorithms achieve better sparsity without loss of classification power.

Keywords

sparsity; discriminant analysis; unsupervised learning; Julia

1 Introduction

Support vector machines (SVMs) are powerful pattern recognition tools (Cortes and Vapnik,

1995) with a wide range of applications across machine learning and statistics. Success

stories in supervised learning include optical character recognition (Decoste and Schölkopf,

2002), image segmentation (Barghout, 2015), text categorization (Joachims, 1998; Pradhan

et al., 2004), protein structure prediction (Dunbrack, 2006), and early detection and

classification of human cancers (Sewak et al., 2007). It is possible to extend SVM to online

*Corresponding author: Alfonso Landeros, alanderos@ucla.edu.

SUPPLEMENTARY MATERIAL
Appendix: The file “appendix.pdf” provides derivations for both Algorithm MM and Algorithm SD, a description of simulated
datasets, implementation details, and stability results for variable selection. (.pdf)
Julia code: The file “SparseSVM.zip” contains Julia code to reproduce our numerical experiments. Software is also available at
https://github.com/alanderos91/SparseSVM.jl. Contents are structured as a Julia project to handle software and data dependencies in
an automated fashion. See the project’s README for details. (.zip)

HHS Public Access
Author manuscript
J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

Published in final edited form as:
J Comput Graph Stat. 2023 ; 32(3): 1097–1108. doi:10.1080/10618600.2022.2146697.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/alanderos91/SparseSVM.jl

algorithms for resource-limited computing environments (Cauwenberghs and Poggio, 2000;

Laskov et al., 2006) and beyond classification to unsupervised learning problems (Ben-Hur

et al., 2002).

Part of the success of SVMs is due to their flexible decision boundaries. SVMs are often

sparse in the sense that they depend on relatively few training samples. Sparsity enhances

the ability of SVMs to label unlabeled cases. Existing research on fitting SVMs largely

focuses on this strength by devising methods that improve prediction quality or accelerate

the fitting process on large-scale datasets. Speed and prediction are worthy goals, but some

application domains also require model interpretability. Indeed, in biological sciences and

biomedical applications most variables are uninformative. One naturally desires to extract

the informative variables because these drive further discovery and hypothesis generation.

Thus, variable selection for SVMs is a topic of considerable interest in the literature. Lasso

penalization is the primary tool for inducing sparsity (Zhu et al., 2003). Unfortunately,

lasso penalization also induces shrinkage in model selection and tends to admit many

irrelevant features. In contrast to penalization and shrinkage, screening methods originally

developed for lasso problems eliminate variables prior to model fitting (El Ghaoui et al.,

2012; Tibshirani et al., 2012; Wang et al., 2013). Ogawa et al. (2013) implement screening

in SVMs, and Jaggi (2014) forges further connections between SVMs and the lasso.

The aim of this work is to present a flexible framework that addresses parsimony in both

variable selection and prediction. We focus on (a) primal problems under the squared-hinge

loss, (b) novel proximal distance algorithms for parameter fitting and model selection (Chi et

al., 2014; Lange, 2016, the latter is a good reference), and (c) extensions to kernel machines

for nonlinear data. Our key strategy replaces sparsity inducing penalties with projection onto

sparsity constraint sets. The SVM proximal distance algorithm comes in two closely related

flavors. Both exhibit comparable, and often superior, predictive accuracy to existing SVM

methods. Although the proximal distance algorithms are sometimes slower than competing

methods, their output is both easier to interpret and better at revealing sparse signals hidden

in high-dimensional data.

2 Sparse SVMs via Distance Penalization

In this section we develop the theory underpinning our sparse SVM algorithms. We begin

with a brief overview of SVM loss models, specifically L2 SVMs, and derive a quadratic

surrogate for squared hinge losses. We also add a squared distance penalty to the L2 SVM

loss to guide fitting toward sparsity. By projecting model coefficients onto different sparsity

sets, one can directly control the number of active features in a model. We explore this idea

in linear classifiers to selecting potentially informative features and to nonlinear classifiers

to select potentially informative support vectors. These vectors define a classifier’s decision

boundary. Readers may consult Keys et al. (2019), for a broad overview of the proximal

distance principle and its connection to proximal methods in convex optimization.

2.1 Background

Many variations on supervised SVMs have been proposed. For example, the class of soft-

margin Lp SVMs are based on convex programs of the form

Landeros and Lange Page 2

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

min
w, b, ξ

1
2w⊤w + C

np ∑
i = 1

n
ξi

p

yi w⊤xi + b ≥ 1 − ξi, for i = 1, 2, …, n
ξi ≥ 0,

where p ≥ 1, the polarities yi ∈ − 1, + 1 serve as class labels, and features (predictors)

are denoted xi ∈ ℝd. Here the parameters (w, b) ∈ ℝd + 1 determine a hyperplane

x:w⊤x + b = 0 separating two classes, and the slack variables ξi quantify margins in

inactive constraints yi w⊤xi + b > 1. Typically, C > 0 is treated as a hyperparameter that

mediates a compromise between maximizing the separating margin (w 2
−1) and minimizing

empirical risk. Taking C 0 recovers a hard-margin model and requires data to be linearly

separable.

Rewriting the margin constraints as ξi ≥ 1 − yi w⊤xi + b and multiplying the objective

by λ = 1/C allows one to state the constrained minimization problem as an equivalent

unconstrained problem

min
β

fλ(β ∣ y, X) = λψ(β) + 1
n ∑

i = 1

n
Ri(β ∣ y, X),

where Ri(β ∣ y, X) = p−1max 0, 1 − yi w⊤xi + b p,
(1)

with model parameters β = (w, b), penalty ψ(β) = 1
2 w 2

2, and misclassification cost Ri(β) per

sample i = 1, 2, …, n. We adopt this version of SVM fitting and note a few connections to the

existing literature. First, under this formulation the loss 1
n ∑i = 1

n Ri(β ∣ y, X) can be interpreted

as a measure of empirical risk when the functional form of Ri is chosen appropriately.

When p = 1 the SVM is the classic soft-margin classifier, sometimes called the L1 SVM,

in which the ℓ2 penalty term on model coefficients enables classification even when data

are not linearly separable. The ridge penalty can be replaced by a lasso penalty ψ(β) = w 1

to induce variable selection (Zhu et al., 2003). Other loss functions, such as quadratic and

Huber hinge errors, have been proposed as alternatives to the hinge loss u+ = max 0, u
to promote better prediction and robustness to outliers (Groenen et al., 2008). Taking

p = 2 leads to the L2 SVM family which achieves differentiability and strict convexity

at the expense of overemphasizing misclassification errors in outliers. In addition, clever

formulations of convex primal programs often lead to dual programs that are easier to solve

and thus accelerate the fitting process. The last point is especially pertinent to the L2 family

as the dual program reduces to maximization of a quadratic over a simplex. This brief review

is hardly exhaustive. Nevertheless, in all their variations, the defining property of SVMs is

their parsimonious decision boundaries driven by a small number of support vectors.

