Skip to main content
. Author manuscript; available in PMC: 2024 Jan 1.
Published in final edited form as: J Comput Graph Stat. 2022 Dec 13;32(3):1097–1108. doi: 10.1080/10618600.2022.2146697

Algorithm 1.

Proximal Distance Iteration

Require: An objective hρ(x), gradient hρ(x), and algorithm map 𝓜ρ(x).
1: Set tolerances ϵd and ϵg; fix hyperparameters λ and k.
2: Set maximum number of ρ values, tmax; maximum inner iterations mmax.
3: Initialize the estimate X and define an increasing sequence {ρ(t)}t0.
4: for t0,1,,tmax do
5: Set x0x using the current estimate and take ρρ(t).
6: for m1,,mmax do
7: Iterate the algorithm map,xm+1𝓜ρ(xm).
8: if hρ(xm+1)2ϵg then
9: Break.
10: end if
11: end for
12: Update xxm+1
13: if dist(x,S)ϵd then
14: Break.
15: end if
16: end for
17: Project the final estimate xPSk(x).