Landeros and Lange Page 3

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.2 Mathematical Formulation

Our starting point is a L2 SVM with a squared hinge-loss max 0, 1 − u 2. The SVM takes the

form

min
β

fλ(β ∣ y, X) = λ
2 w 2

2 + 1
2n ∑

i = 1

n
max 0, 1 − yixi

⊤β 2 . (2)

Here the n labeled samples yi, xi consist of a binary label yi ∈ − 1, 1 and a feature

vector xi ∈ ℝp + 1 occupying a row of the matrix X ∈ ℝn × p + 1. The parameter vector

β = (w, b) ∈ℝp + 1
 defines a hyperplane separating the two classes, with the first p

components corresponding to weights w ∈ ℝp and the last component b representing an

intercept. The last component xi, p + 1 of each xi is accordingly 1. Our notation β is insensitive

to the inclusion or exclusion of an intercept term in describing the primal model (2).

Rather than directly minimize fλ(β ∣ y, X) defined by equation (2), we turn to the MM

principle (Lange et al., 2000; Lange, 2016) and invoke the quadratic majorization

max 0, 1 − u 2 ≤
um − u 2, um ≥ 1

(1 − u)2, um < 1

at iteration m suggested by Groenen et al. (2008). Note the two sides of the majorization

agree when u = um. Given that all yi
2 = 1, the term by term application of the majorization

creates the overall quadratic surrogate

gλ β ∣ βm = λ
2 w 2

2 + 1
2n zm − Xβ

2
,

where zmi =
xi

⊤βm if yixi
⊤βm ≥ 1

yi if yixi
⊤βm < 1.

(3)

This maneuver reduces the original minimization problem to a sequence of easier

minimization problems that can be solved by repeated least squares. Nguyen and McLachlan

(2017) also apply the MM principle to support vector machines and make a connection

to iteratively reweighted least squares (IRLS), albeit with a different majorization. The

surrogate (3) is appealing compared to surrogate (12) of Nguyen and McLachlan (2017)

because the former avoids changing weights. In any case, the MM principle implies that

every iteration decreases the objective function (2) via the chain of inequalities

fλ βm + 1 ≤
majorize

gλ βm + 1 ∣ βm ≤
minimize

gλ βm ∣ βm =tangency fλ βm .

Landeros and Lange Page 4

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.3 Variable Selection

The objective (2) employs the quadratic penalty to control the size of a SVM’s separating

margin, 1/ w , but the penalty shrinks parameters rather than selects them. Thus, we append

an explicit sparsity constraint to (2) and consider constrained problems of the form

min
β

fλ(β ∣ y, X) such that w 0 ≤ k,

where w 0 = ∑j1 wj ≠ 0 counts the number of nonzero components in w. Note that the

restriction w 0 ≤ k makes the sparsity set

Sk = β ∈ℝp + 1
:β = (w, b) and w 0 ≤ k ,

closed. For any dataset with p ≥ k predictors, Sk = ℝp + 1. Fortunately, Euclidean projection

onto Sk is straightforward. The projection operator PSk(β) sets to zero all but the largest

k entries in magnitude of β1 through βp. This goal can be achieved efficiently by a partial

sort of these entries. Figure 1 illustrates the Euclidean projection that selects one variable

in a two-dimensional problem. The projection may fail to be unique when some or all

coefficients are tied, but such events occur on lower dimensional subspaces and therefore

have measure zero.

In light of the simplicity of projections onto sparsity sets, we follow the penalty method of

constrained optimization (Beltrami, 1970; Courant, 1943) and minimize the unconstrained

objective

ℎρ(β) = fλ(β ∣ y, X) + ρ
2dist β, Sk

2, (4)

for a large value of the annealing parameter ρ ≥ 0. The squared distance penalty enforces

near sparsity and is continuously differentiable wherever the underlying projection is single

valued. In the limit as ρ tends to ∞, the solution vector βp tends to a solution of the

constrained problem. Combining our previous majorization (3) with distance majorization

dist(u, S)2 ≤ u − PS um
2,

yields the sum of squares surrogate

gρ β ∣ βm = λ
2 w 2

2 + 1
2n zm − Xβ 2 + ρ

2 PSk βm − β 2
2 . (5)

Note that because no projection is applied to the intercept, when present, projection does not

touch the (p + 1)-th component. Sparsity constraints permit identification of features driving

a classifier’s decision boundary in spite of sacrificing convexity. Our previous experience

Landeros and Lange Page 5

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

supports the value of the proximal distance principle in building parsimonious models with

nonconvex set constraints (Xu et al., 2017; Keys et al., 2019; Landeros et al., 2022).

2.4 Support Vector Selection

While soft-margin classifiers are known to perform decently even on datasets that are not

linearly separable, they do not generalize well to inherently nonlinear data. Transforming the

feature vectors xi into an abstract feature space via an implicit mapping, ϕ xi , is sufficient

to induce nonlinear decision boundaries. Careful design of a primal problem then allows one

to invoke the kernel trick (Schölkopf and Smola, 2018), which reduces further calculations

to the formation of inner products κ xi, xj = ϕ xi , ϕ xj H in a Hilbert space H. Thus, the

functional form of the nonlinear transformation ϕ(⋅) is immaterial, and one can instead

focus on choosing a positive semidefinite kernel κ xi, xj induced by the transformation.

The L2 SVM considered in (2) has a well-known dual program (Frieß and Harrison,

1998a,b; Mangasarian and Musicant, 2001)

min
α

fλ(α ∣ y, X) = n
2 α 2

2 + 1
2λα⊤Y KY α − 1⊤α

such that y⊤α = 0 and α ≥ 0,
(6)

where Y = diag(y) and α ∈ ℝn. The choice K = XX⊤ corresponds to the standard linear

kernel, but in practice one may substitute Kij = κ xi, xj for any positive semidefinite kernel

κ(⋅ , ⋅) satisfying Mercer’s condition (Mercer, 1909; Kimeldorf and Wahba, 1971; Cortes

and Vapnik, 1995; Schölkopf et al., 2001). One can show that the original parameters

β = (w, b) are given by

w = λ−1∑
i

αiyiϕ xi , and b = − (nλ)−1y⊤Y KY α + y .

The relationship between w and α suggests that, in general, one cannot hope to induce

sparsity in w using a simple distance penalty in the dual problem. Instead, we note that the

combination of constraints y⊤α = 0 and α ≥ 0 already imply some level of sparsity in α.

Thus, let α = (a, b) for some coefficients a ∈ ℝn. Substituting w = ∑iaiyiϕ xi in the squared

hinge term of (2) leads to the alternative model

min
a

λ
2 a 2

2 + 1
2n ∑

i = 1

n
max 0, 1 − yi ∑

j = 1

n
κ xi, xj yjaj + b

2
,

such that a 0 ≤ k,
(7)

which directly controls the number of support vectors in a SVM’s decision boundary. The

set of support vectors equals xi:ai ≠ 0 . This nonlinear model, denoted by fλ
NL(α ∣ y, X),

combines the advantages of a the squared hinge in the primal problem (2) with the kernel

trick but, crucially, it is not anchored by any duality theory or related to the dual problem

Landeros and Lange Page 6

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(6). Nevertheless, we will see that this model successfully fits nonlinear decision boundaries

with additional flexibility in selecting support vectors.

Adding a distance penalty to (7) leads to the objective

ℎρ(α, b) = fλ
NL(α ∣ y, X) + ρ

2dist α, Sk
2 . (8)

To recapitulate, define Y = diag(y) as a diagonal matrix and majorize the squared hinge and

distance penalty to arrive at the quadratic surrogate

gρ α ∣ αm = λ
2 a 2

2 + 1
2n zm + KY a 2

2 + ρ
2 P αm − a 2

2 . (9)

One can verify this surrogate by identifying KY with X and α with β in the function (3)

majorizing the squared hinge.

3 Algorithms

In this section we derive practical algorithms for minimizing the criteria (4) and (8) via

their surrogate functions (5) and (9), respectively. We begin by outlining a general strategy,

proximal distance iteration, that overcomes the technical requirement that ρ > 0 should

be sufficiently large in minimizing constrained objectives functions. Convergence results

are discussed. Next, we derive iterative maps specific to minimization of (4) and (8) that

apply to fitting sparse linear and nonlinear classifiers, respectively. Finally, we conclude by

discussing strategies to tune the level of sparsity via cross validation.

3.1 Proximal Distance Iteration

Let us briefly discuss proximal distance iteration in a general. Driving the distance penalty

dist(x, S) in ℎρ(x) towards 0 requires setting ρ > 0 sufficiently large. Propositions 1 through

4 of Keys et al. (2019) provide guidance on how large ρ should be. Unfortunately, taking ρ
arbitrarily large necessarily slows convergence. Thus, in practice one minimizes a sequence

of penalized objectives ℎρ(x):ρ = ρ0, ρ1, ρ2, … parameterized by an increasing sequence of

penalty coefficients ρt. The annealing path x(ρ) is typically continuous in ρ, so that warm

starting the current suproblem from the solution of the previous subproblem accelerates

convergence. One can assess convergence by checking the criteria

ℎρ(x) ≤g
ϵ , and (10)

dist(x, S) ≤d
ϵ , (11)

for positive tolerances ϵg and ϵd. Note that in the initial phase of proximal distance iteration

when condition (11) is violated, one does not need strict satisfaction of the gradient

condition (10) before increasing ρ. On the other hand, enforcing the gradient check (10)

compounds the benefits of warm starts. Algorithm 1 summarizes proximal distance iteration

Landeros and Lange Page 7

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

applied to a generic problem. According to the MM principle, the algorithm map Mρ(x)
guarantees descent for fixed ρ. Note that the final projection step is justified when condition

(11) is satisfied.

Algorithm 1

Proximal Distance Iteration

Require: An objective ℎρ(x), gradient ∇ℎρ(x), and algorithm map Mρ(x).

1: Set tolerances ϵd and ϵg; fix hyperparameters λ and k.

2: Set maximum number of ρ values, tmax; maximum inner iterations mmax.

3: Initialize the estimate X and define an increasing sequence ρ(t) t ≥ 0.

4: fort 0, 1, …, tmaxdo

5: Set x0 x using the current estimate and take ρ ρ(t).

6: form 1, …, mmaxdo

7: Iterate the algorithm map,xm + 1 Mρ xm .

8: if ∇ℎρ xm + 1 2 ≤ ϵgthen

9: Break.

10: end if

11: end for

12: Update x xm + 1

13: ifdist(x, S)ϵdthen

14: Break.

15: end if

16: end for

17: Project the final estimate x PSk(x).

3.2 Iteration Maps

We now derive algorithm maps for minimizing the penalized loss (4) using Algorithm 1.

The MM strategy repeatedly minimizes the surrogate (5) anchored at the current estimate βm.

Updating β amounts to solving the linear system

βm + 1 = argmin gρ β ∣ βm

= n−1X⊤X + (λ + ρ)I −1 n−1X⊤zm + ρP sk βm .
(12)

Observe that the solution is non-unique if there are multiple admissible projections PSk βm

of βm onto Sk. Fortunately, the linear system can be solved efficiently using a single thin

singular value decomposition (SVD) X = UΣV ⊤ across all iterates. This approach may be

expensive if the number of samples n or predictors p is large, but it keeps the factorization

independent of ρ and λ. We document our implementation of this strategy in Appendix A.

Landeros and Lange Page 8

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Alternatively, differentiability of ℎρ(β) implies the first-order tangency condition

∇gρ(β ∣ β) = ∇ℎρ(β), which in turn suggests implementing gradient descent. Minimizing the

surrogate gρ β ∣ βm in the direction − ∇ℎρ βm leads to the update

βm + 1 = βm − tm ∇ℎρ βm

tm = ∇ℎρ βm
2

n−1 X ∇ℎρ βm
2 + (ρ + λ) ∇ℎρ βm

2
(13)

derived in the Appendix. A single steepest descent step cannot, in general, achieve exact

minimization of gρ β ∣ βm , but one step always drives the surrogate ℎρ(β) downhill. In any

event, the iterates generated by the MM update (12) are generally different from those

generated by the steepest descent update (13). Multiple steps of steepest descent can

achieve exact minimization of gρ β ∣ βm and bring steepest descent into alignment with

MM. However, exact minimization via steepest descent is costly and unlikely to offer any

advantages in precision or computational cost over minimizing the surrogate by conjugate

gradients. Fortunately, the algorithm maps (12) and (13) are easily adapted to the nonlinear

setting. Simply substitute KY and α for X and β, respectively.

3.3 Convergence Theory

In this section we briefly address the convergence properties of our proximal distance

algorithms for SVM. Convergence theory for gradient descent is more standard and is

omitted. Readers mainly interested in applications can skip this discussion and return to it

later as desired.

The loss fλ(β ∣ y, X) defined in (2) is convex by the standard closure properties of convex

functions. Without loss of generality, let us assume that the intercept b = 0 and identify

β = w. In this regard note that the scalar function u+
2 = max 0, u 2 is convex in u. To prove

that fλ(β ∣ y, X) is coercive, one can invoke the fact that a convex function on ℝp is coercive

if and only if it is coercive along all nontrivial rays β ∈ℝp
:β = tv, t ≥ 0 emanating from the

origin (Lange et al., 2000). It is obvious that fλ(tv ∣ y, X) tends to ∞ as t tends to ∞ if and

only if at least one vector −yixi satisfies −yixi
⊤v > 0. In other words, fλ(tv ∣ y, X) is coercive if

and only if the polar cone

C = v: − yixi
⊤v ≤ 0; for all; i

consists of the trivial vector 0 alone. Under these circumstances X also has full column rank.

In practice, the polar cone condition is difficult to check, so we rely on the ridge penalty
λ
2 w 2 to enforce coercivity. The SVM loss fλ(β ∣ y, X) is also continuously differentiable

because u+
2 is so with derivative 0 at u = 0. Furthermore, the gradient

∇fλ(β ∣ y, X) = λβ − 1
n ∑

i = 1

n
1 − yixi

⊤β +yixi

Landeros and Lange Page 9

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is locally bounded and Lipschitz because u+ is so and the class of such functions is closed

under the formation of sums and functional compositions. It follows that the surrogate (3) is

continuous, strongly convex, and satisfies the Lipschitz condition

∇gρ β ∣ βn − ∇gρ α ∣ βn ≤ L β − α

for some L on the compact set β:fλ(β ∣ y, X) ≤ fλ β0 ∣ y, X whenever fλ(β ∣ y, X) is

coercive. Strong converge results apply in the convex settings as summarized in the survey

Lange et al. (2021) and in Propositions 5 through 11 of (Keys et al., 2019).

Even if the SVM loss functions fλ(β ∣ y, X) and fλ
NL(α ∣ y, X) are strictly convex, the addition

of a nonconvex set constraint Sk sacrifices convexity in the penalized losses ℎρ(β) and

ℎρ(α). Thus, convergence is governed by nonconvex theory. One issue is the multivalent

nature of projections onto sparsity sets. Fortunately, such pathological behavior occurs only

on a set of Lebesgue measure 0. Furthermore, Zangwill’s Global Convergence Theorem

also covers multivalent algorithm maps (Luenberger, 1984, see Section 7.7). To establish

convergence to a stationary point, we rely on results from our companion papers (Keys et

al., 2019; Landeros et al., 2022). There we define the necessary concepts of semialgebraic

sets and functions and stationary points. Proposition 4.1 of Landeros et al. (2022) proves

that the sparsity set Sk is semialgebraic. In the current context the fusion matrix D is just

the identity I. Moreover, our arguments there show that our current loss and penalty are

semialgebraic. Because our surrogates gρ β ∣ βm are continuous, μ-strongly convex, and L-

smooth, Proposition 4.4 of Landeros et al. (2022) demonstrates a linear rate of convergence

to a stationary point β∞ when β∞ has k unambiguous largest components in magnitude.

The complementary set of points β with k ambiguous largest components in magnitude has

Lebesgue measure 0.

3.4 Decision Functions and Multiclass SVM

In linear binary classification, SVMs typically use the decision rule

x sgn x⊤w =
+1, if x⊤w > 0
0, if x⊤w = 0,

−1, if x⊤w < 0

to assign an instance x a binary label using the SVM’s coefficients w. The signed decision

rule can be extended to multiclass problems using the One-Versus-One (OVO) paradigm

(Hsu and Lin, 2002). In OVO, one partitions a dataset with c classes into
c
2 subsets

such that each subset only contains samples from two classes. One then fits
c
2 SVMs

to discriminate between two classes within each subset. After fitting models to each

subproblem, one constructs a decision rule through a voting system so that the assigned

label of X is given by

Landeros and Lange Page 10

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

x argmax
j

vj:vj = ∑
ℓ

1 SVMℓ(x) = j ,

where SVMℓ(x) is the label assigned by binary SVM ℓ using, for example, the signed

decision rule. Thus, the class receiving the most votes is used as the predicted label for X.

Alternatively, one may interpret x⊤w as a confidence value indicating the strength of a

SVM’s prediction. This is useful in the One-Versus-Rest (OVR) paradigm which constructs

c SVMs to distinguish one class from the rest (Hsu and Lin, 2002). In this setting, one

assigns a label by aggregating confidence values from each SVM

x argmax
j

vj:vj = ∑
ℓ

x⊤wℓ ⋅ 1 SVMℓ(x) = j .

In this case, OVR assigns a class based on the highest confidence value. OVR reduces

the number of SVMs required to fit a multiclass classifier and, therefore also reduces the

number of model parameters, but is known to suffer from worse ambiguity issues when ties

occur compared to OVO (van den Burg and Groenen, 2016, see Figure 1).

In our classifiers we favor the OVO paradigm using a weighted voting system based on

confidence values. We prefer to avoid the potentially ambiguous decision boundaries of

OVR, although it often yields similar results to OVO (Hsu and Lin, 2002).

3.5 Tuning Sparsity with Cross Validation

Without prior knowledge of the true number of causal features, one must tune the sparsity

level of the solutions. This amounts to selecting k ∈ 0, 1, 2, …, p to restrict the number of

active variables through sparsity constraints w ∈ Sk or a ∈ Sk in fitting linear or nonlinear

SVM, respectively. Note that decreasing k increases the number of structural zeros as

measured by the sparsity level s = 1 − k/p.

We examine the viability of composing K-fold cross validation (CV) with our algorithms. In

each fold we initialize model parameters and then minimize the criterion (4) or the criterion

(8) on a training set with fixed λ but no sparsity penalty (k = p). We then gradually increase

sparsity s = 1 − k/n to construct a solution path from the fully dense models (s = 0) to fully

sparse models (s = 1). Fitted classifiers in cross validation are parameterized by an ordered

pair (s, λ). Order is important here because each λ is associated with a solution path over s.

We do not consider ρ as a hyperparameter in cross validation because it is already tuned by

proximal distance iteration.

In principle there are various performance metrics that may be used to evaluate a classifier.

A natural criterion is the minimum value of the regularized empirical risk, but this has

two issues. First, it becomes difficult to compare across different loss models such as (2)

versus (4) or even (8). Second, it is well-known that penalty methods reach a compromise

in minimizing of f(x) or g(x) in a penalized objective ℎ(x) = f(x) + ρg(x) (Lange, 2016).

Landeros and Lange Page 11

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In fact, we expect that minimization of (4) or (8) will inflate the original loss model (2)

or (7), respectively. This may even be desirable since our estimators for model parameters

are necessarily biased compared to the standard L2 SVM. Thus, we focus on maximizing

prediction accuracy. The following describes how we fit and evaluate classifiers for each pair

of hyperparameters (s, λ).

i. Any feature standardization or normalization is based on the training set and

applied to the training, validation, and test subsets. For example, if one wishes

to standardize the data, then we estimate (μ, σ) from the training subset Xtrain and

apply the transformation x (x − μ)/σ to all instances of feature X in each of the

three data subsets. This is essential to ensure both the validity of cross validation

results and the fitting of SVMs because the latter is not invariant under affine

transformations.

ii. In each fold, a training set is used to fit model parameters. The fitted classifier

is evaluated on a validation set and a test set. The training and validation sets

are shuffled between folds, whereas the test set is fixed and never participates in

fitting.

iii. In a linear SVM the size of a separating margin is given by 1/ w . Thus, smaller

values of λ induce smaller margins and may lead to overfitting. Moderate values

of λ are desirable and tend to avoid overfitting. Average predication accuracy on

validation sets is measured by

SCV = 1
K ∑

j = 1

K 1
nj

∑
i = 1

nj
1 Lij = Lij .

Here Lij is the label of a validation sample i in fold j and Lij is its predicted label.

iv. To select an optimal pair (s, λ), we maximize SCV as a function of s and λ. This

choice prioritizes maximizing prediction accuracy SCV over parsimony (s) and

generalizability (λ).

In addition, repeated K-fold cross validation can be used to assess stability of variable

selection. This involves shuffling samples between the training and validation sets and

repeating the K-fold cross validation procedure. Ideally, each replicate should select a

similar pair (s, λ) with similar prediction accuracies on validation and test subsets. Algorithm

2 summarizes the flow of our cross validation procedure.

Algorithm 2

Repeated Cross Validation

1: Split dataset into test and cross validation subsets T and D, respectively.

2: for each replicate r 1, Rdo

3: Shuffle subset D.

4: for each fold 1, Kdo

Landeros and Lange Page 12

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5: Split D into training and validation subsets, D1 and D2.

6: Estimate transformation parameters from the training set D1.

7: Apply the transformation to D1, D2 and T to standardize/normalize data.

8: for each λdo

9: Initialize model parameters β or α by fitting a L2 SVM using (2) or (7).

10: for each sdo

11: Fit a sparse classifier with k = p(1 − s) active features.

12: Evaluate prediction accuracy on subsets D1, D2 and T.

13: end for

14: end for

15: end for

16: Evaluate average scores SCV D1 , SCV D2 and SCV(T) for each subset.

17: Rank models by their augmented scores (SCV D2 , s, λ).

18: Identify and record the optimal hyperparameters s, k, and λ.

19: end for

4 Numerical Experiments

We assess the proposed SVM algorithms by testing them on both our own simulated

examples (see Appendix B) and datasets from the UCI Machine Learning Repository

(Dua and Graff, 2019). The chosen datasets, which address both overdetermined and

underdetermined problems, are listed in Table 1. We use the DataDeps.jl package (White et

al., 2019) to process datasets and make them reproducible in our experiments. We begin by

demonstrating that our sparse SVMs can recover sparse models in various high-dimensional

settings. Next, we report repeated cross validation results on selected datasets and compare

against SVMs fitted using all or a reduced subset of variables. Finally, we conclude with a

comparison to classical SVMs implemented in LIBSVM and LIBLINEAR.

4.1 Sparse Recovery in High-Dimensional Scenarios

Let us first characterize the behavior of our sparse SVMs in two regimes, overdetermined

and underdetermined, by a simulation study. Given target sample and variable sizes n
and p, respectively, we generate X by sampling row vectors from a standard multivariate

distribution, xi ∼ N 0p × 1, Ip × p , and set

w0j ∼ Uniform (2, 10), j is causal
0, otherwise,

for k randomized components in the support of w0 ∈ ℝp; that is supp w0 = k. Binary

labels are then assigned via the linear SVM decision rule yi = xi
⊤w0. Overdetermined and

underdetermined scenarios are generated by fixing n = 500 or p = 500 and then varying

the remaining problem dimension. We also fix λ = 1 and control parameters ϵd = 10−3 and

ϵg = 10−4. For each simulation, we fit multiple classifiers by varying the target number of

Landeros and Lange Page 13

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

active features k, using both MM and SD, and measure iterations to convergence, wall time,

and prediction accuracy on a separate test set. Fitted solutions w are compared against the

ground truth w0 in terms of accuracy, positive predictive value (PPV), and negative predictive

value (NPV). In this context we have the following definitions of true and false positives/

negatives (TP/FP/TN/FN)

wj ≠ 0 wj = 0
w0j ≠ 0 TP FN

w0j = 0 FP TN

from which we derive PPV and NPV. Prevalence adjustment is important for our simulation

study because we fix k = 50 and expect the proportion of causal variables to shrink.

Figure 2 summarizes our results. In the two cases (n, p) = 104, 500 and (n, p) = 500, 104 , it

is clear that our classifiers achieve acceptable performance on test sets, regardless of which

algorithm is used to fit models. Moreover in the former case, maximal prediction accuracy is

achieved near k = 50, which also aligns with high PPV and NPV in identifying the correct

subset of causal variables. These positive results are more difficult to achieve when p ≫ n,

but the outlook is not so pessimistic. The fact that PPV increases monotonically as the

number of causal variables shrinks suggests that failure to recover all the causal variables

may be due to their exchangeability. In terms of scaling behavior, it is somewhat remarkable

that the number of required iterations decreases as one increases n. However, the wall time

does increase consistently. It should be noted that we do not include the cost of extracting

the SVD of X in Algorithm MM, which would shift its time curve upwards.

4.2 Cross Validation Results

We our report results of using Algorithm 2 in combination with Algorithm 1 to select

sparse SVMs across selected datasets. Table 2 illustrates the performance of Algorithm

MM on the synthetic example in detail, and Table 3 reports the highlights across all 10

examples. Results for Algorithm SD are similar. Appendix D records distributions of the

hyperparameters s, k, and λ along with validation prediction accuracy over 10 replicates of

K-fold cross validation.

In Table 2 it is clear that, for fixed λ, including extraneous variables may lead to overfitting

training data in binary classification. The summary in Table 3 compares results for (i) our

sparse classifiers that target a specific number of active variables k, (ii) a reduced model

using the same active variables as the optimal sparse model, and (iii) the full L2 SVM

using all available variables. Rows corresponding to the synthetic, synthetic-hard, and bcw

examples cover binary classification with a linear model. In these examples all 3 models

deliver model coefficients of similar magnitude based on the size of the margin 1/ w , but

our sparse classifiers better generalize to classifying novel instances when a sparse signal is

present.

Landeros and Lange Page 14

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In multiclass classification, one must partition data into subsets to fit binary SVMs

discriminating between two classes. This increases the total number of model parameters

and makes it possible for the number of active variables to exceed the target model size

k. With this in mind, our examples of multiclass problems with linear classifiers (iris,

splice, optdigits, leters, and TCGA-HiSeq) echo the results for linear binary classification.

However, it is now more challenging to successfully recover a sparse model because each

nested binary SVM targets the same number of variables k. Comparing total number of

active variables across all SVMs against average active variables per SVM illustrates this

point in the iris, splice, optdigits, and TCGA-HiSeq examples. The splice junction data, in

which variables are binary indicators for nucleotides T, C, G, and A within DNA sequences

of 60 base pairs, shows that a uniform sparsity constraint only modestly reduces the number

of selected variables from 240 to 209 because there is only some overlap between SVMs

(145 variables per SVM). In image data such as the optdigits example, dropped variables

correspond mainly to pixels at the boundary of images that are more likely to be black

pixels. This is somewhat disappointing behavior because in the gene expression example,

TCGA-HiSeq, repeated CV selects the model size k = 5066 per SVM resulting in 15778

genes discriminating between 5 cancer types. This is still a large number of genes to

consider compared to the original set of 20264 genes. To our credit, Figure 3 illustrates

that it may be possible to select significantly smaller values for k, thereby decreasing the

total number of model parameters, in exchange for small decreases in prediction accuracy.

Finally, it is interesting to note that our nonlinear SVM model successfully controls the

number of support vectors while maintaining good classification accuracy in the spiral

examples despite suffering from the same sparsity deficiency in multiclass problems.

4.3 Comparison to Existing Models

We compare our sparsity-based models to well-known classics using LIBLINEAR (Fan et

al., 2008) through the Julia wrapper package LIBSVM.jl. Specifically, we compare to

a. L2R, an option from LIBLINEAR for the standard L2 (2), and

b. L1R, an option from LIBLINEAR for the L1-regularized version of (2).

The models used in LIBLINEAR impose regularization on the hinge term, rather than the

penalty term, through a tuning constant C = (nλ)−1.

Table 4 reports our results in repeated cross validation. Our SVM training algorithms are

comparable to existing approaches, albeit slower across all examples. To our credit the

synthetic example underscores the superiority of sparsity constraints over shrinkage-based

penalties. Namely, algorithms MM and SD successfully fit sparse classifiers with fewer

variables and achieve superior prediction capability as reflected in validation and test

accuracies. Specifically, our sparse approach compares favorably against the L2-regularized

SVM in our synthetic datasets, designed to have only two informative variables, even when

the data are not linearly separable. Moreover, it is clear that our approach gives similar

classification predictions to the L1-regularized SVM on the synthetic examples. Similarities

in performance scores disappear on multiclass problems, indicating that our algorithms

converge to distinct solutions. It is not immediately clear whether our L0 approach recovers

sparser solutions, controls false positives, or mitigates shrinkage compared to the lasso.

Landeros and Lange Page 15

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The L1-regularized SVM is arguably too aggressive in selecting variables on the splice

and letters examples but it achieves superior selection on the TCGA-HiSeq example. This

suggests that, while the L1 classifier also imposes a uniform penalty on each nested binary

SVM, the continuous penalty can be more flexible on some problems. Thus, our sparse

classifiers are conservative compared to shrinkage-based methods.

5 Discussion

We have demonstrated the benefits of conceptually simple proximal distance algorithms for

binary and multiclass classification problems on both linear SVMs and nonlinear kernel

SVMs. The proximal distance principle makes it possible to attack parsimony directly

through squared distance penalties. This direct approach (a) restores differentiability via

quadratic surrogate functions, (b) potentially avoids the shrinkage inherent in lasso-based

algorithms, (c) identifies sparser models with good predictive power, and (d) substitutes

a discrete interpretable sparsity level for the continuous hyperparameters of competing

methods. To our surprise, the more expensive Algorithm MM scales better on high-

dimensional data due to its ability to quickly drive solutions close to a desired sparsity

set.

Algorithm acceleration is essential in overcoming the unfortunate cost of (repeated) cross

validation. We found experimentally that inclusion of ridge regularization is essential in

preventing coefficients from diverging to ±∞. Fortunately, addition of the ridge penalty

convexifies our distance penalized objectives and accelerates convergence overall. We

noticed a few other tactics that lower computational costs.

In multiclass classification, Algorithm MM greatly benefits from the OVO paradigm

because it reduces the dimensions of each required singular value decomposition. The OVR

paradigm only requires a single, albeit large decomposition, provided the classifier is linear.

It also noteworthy that our implementation uses dense linear algebra operations, so it may

be possible to speed up model fitting by tracking the active parameter set. In contrast, it

is not clear whether the SD variant is truly a viable alternative to MM unless the required

SVD is prohibitively expensive to compute. We observe that SD benefits from Nesterov

acceleration in cutting down the number of iterations, but further work is needed to make it

useful in cross validation. Other computational tricks may further lower computational costs

(Schölkopf and Smola, 2018); these warrant further experimentation.

While we are pleased with our results, particularly for binary classification tasks, much

is left to be desired for multiclass problems. Relying on multiple SVMs to handle

multiclass problems introduces
c
2 subproblems for c classes. Furthermore, different

decision boundaries in the OVO paradigm may be driven by different features, obscuring

the universal features that discriminate between classes. Hence, it is natural to investigate

multiclass methods beyond hyperplane separation. Our previous research on multivertex

discriminant analysis (MVDA) (Lange and Wu, 2008) explored a multiclass model that

represents classes geometrically as vertices of a regular simplex embedded in Euclidean

space rather than binary choices from − 1, 1 . MVDA takes advantage of ϵ-insensitive

Landeros and Lange Page 16

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

norms and generalizes to nonlinear classification via the kernel trick (Wu and Lange, 2010).

We plan to revisit MVDA and incorporate sparsity based on the proximal distance principle

and possibly Huber hinge errors (van den Burg and Groenen, 2016). Given the length of the

current paper and the many unresolved challenges ahead, this goal is best left to a future

paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors gratefully acknowledge USPHS grants R35 GM141798 and HG006139

References

Barghout L. (2015). Spatial-Taxon Information Granules as Used in Iterative Fuzzy-Decision-Making
for Image Segmentation. In Granular Computing and Decision-Making: Interactive and Iterative
Approaches, Studies in Big Data, pp. 285–318. Springer International Publishing.

Beltrami EJ (1970). An Algorithmic Approach to Nonlinear Analysis and Optimization. Academic
Press.

Ben-Hur A, Horn D, Siegelmann HT, and Vapnik V. (2002). Support vector clustering. The Journal of
Machine Learning Research 2, 125–137.

Cauwenberghs G. and Poggio T (2000). Incremental and decremental support vector machine learning.
In Proceedings of the 13th International Conference on Neural Information Processing Systems,
NIPS’00, pp. 388–394. MIT Press.

Chi EC, Zhou H, and Lange K. (2014). Distance majorization and its applications. Mathematical
Programming 146 (1), 409–436.

Cortes C. and Vapnik V. (1995). Support-vector networks. Machine Learning 20 (3), 273–297.

Courant R. (1943). Variational Methods for the Solution of Problems of Equilibrium and Vibrations.
Verlag Nicht Ermittelbar.

Decoste D. and Schölkopf B. (2002). Training Invariant Support Vector Machines. Machine Learning
46 (1), 161–190.

Dua D. and Graff C. (2019). UCI Machine Learning Repository.

Dunbrack RL (2006). Sequence comparison and protein structure prediction. Current Opinion in
Structural Biology 16 (3), 374–384.

El Ghaoui L, Viallon V, and Rabbani T. (2012). Safe feature elimination for the lasso and sparse
supervised learning problems. Pacific Journal of Optimization 8 (4), 667–698.

Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, and Lin C-J (2008). LIBLINEAR: A Library for Large
Linear Classification. Journal of Machine Learning Research 9 (61), 1871–1874.

Frieß T-T and Harrison RF (1998a). The Kernel Adatron With Bias Unit: Analysis of the Algorithm
(Part 1). ACSE Research Report 729, University of Sheffield Department of Automatic Control
and Systems Engineering.

Frieß T-T and Harrison RF (1998b). The Kernel Adatron with Bias Unit: Analysis of the Algorithm
(Part 2). ACSE Research Report 728, University of Sheffield Department of Automatic Control
and Systems Engineering.

Groenen PJF, Nalbantov G, and Bioch JC (2008). SVM-Maj: A majorization approach to linear
support vector machines with different hinge errors. Advances in Data Analysis and Classification
2 (1), 17–43.

Hsu C-W and Lin C-J (2002). A comparison of methods for multiclass support vector machines. IEEE
Transactions on Neural Networks 13 (2), 415–425.

Landeros and Lange Page 17

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jagg M. (2014). An Equivalence between the Lasso and Support Vector Machines. In Regularization,
Optimization, Kernels, and Support Vector Machines. Chapman and Hall/CRC.

Joachims T. (1998). Text categorization with Support Vector Machines: Learning with many relevant
features. In Machine Learning: ECML-98, Lecture Notes in Computer Science, pp. 137–142.
Springer.

Keys KL, Zhou H, and Lange K. (2019). Proximal Distance Algorithms: Theory and Practice. Journal
of Machine Learning Research 20 (66), 1–38.

Kimeldorf G. and Wahba G. (1971). Some results on Tchebycheffian spline functions. Journal of
Mathematical Analysis and Applications 33 (1), 82–95.

Landeros A, Padilla OHM, Zhou H, and Lange K. (2022). Extensions to the Proximal Distance
Method of Constrained Optimization. Journal of Machine Learning Research 23 (182), 1–45.

Lange K. (2016). MM Optimization Algorithms. SIAM-Society for Industrial and Applied
Mathematics.

Lange K, Hunter DR, and Yang I. (2000). Optimization Transfer Using Surrogate Objective Functions.
Journal of Computational and Graphical Statistics 9 (1), 1–20.

Lange K, Won J-H, Landeros A, and Zhou H. (2021). Nonconvex Optimization via MM Algorithms:
Convergence Theory. In Wiley StatsRef: Statistics Reference Online, pp. 1–22. John Wiley &
Sons, Ltd.

Lange K. and Wu TT (2008). An MM Algorithm for Multicategory Vertex Discriminant Analysis.
Journal of Computational and Graphical Statistics 17 (3), 527–544.

Laskov P, Gehl C, Krüger S, and Müller K-R (2006). Incremental Support Vector Learning: Analysis,
Implementation and Applications. Journal of Machine Learning Research 7 (69), 1909–1936.

Luenberger DG (1984). Linear and Nonlinear Programming. Addison-Wesley.

Mangasarian OL and Musicant DR (2001). Lagrangian support vector machines. The Journal of
Machine Learning Research 1, 161–177.

Merce J. (1909). Functions of positive and negative type, and their connection the theory of integral
equations. Philosophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character 209 (441–458), 415–446.

Nguyen HD and McLachlan GJ (2017). Iteratively-Reweighted Least-Squares Fitting of Support
Vector Machines: A Majorization–Minimization Algorithm Approach. In Proceedings of the 2017
Future Technologies Conference, pp. 439–446. The Science and Information Organization.

Ogawa K, Suzuki Y, and Takeuchi I. (2013). Safe Screening of Non-Support Vectors in Pathwise
SVM Computation. In Proceedings of the 30th International Conference on Machine Learning, pp.
1382–1390. PMLR.

Pradhan S, Ward W, Hacioglu K, Martin JH, and Jurafsky D. (2004). Shallow semantic parsing
using support vector machines. In Proceedings of the Human Language Technology Conference
of the North American Chapter of the Association for Computational Linguistics, pp. 233–240.
Association for Computational Linguistics.

Schölkopf B, Herbrich R, and Smola AJ (2001). A Generalized Representer Theorem. In
Computational Learning Theory, Lecture Notes in Computer Science, pp. 416–426. Springer.

Schölkopf B. and Smola AJ (2018). Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. The MIT Press.

Sewak M, Vaidya P, Chan C-C, and Duan Z-H (2007). SVM approach to breast cancer classification.
In Second International Multi-Symposiums on Computer and Computational Sciences (IMSCCS
2007), pp. 32–37.

Tibshirani R, Bien J, Friedman J, Hastie T, Simon N, Taylor J, and Tibshirani RJ (2012). Strong rules
for discarding predictors in lasso-type problems. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 74 (2), 245–266.

van den Burg GJJ and Groenen PJF (2016). GenSVM: A Generalized Multiclass Support Vector
Machine. Journal of Machine Learning Research 17 (224), 1–42.

Wang J., Zhou J, Wonka P, and Ye J (2013). Lasso screening rules via dual polytope projection. In
Advances in Neural Information Processing Systems, Volume 26. Curran Associates, Inc.

Landeros and Lange Page 18

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

White L, Togneri R, Liu W, and Bennamoun M. (2019). DataDeps.jl: Repeatable Data Setup for
Reproducible Data Science. Journal of Open Research Software 7 (1), 33.

Wu TT and Lange K. (2010). Multicategory vertex discriminant analysis for high-dimensional data.
The Annals of Applied Statistics 4 (4), 1698–1721.

Xu J, Chi E, and Lange K. (2017). Generalized Linear Model Regression under Distance-to-set
Penalties. In Advances in Neural Information Processing Systems, Volume 30. Curran Associates,
Inc.

Zhu J, Rosset S, Hastie T, and Tibshirani R. (2003). 1-norm support vector machines. In Proceedings
of the 16th International Conference on Neural Information Processing Systems, NIPS’03, pp.
49–56. MIT Press.

Landeros and Lange Page 19

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.

Euclidean projections of points in ℝ2 onto S1. Red points have a unique projection whereas

blue points may have multiple valid projections.

Landeros and Lange Page 20

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Performance characteristics of sparse SVM classifiers fitted using algorithms MM (blue

circles) and SD (orange triangles) across various simulated high-dimensional scenarios (row

labels). Black vertical lines highlight the number of causal variables used to simulate data. In

the bottom two rows, results correspond to the ideal case with k = 50.

Landeros and Lange Page 21

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Convergence metrics (top) and performance metrics (bottom) for MM and SD on the

TCGA-HiSeq example. Control parameters were set to and δg = 2 × 10−4 and δd = 10−3 for

gradient norms and distances, respectively.

Landeros and Lange Page 22

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Landeros and Lange Page 23

Table 1

Summary of datasets, classifier choices, and cross validation settings used in numerical experiments.

Dataset Classes Samples Features Model Replicates Folds Train Test

synthetic 2 1000 500 Linear 10 5 800 200

synthetic-hard 2 1000 500 10 5 800 200

iris 3 150 4 10 3 120 30

bcw 2 683 9 10 3 546 137

splice 3 3176 180 10 5 2541 635

optdigits 10 5620 64 10 5 4496 1124

letters 26 20000 16 1 5 16000 4000

TCGA-HiSeq 5 801 20531 1 3 641 160

spiral 3 1000 2 Nonlinear 10 5 800 200

spiral-hard 3 1000 2 10 5 800 200

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Landeros and Lange Page 24

Table 2

Partial solution path in 5-fold cross validation on the synthetic example with various active variables k.

Reported metrics are averages over 5 folds with standard errors in parentheses. The highlighted row

corresponds to results for the true sparsity level s = 0.996, or equivalently k = 2. Here λ = 1 is fixed.

Accuracy (%)

k Iterations Loss Support Vectors Train Validation Test

500 7 0.300 623 98 77 72

(0) (0.004) (1) (0) (2) (1)

375 210 0.301 622 98 77 73

(4) (0.004) (2) (0) (2) (1)

250 421 0.313 622 98 77 74

(7) (0.004) (1) (0) (2) (1)

125 599 0.351 619 97 79 76

(9) (0.004) (2) (0) (1) (1)

73 696 0.388 622 97 82 79

(11) (0.004) (1) (0) (2) (1)

43 747 0.421 625 96 85 82

(4) (0.005) (1) (0) (2) (1)

25 813 0.450 627 95 86 85

(4) (0.004) (1) (0) (2) (1)

15 820 0.471 626 95 87 88

(6) (0.003) (1) (0) (2) (1)

9 866 0.488 627 95 91 91

(9) (0.002) (1) (0) (2) (1)

5 885 0.503 628 96 94 93

(3) (0.002) (1) (0) (2) (0)

3 891 0.513 628 97 96 95

(2) (0.002) (1) (0) (1) (0)

Accuracy (%)

2 896 0.519 627 99 100 100

(3) (0.002) (1) (0) (0) (0)

1 946 0.747 640 76 73 76

(3) (0.002) (0) (0) (0) (1)

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Landeros and Lange Page 25

Table 3

Summary of repeated cross validation results across our selected examples. We select an optimal pair (λ, k) by

averaging CV scores over folds and replicates and fit (i) a sparse SVM based on our framework, (ii) a reduced

SVM using only the active variables, and (iii) the full L2-regularized SVM. In multiclass problems, the total

and average number of active variables is taken across each binary SVM to account for overlaps.

Active Variables Accuracy (%)

Example Model λ k Total Average SVs Margin Train Test

synthetic (i) 0.10 2 2 2 518 0.95 100 100

(ii) 0.10 2 2 2 518 0.94 100 100

(iii) 0.10 500 500 500 527 0.96 100 76

synthetic-hard (i) 10.00 2 2 2 800 15.30 94 96

(ii) 10.00 2 2 2 800 15.28 94 96

(iii) 10.00 500 500 500 800 10.69 90 70

bcw (i) 1.00 9 9 9 215 6.09 97 98

(ii) 1.00 9 9 9 215 6.09 97 98

(iii) 1.00 9 9 9 215 6.09 97 98

iris (i) 0.10 1 2 1 117 0.98 98 90

(ii) 0.10 1 2 2 109 1.14 98 93

(iii) 0.10 4 4 4 98 1.24 98 93

splice (i) 0.10 145 209 145 2027 1.04 97 96

(ii) 0.10 145 209 209 2031 1.04 98 95

(iii) 0.10 240 240 240 2025 1.04 98 95

optdigits (i) 1.00 48 56 48 1544 8.71 99 96

(ii) 1.00 48 56 56 1544 8.71 99 96

(iii) 1.00 64 64 64 1544 8.71 99 96

letters (i) 0.10 16 16 16 13945 1.80 84 82

(ii) 0.10 16 16 16 13945 1.80 84 82

(iii) 0.10 16 16 16 13945 1.80 84 82

TCGA-HiSeq (i) 10.00 5066 15778 5066 320 38.58 100 100

(ii) 10.00 5066 15778 15778 271 41.85 100 100

(iii) 10.00 20264 20258 20258 273 42.90 100 100

spiral (i) 1.00 400 561 267 561 2.97 97 98

(ii) 1.00 400 561 374 561 2.99 97 98

(iii) 1.00 800 800 533 800 3.32 97 98

spiral-hard (i) 1.00 669 771 446 771 3.82 89 90

(ii) 1.00 669 771 514 771 3.85 90 89

(iii) 1.00 800 800 533 800 3.84 89 90

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Landeros and Lange Page 26

Table 4

Comparison of our algorithms (MM and SD) against existing approaches implemented in LIBLINEAR (L2

and L1) in cross validation. In multiclass problems, the total and average number of active variables is taken

across each binary SVM to account for overlaps. Results are based on repeated K-fold cross validation with 10

replicates in all examples except the letters and TCGA-HiSeq examples which only use 1 replicate.

Active Variables Accuracy (%)

Example Algorithm λ k Total Time [s] Total Average SVs Train Validation Test

synthetic MM 10 2 3.98 2 2 573 99 99 100

SD 0.1 2 4.05 2 2 506 99 99 100

L2 0.55 500 0.05 500 500 529 99 78 74

L1 0.1 500 0.025 271 271 471 99 99 100

synthetic-hard MM 10 2 4.13 2 2 640 94 94 96

SD 10 2 4.16 2 2 640 94 94 96

L2 1 500 0.055 500 500 627 97 74 70

L1 0.1 500 0.021 271 271 567 94 94 96

bcw MM 0.56 6 0.64 6 6 156 97 97 96

SD 0.32 8 2.35 8 8 129 98 98 95

L2 0.78 9 0.007 9 9 387 87 87 87

L1 0.04 9 0.02 9 9 369 87 86 87

iris MM 0.02 4 0.254 4 3 45 99 98 94

SD 0.03 3 0.282 4 3 47 98 98 95

L2 0.02 4 0.002 4 4 80 86 85 85

L1 0.01 4 0.006 4 3 80 85 85 84

Active Variables Accuracy (%)

splice MM 0.1 144 9.51 208 150 1628 98 96 95

SD 0.1 102 12.5 178 104 1661 97 96 97

L2 0.1 240 0.125 240 240 1779 97 96 95

L1 0.1 240 0.056 30 11 2032 85 84 85

optdigits MM 0.1 36 17.1 55 36 901 100 98 96

SD 1 34 192 54 36 1082 100 98 96

L2 0.1 64 0.216 62 62 1693 98 96 95

L1 0.1 64 0.534 43 17 3022 95 94 92

letters MM 0.1 16 362 16 16 11157 84 83 82

SD 0.1 14 3000 16 14 11174 84 83 82

L2 0.1 16 2.38 16 16 12800 67 67 65

L1 0.1 16 8.81 14 6 12800 46 46 45

TCGA-HiSeq MM 10 5066 9980 15878 5066 249 100 100 100

SD 0.1 1964 7710 8727 1964 240 100 100 100

L2 10 20264 72 20237 20237 427 100 100 100

L1 0.1 20264 2.78 79 16 427 100 100 100

J Comput Graph Stat. Author manuscript; available in PMC 2024 January 01.

	Abstract
	Introduction
	Sparse SVMs via Distance Penalization
	Background
	Mathematical Formulation
	Variable Selection
	Support Vector Selection

	Algorithms
	Proximal Distance Iteration

	Algorithm 1
	Iteration Maps
	Convergence Theory
	Decision Functions and Multiclass SVM
	Tuning Sparsity with Cross Validation

	Algorithm 2
	Numerical Experiments
	Sparse Recovery in High-Dimensional Scenarios

	Table T3
	Cross Validation Results
	Comparison to Existing Models

	Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Table 1
	Table 2
	Table 3
	Table 4

